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Abstract

Context The legacy of human use of Mediterranean

ecosystems results in spatial and temporal hetero-

geneity of resources for wildlife. Understanding

wildlife use of these ecosystems may be improved

by including information on ecosystem type, structure,

and function extracted from remote sensing data.

Objectives To assess whether we can improve our

understanding of wildlife-habitat use by including

information on ecosystem type, structure and function.

Methods We tested whether remote sensing derived

descriptors of ecosystem type, structure (tree cover

and patch size) and function (productivity and stress)

determine the habitat of stone martens (Martes foina),

common genets (Genetta genetta), and European

badgers (Meles meles) in southern Portugal.We linked

radio-tracking data from five stone martens, five

genets and eight badgers with aerial photography,

and some spectra-selectivity to classify vegetation, its

structure, productivity and drought stress.

Results Statistically-derived generalized linear

mixed regression models using combinations of

remotely sensed descriptors of ecosystem type, struc-

ture and function, performed better than single

ecosystem type descriptors.

Conclusion Inclusion of information on ecosystem

functioning in predictive models of habitat use is more

informative than ecosystem type alone, suggesting

functional relationships between wildlife and their

habitat. However, inclusion of both ecosystem type

and function maybe limited to finer spatial resolutions.

Our results illustrate the untapped potential of remote

sensing to provide detailed descriptors of habitat at

adequate spatial scales, now that they are freely

available and are systematically collected over space

and time. This information adds useful insights on
Electronic supplementary material The online version of
this article (doi:10.1007/s10980-016-0360-3) contains supple-
mentary material, which is available to authorized users.

M. J. Santos (&)

Department of Innovation, Environmental and Energy

Sciences, Utrecht University, Heidelberglaan 2,

3572 TC Utrecht, The Netherlands

e-mail: mjsantos@ucdavis.edu;

M.J.FerreiraDosSantos@uu.nl

M. J. Santos � S. L. Ustin
Center for Spatial Technologies and Remote Sensing,

Department of Land, Air and Water Resources, University

of California Davis, One Shields Avenue, Davis,

CA 95616, USA

L. M. Rosalino

CESAM & Departmento de Biologia, Universidade de

Aveiro, Campus Universitário de Santiago,

3810-193 Aveiro, Portugal

L. M. Rosalino � M. Santos-Reis

Centre for Ecology, Evolution and Environmental Change

(cE3c), Faculdade de Ciências, Universidade de Lisboa,

1749-016 Lisbon, Portugal

123

Landscape Ecol (2016) 31:1763–1780

DOI 10.1007/s10980-016-0360-3

http://dx.doi.org/10.1007/s10980-016-0360-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0360-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0360-3&amp;domain=pdf


wildlife-habitat relationships under changing patterns

of land use and climate.

Keywords Ecosystem function � Genetta genetta �
Habitat use � Martes foina � Meles meles � Remote

sensing

Introduction

Understanding the degree to which species can cope

with the effect of land use and climate changes on its

habitat is fundamental in ecology, conservation, and

sustainability (Morrison et al. 1998; Scott et al. 2002;

Boyce 2006). The last decades have seen a prolifer-

ation of modeling studies on species niche (Pulliam

2002; Guisan and Thuiller 2005), resource selection

(Boyce 2006), habitat suitability (Hirzel et al. 2006;

Zielinski et al. 2006), and how these relationships

dictate species geographic distributions (Guisan and

Zimmermann 2000; Rushton et al. 2004; Moisen et al.

2006). These inferences have shown that habitat can be

described in many forms, from descriptors of ecosys-

tem type (Scott et al. 2002), spatial and temporal

structure (Zielinski et al. 2006; Santos 2010), and

ecosystem functioning (Wulder et al. 2004), to inclu-

sion of multiple (cumulative and dynamic) effects

between ecosystems and climate (Tingley et al. 2012;

Santos et al. 2014). This complicates both theoretical

and empirical assessments as the number of variables

to consider increases, as do the number of replicates

needed for a comprehensive understanding of the

underlying mechanisms that link species to the

ecosystems they inhabit. Understanding habitat

becomes therefore highly limited by the ability to

measure enough parameters and the precision at which

measurements of animal behavior and their environ-

mental context can be obtained.

Currently, much of our knowledge on species-

habitat relationships comes from natural history assess-

ments and observations, museum records, and, more

recently, from non-invasive molecular approaches

(Long et al. 2008), and animal locations obtained

through remote assessments using technologies like

VHF radio-telemetry, global positioning systems (GPS)

and satellite tracking (Perras and Nebel 2012). For

example, to understand large scale patterns of diversity

and species distributions, museum and other type of

observation records are highly valuable if they cover

large spatial areas at sufficient detail (Tingley and

Beissinger 2009). At this scale telemetry data becomes

impractical because of inherent logistic and budget

constraints of sampling large areas, except perhaps for

migrating species covering large areas (for example see

Aarts et al. 2008; Bischof et al. 2012). Inversely, the

sparse distribution of museum data that exists at the

scale of management units makes these data barely

usable, except as a reference data set. At the spatial

scale ofmanagement, higher precision data provided by

telemetry is essential to understand the mechanisms

through which species use the habitat. In fact, telemetry

data can resolve the minutiae of movement, foraging

and resting activities, and interactions with other

species. However, these data require matching with

adequate environmental context information.

Most commonly used measurements of environ-

mental context include remote sensing descriptors of

the Earth surface. These include climate variables,

satellite imagery, derived land cover classifications

and ecosystem function variables, and digital eleva-

tion models and their derivatives (aspect, elevation,

and slope). Several authors suggested that these large

scale metrics are sufficient for the goals of predicting

species distributions at the national and global scales

(Guisan and Zimmermann 2000; Guisan and Thuiller

2005; Meyer and Thuiller 2006). However, ultimately

the management of species for which these global data

sets are produced, occurs at local and regional scales.

