Skip to main content

Advertisement

Log in

Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Landscape spatio-temporal heterogeneity is regarded as an important driver of biodiversity. In agricultural landscapes, the composition and configuration of cultivated fields and their multi-year dynamics should be considered. But the habitat-matrix paradigm in landscape ecology has resulted in little consideration of cropped areas.

Objectives

The main objective of our study was to determine the influences of spatial and multi-year temporal heterogeneity of the crop mosaic on carabid beetle assemblages of agricultural landscapes.

Methods

Carabids were sampled in 40 cereal fields in western France, and their species richness, total abundance and abundance of species groups with different dispersal abilities were measured. For each sampling site, we computed different metrics that characterized crop mosaic spatial and temporal heterogeneity. We quantified relationships between carabid assemblages and heterogeneity metrics and tested their significance.

Results

Total carabid abundance increased with increase in temporal heterogeneity of the crop mosaic. However, all species were not influenced in the same way by spatial and temporal