At these scales, the spatial resolution of such data sets

([1 km cell size) is often too broad to include detailed

information. Since species responses to habitat are

scaled to their body size (Gehring and Swihart 2003),

there may be a mismatch in the spatial resolution at

which a species relates to its habitat and that of some

remote sensing products, especially for smaller

species. A potential solution is to find imagery at

appropriate spatial resolution (for example, Landsat at

30 m, or airborne aerial photography at\1–5 m). For

example, Landsat data has been actively used to

produce high resolution land cover maps, which have

been applied to resolve wide ranging animals’ habitat

use (Schadt et al. 2002; Seoane et al. 2004; Gottschalk

et al. 2005; Requena-Mullor et al. 2014). Landsat can

provide semi-automated land cover classifications,

and a wide variety of metrics to describe ecosystem

functioning (Wulder et al. 2004), which have barely

been used to understand wildlife-habitat relationships
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(Kerr and Ostrovsky 2003). Further, Landsat data is

now available at no cost, with multi-temporal resolu-

tion (see Wulder and Masek 2012 and papers in the

special issue). However, for some species finer

resolution aerial photographs may better match the

scale at which species relate to their habitat.

Land cover classification depicts only one of the

components of a species habitat—its type. While

ecosystem type can be a surrogate to the type of

resources available to a species, it may not be sufficient

to describe all the facets that make habitat for a given

species. For example, species respond to heterogeneity

(Cockburn and Lidicker 1983; Pickett and Cadenasso

1995), either within (canopy cover, structure, etc.) or

across (edges, gaps) the ecosystem types they inhabit,

which can be estimated using remote sensing products

(Seixas 2000; Turner et al. 2003; Vega-Garcia and

Chuvieco 2006; Goetz et al. 2007). Species also respond

to habitat quality. For example, Saba et al. (2008)

showed that the foraging and nesting frequency of the

worldwide population of leatherback turtles (Der-

mochelys coriacea) is a function of resource quantity

and persistence as estimated using satellite data. Habitat

quality and persistence can be inferred from other

satellite imagery products, including vegetation pro-

ductivity (Oppelt and Mauser 2004), phenology (Di

et al. 1994), and stress (Seghieri et al. 1995). Integration

of these types of information (type, canopy cover,

productivity and stress) can further aid understanding

about why animals select given parts of the landscape

for their movements and establishment of home ranges

(Nielsen et al. 2005; Neumann et al. 2015).

Our goal was to understand whether ecosystem

type, structure and function explained mesocarnivore

habitat use. To do so we matched telemetry data to

remote sensing derived descriptors of ecosystem type

(land cover type), structure (canopy cover and patch

size) and function (productivity and stress). More

specifically we asked: (1) Which descriptors of

ecosystem type, structure and function are the best to

assess mesocarnivore habitat? And (2) Is there an

effect of ecosystem type, structure and function on

mesocarnivore use of their habitat? To answer these

questions we selected an inherently heterogeneous

landscape, the cork oak woodlands in the Mediter-

ranean climates of southern Portugal. We selected as

focal species three co-occurring mesocarnivores, the

stone marten (Martes foina), the common genet

(Genetta genetta), and the European badger (Meles

meles), because these species have different patterns

of habitat use (e.g. Santos and Santos-Reis 2009; Soto

and Palomares 2015), at a scale that matches that of

aerial photography and Landsat satellite data. The

marten and the genet are arboreal and solitary, and the

badger is cursorial, ground dwelling and social; all of

them are nocturnal and omnivorous (Gittleman 1989).

We predicted that incorporating different descriptors

extracted from the Landsat imagery will be more

informative than ecosystem type alone (from land

cover classifications), since these species use multiple

ecosystems for different resources/activities (Rosalino

et al. 2004, 2005b, c; Santos-Reis et al. 2004; Santos

and Beier 2008; Santos and Santos-Reis 2009), require

cover for their movements and resting (Rosalino et al.

2004, 2005c; Loureiro et al. 2007), and use fruits as

important food resources (Rosalino et al. 2005a;

Santos et al. 2007; Rosalino and Santos-Reis 2002,

2008), all of which are features detectable by remote

sensing imagery.

Methods

Study area

The study was conducted in a 20 km2 area in Serra de

Grândola (Alentejo, Portugal, Fig. 1), which is part of

the LTSER Montado platform (http://www.

ltsermontado.pt/). The area is dominated by cork oak

woodlands (Quercus suber), with patches of holm oak

woodland (Q. ilex), pastures, Tasmanian blue gum

plantations (Eucalyptus globulus), riparian vegetation

(dominated by alder Alnus glutinosa, elm Ulmus spp.,

and blackberry Rubus ulmifolius), orchards (mainly

pear Pyrus bourgeana, fig Ficus carica, and loquat

Eryobrotia japonica), olive yards (Olea europaea)

and small urban areas and scattered farms. Topogra-

phy is moderate, with gentle slopes and low altitude

(159–238 m). Climate is Mediterranean with Atlantic

influence, with mean annual precipitation levels of

500 mm. One temporary stream—Castelhanos—runs

along the eastern border of the study area. Human

activity in the study area is concentrated in one small

village—Santa Margarida da Serra—and several

isolated farmhouses, but their effects are extended to

areas where cork extraction and livestock production

occur, and to hunting areas and timber-producing

stands. Legacy of human presence in these ecosystems
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has created a heterogeneous landscape in which

humans and wildlife coexist (Santos and Thorne

2010).

Animal trapping and radio-tracking

From 1997 to 2001 we conducted two animal capture

campaigns: 1997–1999 for genets and stone martens

and 2000–2001 for European badgers. For stone

martens and genets, we set a grid of live traps

(Tomahawk Live Trap Co., Wisconsin, USA) baited

with canned sardines. Traps were visited daily and re-

baited when necessary. For badgers we used a similar

approach complemented with soft-catch leg-hold traps

(Victor #2) in the vicinity of their setts. Traps were

visited multiple times a day and set at sufficient

distance to assure that the captured animals could not

enter a sett. Captured animals were tranquilized,

measured (total length, weight), sexed and aged (tooth

wear), and fitted with radio collars (Telonics for genets

and martens (Telonics Inc., Arizona, USA), and

Biotrack for badgers (BioTrack, Dorset, UK)), and

later released into their capture location (Rosalino

et al. 2005b). Captured animals were handled follow-

ing all the recommendations of the Animal Welfare

Protocol of the European Union and with the capture

permission of the Portuguese Instituto da Conservação

da Natureza e Biodiversidade (ICNB).

We radio-tracked five stone martens (2 females, 3

males), five genets (2 females, 3 males), and eight

European badgers (4 females, 4 males) during the

study period. Animals were monitored using two types

of surveys, (1) focal samples—when the animal was

located continuously for 24 h or while active; and (2)

daily locations, either at day or night, to obtain

locations of the animal in their resting sites or when

Fig. 1 Study area location in southern Portugal. Plus signs indicate animal locations obtained from radio-tracking
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active. The first type of survey was conducted using

triangulation, whereas the second was through hom-

ing-in procedures (for details see Santos-Reis et al.

2004; Rosalino et al. 2005b; Santos and Santos-Reis

2009). Radio-tracking data was entered into Tracker

(Camponotus AB and Radio Location Systems AB

1994) and bearings and distances were converted to

easting and northing locations. Location data was then

exported to ArcGIS 10.1. (Redlands, California, USA)

to extract habitat variables (see Remote sensing data).

Telemetry positional errors were assumed to be 1 m

when animals were inactive, and errors during activity

averaged 115 ± 30 m (range 10–269 m) (Santos-Reis

et al. 2004; Rosalino et al. 2004, 2005b). We took the

pixel corresponding to the point at the center of the

error polygon to match active locations positional

errors with the minimum mapping unit of the habitat

predictors (2 m for aerial photography and 30 m

Landsat derived products). The alternative approach

would be to create an error polygon and calculate

average values for each polygon, but we opted to

preserve the resolution in the remote sensing data as

the analysis unit.

We used the radio-tracking data to create home

ranges for each individual using the fixed kernel

estimator method (Worton 1989). This method

requires spatial and temporal independence of radio-

tracking locations and we therefore used Moran’s I

index (Moran 1950) to evaluate whether spatial

autocorrelation was significant on species presence

data. The index value is used to calculate theMoran’s I

statistic, which tests the null hypothesis that there is no

spatial autocorrelation through comparing the I statis-

tic to a normal distribution (Cheng and Stephens

1989). This autocorrelation coefficient measures the

similarity in the spatial patterns of the variables (Fortin

et al. 1989) and varies from -1 (perfect negative

spatial autocorrelation) to 1 (perfect positive spatial

autocorrelation), with values close to 0 representing no

spatial autocorrelation. We calculated temporal inde-

pendence by determining the time necessary for a

species to cross its home range—time to indepen-

dence—and then use this value as the time lag in

between consecutive locations (Swihart and Slade

1985, 1986).We used the 95 % fixed kernel to estimate

species home-ranges (to avoid potential outliers in

species detections) and used the home range boundary

to derive a set of random locations in the same number

as the independent locations used to generate the home

range. This would reflect our ‘‘pseudo-absence’’ data

for the modeling approach (see data analysis section).

We call these locations as pseudo-absences, because

they do not correspond to true absences (surveyed

locations where the animal was not detected).

Remote sensing data

We acquired data from two sources of remotely sensed

information: low-elevation aerial photography and

Landsat satellite imagery. Natural color aerial pho-

tography was acquired in 1999 at 1 m resolution. Two

Landsat TM scenes (30 m ground resolution) over the

study area were acquired for June of 1998 and 2000.

We chose only June because we wanted to match (as

much as possible) the remote sensing data to the time

of acquisition of the radio-tracking data (1997–2001),

given the reduced availability of low cloud cover

Landsat data in the archives for our study area in 1998.

We used the 1998 Landsat data for genets and stone

martens and the 2000 Landsat data for badgers.The

Landsat scenes were preprocessed to convert from

radiance to apparent reflectance using standard remote

sensing tools available in ENVI v.4 (ITT, Boulder,

Colorado USA). The different image dates were co-

calibrated by selecting pseudo-invariant targets (very

bright and very dark pixels in the image), determining

the regression line between the two image dates and

applying this invariant target regression to the image.

Ecosystem type: land cover type

To describe ecosystem type we used three different land

cover classifications. First, aerial photography was

photo-interpreted to ten main land cover classes: (1)

dense ([50 % cover) cork oak woodland with and (2)

without understory, (3) sparse (\50 % cover) cork oak

woodland with and (4) without understory, (5) riparian

vegetation, (6) pastureland, (7) orchards, (8) eucalyptus

plantations, (9) reservoirs, and (10) urban areas and

scattered farms. The photo-interpreted aerial photogra-

phy allowed us to delineate a higher number of land

cover classes, as for example the presence of riparian

vegetation, grasslands and small orchards, which are

often not identifiable by satellite remote sensing due to

the small patch sizes of these cover types. Second, we

downloaded the CORINE land cover data set (EEA

2002), which is a supervised classification of Landsat

TM satellite imagery from imagery acquired in 1999
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and 2000. This classification produced twenty three

land cover types in Portugal, four of which were present

in our study area: broad leaf forest (cork oakwoodland),

agroforestry, grasslands, and transition woodland-

shrubland (http://www.eea.europa.eu/data-and-maps/

data/corine-land-cover-2000-clc2000-seamless-vector-

database). Third, the two Landsat scenes were used to

calculate the subpixel composition of each of the 30 m

pixels using Linear Spectral Unmixing (LSU; Ustin

et al. 1986). This algorithm has been developed and

applied successfully to numerous Landsat data sets to

estimate the proportions in a mixture (Ustin et al. 1993).

A set of endmembers (pure pixels) from each class is

required to estimate the class proportions within the

pixel, and the number of endmembersmust be limited to

a few spectrally distinct classes to avoid redundancy.

We created four endmembers, forest, grassland, bare

soil and urban, which represent the variability of

structural land cover types in the study area. The

inclusion of an additional endmember for shrubland did

not improve the separation and therefore we decided not

to include it in the final analysis. Further, the grassland

endmember was most often mixed with bare soil (dry

grassland and soil have very similar spectral signatures,

at the Landsat spectral resolution) and thus shows

negative values on the final LSU results. For simplifi-

cation of the results we subtracted the grassland LSU

value from the soil and show results for an aggregated

grassland/soil class.

Ecosystem structure: canopy cover and patch size

We used tree canopy cover as a proxy for ecosystem

structure, since these species require cover for their

movements and resting (Rosalino et al. 2004, 2005c;

Santos-Reis et al. 2004; Loureiro et al. 2007). We used

the approach developed by Carreiras et al. (2006) to

derive Tree Canopy Cover (TCC). These authors

related TCC to raw reflectance, tasseled cap transform

bands and vegetation indices (Eq. 1). The best

regression model for southern Portuguese oak wood-

lands used raw reflectance data from Landsat:

TCC ¼ 63:626� 447:222b5 þ 623:837b4
� 714:626b3 þ 281:354b7 ð1Þ

where bi is the Landsat TM band and i is the band

number (3 through 7). The second metric of ecosystem

structure was patch size. We calculated patch area for

patches delineated by each classification scheme as

described in the section above. We calculated the area

of the polygons from the aerial photo interpretation,

and for the raster classification we counted the number

of pixels per class type and multiplied it per pixel size.

Ecosystem function: productivity and stress

Plant productivity describes resource quantity and

quality, which is important as these species often use

fruits as food resources (Rosalino and Santos-Reis

2002, 2008; Rosalino et al. 2005a; Santos et al. 2007;

Loureiro et al. 2009), and it can also be a surrogate for

other food resources such as rodents and insects‘abun-

dance (Owen 1988). Previous work has shown a

relation between vegetation productivity with the

canopy reflectance measured by Landsat (Tucker

1979; Huete et al. 1997), especially in the red edge

region (650–850 nm, Landsat bands 3 and 4; Vogel-

mann et al. 1993; Curran et al. 1995). This region of

the electromagnetic spectrum is related to the fraction

of intercepted photosynthetically active radiation

(Gamon et al. 1995; Ludeke et al. 1996), and is related

to the distribution of plant communities, vegetation

biomass, land degradation and vegetation quality for

herbivores and omnivores (Pettorelli et al. 2005;

Wiegand et al. 2008). To measure productivity we

calculated a suite of vegetation indices well estab-

lished in the remote sensing literature (Table 1). We

calculated the Normalized Difference Vegetation

Index (NDVI), the Green NDVI (a modified version

of the NDVI to account for the green reflectance

peaks), the Simple Ratio Index (SRI), and the

Enhanced Vegetation Index (EVI; Huete et al. 2002),

which measure the vegetation fraction within a pixel

(Tucker 1979). These indices measure the difference

between the reflectance in the red and the near-infrared

bands of Landsat (bands 3 and 4, respectively; and

band 2 for Green NDVI). We also calculated the

Atmospherically Resistant Vegetation Index (ARVI),

which accounts for atmospheric interference in the

reflectance values (Kaufman and Tanre 1996), the Soil

Adjusted Vegetation Index (SAVI), which accounts

for the soil influence in the reflectance signal (Huete

et al. 1997), and the Greenness Tasseled Cap trans-

formation (Greenness; Table 1) for the Landsat scene,

which is the result of a Principal Component Analysis

of the Landsat bands (Crist and Cicone 1984).

We also measured plant stress as a proxy of the

persistence of habitat quality over time. Plant stress
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corresponds to a reduction in the concentration of

photosynthetic pigments, a decrease in water content

and a relative increase in woody plant material, as a

result of lack of water or nutrients, adverse climatic

conditions, plant diseases, and insect damage (Jackson

1986; Grime 1993). If aggravated, plant stress will

result in senescence and death, which could indicate

unsuitable feeding areas and potentially less suit-

able resting sites for the mesocarnivores (Santos-Reis

et al. 2004; Loureiro et al. 2007). From a remote

sensing perspective, plant stress results in changes in

leaf color measured in the visible range of the

electromagnetic spectrum (Peñuelas et al. 1995a),

changes in water content measured in the water

absorption features in the near-infrared (NIR) (Peñue-

las et al. 1995b) and shortwave-infrared (SWIR), as

well as changes in cellulose and lignin measured in the

NIR (Jackson 1986). To measure changes in the

pigment contents we calculated two indices of the ratio

of carotenoids to chlorophyll, the Structure Insensitive

Pigment Index (SIPI; Peñuelas et al. 1995a) and the

Plant Senescence Reflectance Index (PSRI; Merzylak

et al. 1999). To measure a relative indicator of water

stress we calculated two indices of canopy water

content (Table 1), the Moisture Stress Index (MSI)

(Hunt and Rock 1989; Ceccato et al. 2001) and the

Normalized DifferenceWater Index (NDWI) (Jackson

et al. 2004). We also calculated the Wetness (water

content) Tasseled Cap transformation (Table 1; Crist

and Cicone 1984).

To extract the information from each of the remote

sensing derived products corresponding to the animal

locations we used STARSPAN (Center for Spatial

Technologies and Remote Sensing; http://starspan.

casil.ucdavis.edu/doku/doku.php), which allows extract-

ing raster data overlaid with vector data.

Data analysis

The first step was to normalize all the variables to

avoid model convergence problems and so that model

coefficients are comparable. Normalization was done

by dividing the difference between the index value at a

given location and the mean index value, by the index

standard deviation. Secondly, we tested for correla-

tions between the continuous variables selected

among the different sets for ecosystem type, patch

size, canopy cover, productivity and stress using the

Spearman’s correlation coefficient value (all r[ 0.70

were considered highly correlated; Hosmer and

Lemeshow 2000). Third, we selected which of the

metrics of ecosystem type, structure and function best

explain animal locations obtained by radio-tracking.

We developed a series of univariate generalized linear

mixed models (GLMM; Zuur et al. 2009) with

presence and pseudo-absence data (binomial distribu-

tion and logit link function) for each of the variables

reflecting ecosystem type and function (i.e., ecosystem

type: aerial photo, CORINE, LSU; productivity:

NDVI, NDVIg, SRI, EVI, ARVI, SAVI, Greenness;

and stress: MCI, NDWI, Wetness; Table 1), and using

individuals as a random factor. For ecosystem type and

function (both productivity and stress), we used a

multi-model selection procedure creating a model for

each of the predictors, and used the Akaike’s Infor-

mation Criteria (AIC; Eq. 2) to determine the best

performing model (and therefore the best predictor of

ecosystem type, productivity and stress) by calculating

the change in AIC from model to model (DAIC;
Eq. 3).

AIC ¼ �2 ln LðhÞ þ 2k ð2Þ

DAICi ¼ AICi �minAIC ð3Þ

where L(h) is the maximized likelihood value and k is

the number of parameters. Models with DAIC values

less than 2 have equal empirical support and were

considered as best models (Burnham and Anderson

2002).We also calculated the Akaike’s weight (wi;

Eq. 4) to determine if we could advocate a single top

model or not.

wi ¼
exp � Di=2

� �

PM
r¼1 exp

�Dr=2

� � ð4Þ

where i is the model run, andD is the difference in AIC

for every pair of models within the M set of models. If

more than one top model was selected, we used wi to

calculate model averaged coefficients. This allowed us

to select the variables that best resolved animal

presence; calculations were made for each species.

Since all productivity and stress variables previously

selected with the univariate generalized linear mixed

models (see above) were highly correlated (r[ 0.7)

and correlated with total canopy cover, we opted to

create linear combinations of the variables using

Principal Component Analysis (PCA; Zuur et al.

2007). The PCA was run using the best variables to
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describe ecosystem type and function as selected by

the univariate GLMMs. We chose to do these two

steps instead of just do the PCA’s because while we

expected some correlation between remote sensing

indices within and among categories (for example,

correlations between indices for productivity, and

correlation between productivity and stress indices),

we did not know how to select them. Using first the

univariate approach allowed us to select among

indices for each category (indices for productivity

and indices for stress), and then using the PCA allowed

us to include correlated indices representing different

categories. Therefore, the PCA reduces the effect of

multi-collinearity among indices of ecosystem pro-

ductivity and stress, and ensures the orthogonality of

the predictors.

We used the PCA components that accounted for

more than 90 % of data variability as predictor

variables in the models. We created two sets of

PCA-transformed variables to indicate ecosystem

function (which we equate to productivity and stress):

(1) ecosystem function including Landsat-specific

indices and (2) ecosystem function including only

‘‘universal indices’’. For the set of Landsat-specific

indices we allowed the inclusion of indices cus-

tomized for Landsat data as the tasseled cap transfor-

mations as well as TCC. The tasseled cap

transformations and the total canopy cover are mul-

tivariate combinations of Landsat bands, and their

coefficients are sensor specific. While tasseled cap

transformations have been developed for other sensors

(Zhang et al. 2002; Schönert et al. 2014), and so have

canopy cover algorithms (Hansen et al. 2002), here we

used parameters that were Landsat-specific. For the set

of ‘‘universal’’ indices we did not include the indices

deemed Landsat specific, that is, it included all the

indices in Table 1, except the tasseled cap transfor-

mations and the total canopy cover. These ‘‘universal’’

indices are those whose formulation is not dependent

on coefficients specific for each sensor, although their

calculation is still dependent on sensor specifications,

such as band width. The ‘‘universal’’ indices values

should be related across sensors, and therefore test

whether this approach could be expanded to other

types of data.

We used the main PCA axes, land cover type and

patch size as variables to a series of GLMM models

corresponding to all possible combinations of those

variables. For each case, we used the multi-model

selection procedure described above creating all

possible combinations of predictors (ecosystem type,

structure, and function). The influence of each

predictor variable on the dependent variable was

assessed by the significance of Wald z-statistic test,

i.e., variables which tests resulted in P\ 0.05 were

considered to have a significant influence on the

dependent variable. The influence of the predictors

was also assessed by the 95 % Confidence Interval

(CI) around the coefficients for each predictor vari-

able, i.e., the influence of a predictor variable was

deemed reliable when the confidence interval around

the mean estimate of its coefficient did not cross zero;

through the analysis of the CI we could determine if a

given predictor variable had a positive (positive CI) or

negative (negative CI) effect on the dependent vari-

able. Model’s performance was evaluated by calcu-

lating the Area Under the Curve (AUC), derived from

the Receiver Operating Characteristic (ROC) curve

(van Erkel and Pattynama 1998). AUC values*0.7 to

0.9 indicate useful applications of the model results

(Manel et al. 2001). Analysis were performed in R

3.1.2 (R Core Team 2014) using the packages ‘‘ape’’

(Paradis et al. 2004),‘‘lme4’’ (Bates et al. 2014),

‘‘AICcmodavg’’ (Mazerolle 2015), ‘‘MuMIn’’ (Barton

2015) and ‘‘pROC’’ (Robin et al. 2011).

Results

Animal locations, ecosystem type and resolution

We obtained a total of 3296 temporally independent

locations from the radio-tracked stone martens

(n = 441), genets (n = 401), and European badgers

(n = 2454) during the period of the study. Spatial

autocorrelation was significant for badgers (I =

-0.037, P value = 0.001) and stone martens (I =

-0.019, P value � 0.001), but not for genets

(I = 0.004, P value = 0.06).

The three land cover data sets showed consistent

higher numbers of locations on forest/woodland for all

the three species (Table 2). The second most used

ecosystem type was dependent on the land cover

classification, with the aerial photography identifying

the high use of pastureland by all species, which is

probably related to the CORINE grassland class. The

spectral unmixing did not add much to the aerial photo

and Landsat land cover classifications, because
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species presence was divided between forests

(72–76 %) and urban areas (14–22 %; Table 2).

Animal location data and predictor variable

selection

The continuous indices of productivity and stress were

highly correlated. From the original set of variables

and along with the land cover classifications, the

univariate models selected NDVI, NDVIg, SAVI, EVI,

Greenness, SIPI, and PSRI for stone marten, all

variables for genet, and NDVI, SAVI, Greenness, and

MSI for badger (Online Appendix 1). In Online

Appendix 1 we show a list of all the variables and their

DAIC for the univariate GLMM for each variable set

(i.e. land cover, productivity and stress) and for each

carnivore species. Variables were selected when

DAIC\ 2. The selected variables were combined

using a PCA for Landsat only variables and for

‘‘universal variables’’ (see methods for the description

of these two sets of candidate variables). Because

PCA1 explained most of the variation in the dataset we

used it for all the models, with the exception of the

genet universal model where we also included PCA2

(Stone marten: Landsat PCA1 = 95 %, Universal

PCA1 = 97.1 %; badger: Landsat PCA1 = 95.6 %,

Universal PCA1 = 96.7 %; genet: Landsat PCA1 =

91.2 %,Universal PCA1 ? PCA2 = 95.4 %; Table 3).

In addition, we added patch size and TCC as metrics of

ecosystem structure. Thesewere the variables used in the

competing models below.

Competing models

The competing models analysis showed that the best

model for stone martens and badgers included ecosys-

tem type, function and structure, while the model for

the genet included only ecosystem type (Table 4); the

effect of each of the parameters was species-specific.

The presence of stone marten was significant and

positively affected by dense oak woodlands with

understory, grasslands, and riparian vegetation, but

negatively affected by sparse oak woodland without

understory and a combination of productivity and

stress, and TCC—PCA1 (Table 4). PCA component

loadings show a positive influence of productivity

(Greenness) and canopy cover (TCC), and negative of

influence of stress (PSRI) on stone marten’s presence

according to the ‘‘Landsat’’ model. The ‘‘Universal’’

model PCA loadings indicate a positive association

between productivity (SAVI, NDVI, NDVIg and EVI)

and stone martens and a negative association with

stress (PSRI and SIPI; Table 3).

The presence of badgers was significantly and

positively affected by areas of dense oak woodland

with understory, sparse oak without understory and

orchards, and a combination of productivity (NDVI

and SAVI) and stress (MSI; Table 4, Online Appendix

2). NDVI and SAVI productivity indices had a

positive influence on PCA1 and stress index MSI

had a negative one (Online Appendix 2). On the other

hand, badger presence was negatively related to

eucalyptus plantations and grassland, patch area and

a combination of productivity, stress and canopy cover

metrics, which indicated a negative influence of stress

index MSI and a positive of productivity index

Greenness and TCC on badger presence (Online

Appendix 2).

The presence of genets was poorly predicted, and

we only found a positive significant effect of dense oak

with understorey and eucalyptus plantations. All the

models were significant and had a predictive power

greater than 60 % (AUC values in Table 4). Genet

models have low accuracy (AUC\ 0.7) and therefore

should be carefully interpreted.

Discussion

Anthropogenic activities result in habitat loss and

fragmentation, and changes in climate, which can

produce irreversible modifications in the environmen-

tal conditions that allow the persistence of biological

communities. Assessments of habitat and its use that

can move beyond traditional approaches to measure

habitat properties that species respond to, and that are

themselves responsible for ecosystem functioning,

should be of increasing value. In this study we

assessed the use of remote-sensing derived informa-

tion about ecosystem type, structure, and function to

describe habitat use for three species of mesocarni-

vores. For all the studied species there was a consistent

higher use of forest/woodland land cover types. Dense

cork oak woodlands with understorey was the ecosys-

tem type that all species use. In addition, stone martens

and badgers can also be found in orchards, grasslands

and riparian vegetation. Our results suggest that finer

spatial resolution (lower pixel size) and higher
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categorical resolution (more land cover classes) pro-

vided better explanation of used ecosystem types. For

the European badger and the stone marten, including

information on ecosystem structure (patch size and

canopy cover), and function (productivity and stress)

substantially improved predictions of habitat use

based on ecosystem type alone. No conclusive results

were found for the genet.

Previous studies in the Iberian Peninsula, showed

that cork oak woodlands with understory are important

for badgers (Revilla et al. 2001; Virgós 2002; Rosalino

et al. 2004, 2005c, 2007; Santos and Beier 2008) and

stone martens (Virgós and Casanovas 1998; Virgós

and Garcia 2002; Santos-Reis et al. 2004; Santos and

Santos-Reis 2009). The shrub layer in these oak

woodlands is removed every 3–5 years to enhance

cork production and quality. Apparently, this man-

agement activity does not cause avoidance of the

altered areas (Santos-Reis et al. 2004). Cork oak

woodlands are a source of food for badgers, as they

provide acorns which badgers consume in great

quantities; in these areas badgers also find beetles

(Coleoptera), one of their other main prey items

(Rosalino et al. 2005a; Loureiro et al. 2009). The stone

marten, as an arboreal species, utilizes the resting sites

that cork oak trees provide (Santos-Reis et al. 2004).

Cork oak trees live up to 250 years, and as trees

senesce cavities are created in the wood (Aronson

et al. 2009; Carvalho et al. 2014).

We found a high likelihood of finding stonemartens

in riparian vegetation and badgers in orchards, and

opposing directions of influence of grasslands. There

are few studies that show the importance of riparian

vegetation for carnivores (Matos et al. 2008; Virgós

2001; Santos et al. 2011). In our study area, riparian

areas provide water and food resources (blackberries,

small mammals, cray fish etc.; Matos et al. 2008;

Pereira and Rodriguez 2010), and are also attractive

resting locations in the summer because of their cool

microclimates (Santos-Reis et al. 2004; Loureiro et al.

2007). One of badgers main diet component are fruits

which are found in orchards (Rosalino et al. 2003;

Santos et al. 2007; Rosalino and Santos-Reis 2008).

Many orchards are abandoned, representing a past

legacy of when the area was highly productive and

farms, today abandoned, were inhabited by montado

Table 2 Land cover type in locations of stone martens, genets and European badgers

Data type Land cover Martes foina Genetta genetta Meles meles

Aerial photo Dense cork oak woodland with understory 43.8 39.4 66.92

Dense cork oak woodland without understory 19.05 26.8 13.22

Sparse cork oak woodland with understory 10.5 7.3 1.88

Sparse cork oak woodland without understory 6.5 10.8 13.49

Riparian vegetation 2.8 2.5 0.63

Pastureland 13.4 10.7 3.05

Orchards 2.6 1.5 0.54

Eucalyptus plantations 0 0.5 0.09

Urban areas 1.2 0.4 0.18

CORINE Broad leaf forest 72.18 90.57 86.59

Dry crops 3.25 7.39 10.52

Irrigated agriculture 2.97 0 1.87

Natural vegetation (woodland and shrubland) – 0 0.45

Grassland 21.61 1.95 0.08

LSU Forest 0.73 ± 0.38 0.72 ± 0.36 0.76 ± 0.27

Grassland/soil 0.06 ± 0.43 0.10 ± 0.40 0.15 ± 0.28

Urban 0.22 ± 0.24 0.18 ± 0.26 0.14 ± 0.21

Locations data is the percentage of locations within each land cover class. Aerial photo and CORINE are in percentages and LSU

values are in proportions
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workers and their families (Antrop 1993; Pinto-

Correia and Fonseca 2009). Badgers seem to use

these quite often and the use of these small orchard

areas can probably explain the negative effect of patch

size, i.e. a negative relation between the probability of

badgers being presence and the size of the patch. Thus,

in this landscape smaller patches such as orchards and

riparian areas, have higher probability of being used

by badgers than larger ones (e.g. pastureland). We

found that badgers were negatively affected by

grasslands while stone martens’ presence was posi-

tively related to this land cover type. This is surprising

as in other areas of badger distribution grasslands are a

main source of earthworms; however, in Mediter-

ranean ecosystems earthworm consumption by Euro-

pean badgers is rare (Rosalino et al. 2003).

No conclusive results were found for habitat use by

genets, for land cover type, structure and function.

Genet model performance had relatively low AUC

values (Manel et al. 2001). Genets more often found in

dense cork oak woodland with understory; however,

the model runs were statistically inconclusive in spite

of the number of locations used for model runs being

similar to those used for the stone marten and the

radio-tracking occurred simultaneously for both

species, eliminating potential yearly variations. Per-

haps the genet is the most habitat generalist of the

three species, which is potentially a result of its being a

non-native species (Dobson 1998). These types of

models tend to perform worse for generalist species

because it becomes difficult to detect specific habitat

features, as they match closely the availability repre-

sented in by the random locations (Elith et al. 2006).

The genet is a naturalized non-native species and

perhaps is not selecting any habitat specifically in our

study area.

Our results suggest that adding information about

structure (canopy cover) and function (plant

Table 3 Principal Component loadings for each species and model set

Stone marten Genet Badger

PCA1 PCA2 PCA3 PCA1 PCA2 PCA3 PCA1 PCA2 PCA3

Landsat

Productivity

GREEN -0.498 -0.566 -0.373 -0.591 -0.390 -0.706 -0.572 0.814 0.101

Stress

PSRI 0.498 -0.549 -0.492

SIPI 0.502 -0.444 0.612

MSI 0.572 0.814 0.101

WET -0.549 0.836 0

Structure

TCC -0.503 -0.426 0.493 -0.591 -0.386 0.708 -0.581 0.316 0.750

Universal

Productivity

NDVI -0.412 -0.188 -0.143 -0.334 0 0.121 0.582 0.401 0.707

NDVIG -0.402 -0.710 0 -0.326 0 0.171

EVI -0.407 0.403 -0.560 -0.328 -0.151 0.241

SAVI -0.412 -0.188 -0.143 -0.334 0 0.121 0.582 0.401 -0.707

ARVI -0.203 0.931 0

Stress

PSRI 0.409 -0.468 0 0.330 0 -0.272

SIPI 0.407 -0.208 -0.802 0.326 -0.169 -0.226

NDWI -0.319 -0.101 -0.615

MSI 0.320 0 0.613 -0.567 0.823 0
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productivity and stress) improved predictions of

habitat use, but mostly because of ecosystem function.

The PCAs used in the badger and stone marten models

were mostly dictated by plant stress (with the excep-

tion of the universal model for the badger which used

mostly productivity), which explains the negative and

the positive relationships that our models revealed.

The negative relation to plant stress is probably related

to avoidance of dry (and hot) areas, especially during

the summer. This could be because these areas do not

confer protection against the high summer tempera-

tures. Further, and because these results used the

Universal model PCA they suggest that the use of

these indices can be transferable to other sensors

beyond Landsat. Despite the diluted effect of canopy

cover in our models, during the summer the outer layer

of cork plays an important role in the thermal isolation

of resting sites during the day (Santos-Reis et al.

2004), and cover is also an important feature as species

prefer to move in sheltered rather than open areas

(Rosalino et al. 2004, 2005b, c).

Our analysis showed that there are some ecosystem

function predictors that improved model performance

more than others. NDVI (Tucker 1979) is probably

one of the most widely used vegetation index in

remote sensing and other applications to measure plant

greenness (Ludeke et al. 1996; Pettorelli et al. 2011)

but is sensitive to differences in background reflec-

tance. To compensate for some of these errors, the soil

adjusted vegetation index (SAVI) includes a param-

eter L (see Table 2 for formulation), which accounts

for the effects of soil in the overall pixel reflectance

Table 4 Averaged model parameters of habitat use of stone martens, genets and European badgers in cork oak woodlands of

southern Portugal

Stone marten Genet Badger

Universal Landsat Universal Landsat Universal Landsat

Type

Urban/rural area -0.07 -0.11 0.262 0.27 -0.48 -0.53

Eucalyptus plantation na na 16.6 15.76**(a) -1.69*(a) -1.69*(a)

Dense oak woodland w/understorey 0.6**(a) 0.61**(a) 1.14**(a) 1.12 1.84**(a) 1.74**(a)

Dense oak woodland w/out understorey -0.36 -0.37 0.47 0.46 0.18 0.12

Sparse oak woodland w/understorey -0.77*(a) -0.77* 0.5 0.5 -0.09 -0.12

Sparse oak woodland w/out understorey -0.09 -0.12 0.29 0.29 0.75**(a) 0.74**(a)

Orchard 0.07 0.07 0.85 0.85 1.01*(a) 1.03*(a)

Grassland 1.18**(a) 1.11**(a) 0.35 0.35 -0.36*(a) -0.39*(a)

Riparian vegetation 2.08**(a) 2.1**(a) 0.71 0.72 -0.13 -0.2

Agroforestry na na 0.15 0.14 na na

Broad leaf forest na na 0.79 0.74 na na

Transition woodland-shrubland na na 1.93 1.91 na na

Structure

PatchAE -0.06 -0.05 -0.14 -0.14 -0.19**(a) -0.17**(a)

Function

Productivity ? Stress -0.09**(a) na PCA1 = 0.019 na 0.07**(a) na

PCA2 = 0.112

Function ? Structure

TCC ? Productivity ? Stress na -0.12** na – na -0.12**(a)

AUC 0.67 0.66 0.62 0.62 0.71 0.72

* indicates significance at a\ 0.05 and ** indicates significance at a\ 0.01, (a) represents confidence in the coefficient estimate,

that is, when the confidence interval around the estimate does not cross zero. na—are variables not included in the candidate variable

set; – represents a variable that was not selected within the best models
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(Huete et al. 1997). Other productivity indices are also

alternative metrics to productivity to respond to the

inherent limitations of NDVI. Our results showed that

most models used both SAVI and NDVI (Online

Appendix 1), suggesting a complementary effect of

both indices. This is probably because SAVI gives

better estimates of vegetation cover when soil

reflectance varies considerably, complementing the

information from NDVI. Other authors have also used

NDVI as measures of seasonal productivity to which

wildlife species may or not respond. For example,

Wiegand et al. (2008) showed that NDVI estimates of

seasonal productivity were linked to brown bear

(Ursus arctos) population decreases in northern Spain.

Despite all the benefits of NDVI, including its wide

use, simplicity, easiness to understand, and reliability,

it also has the disadvantage of being influenced by the

underlying soil reflectance, and at high values of

canopy closure NDVI reaches saturation. For exam-

ple, Requena-Mullor et al. (2014) used the Enhanced

Vegetation Index (EVI) as an alternative to NDVI to

assess the effects of ecosystem function on European

badger habitat use. Our results were mixed in the

selection of the stress metric, while stress was an

important descriptor of habitat use. PSRI and SIPI

were selected for stone marten and genet models, and

MSI for badger models. Plant stress can be manifested

in many physiological alterations, including changes

in pigment concentration, with a decrease in chloro-

phyll and an increase in carotenoids, a decrease in

water content, and increase in woody material and leaf

litter. PSRI, Pigment Sensitive Vegetation Index

(Merzylak et al. 1999), and SIPI, Structure Insensitive

Pigment Index (Peñuelas et al. 1995a) as the names

indicate, measure changes in pigment concentrations

whereas MSI (Moisture Stress Index; Hunt and Rock

1989; Ceccato et al. 2001) measures changes in

moisture content. This indicates that the species may

be responding to different sources of plant stress, with

badger responding to water content, and stone martens

and genets responding to leaf color changes and

senescence. The specific mechanisms by which each

species is associated with indices of plant productivity

and stress is unknown, but worthy of future study.

The inclusion of ecosystem function metrics

improved predictions of habitat use based on ecosys-

tem type alone but at the expense of a reduction on

spatial scale and categorical resolution of the land

cover map. There is a wide range of spatial resolutions

that have been used in habitat-species studies. For

example, some studies looking at the influence of

environmental covariates on European badgers’ pres-

ence have been based on coarser spatial resolutions

than those used in our study (e.g. Revilla et al. 2000;

50 m resolution; Hammond et al. 2001—100 m

resolution; Requena-Mullor et al. 2014). However,

others have also used Landsat Thematic Mapper (TM)

satellite images or aereal photos/on-site data for

assessing habitat use or predict badgers distribution

with similar resolutions to ours (e.g. Virgós and

Casanovas 1999—on-site; Wright et al. 2000—30 m;

Rosalino et al. 2004—2 m; Newton-Cross et al.

2007—25 m). This could lead to a mismatch between

the habitat composition within the error polygon and

the habitat category associated with the central point

of that polygon, which may be a source of uncertainty.

However, this uncertainty is inversely related with

landscape heterogeneity, i.e. in more homogeneous

areas the uncertainty may be low as there is a higher

probability that the central point of the error polygon

will represent the dominant habitat in the polygon. In

highly heterogeneous areas this bias may affect results

and should be considered in the analysis. Our study

area is relatively homogeneous so we expect this bias

not to considerably affect the results.

Our results corroborate our predictions that adding

additional information on ecosystem structure, and

function would be more informative than ecosystem

type alone (even at finer spatial and categorical

resolution), providing a unique insight into animal

habitat use. The advantages of using such an approach

are the inclusion of the habitat predictors that represent

different ecosystem functionality and go beyond the

traditional wildlife-habitat studies that reflect species

use of land cover types. This insight can bring about

new ways in which to describe the ecological niche of

species approximating the underlying mechanisms

and processes, which can be measured using indices

that are applicable across a range of sensors. However,

such applicability may be restricted as our second

main result is that the spatial resolution of the land

cover classification is very important for predicting

habitat use. Therefore, these results suggest a trade-off

between the inclusion of metrics of ecosystem func-

tioning and the scale of the analysis— a spatial

resolution that probably matches that of the perception

abilities of mesocarnivores. The Landsat archive and

analytical software are currently freely available,
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allowing inferences to current and past dates, and

predictions into the future potential responses of

species to effects of climate changes in their habitat

(Santos et al. 2014). Climate change predictions for

southern European countries indicate decrease in

rainfall and in number of rainfall events, and increased

summer temperatures (Santos et al. 2002; Reid 2006).

This will likely result in changes in plant phenology

and productivity, and plants will show higher stress

levels, decrease in canopy cover, which are expected

to affect future mesocarnivore habitat use.
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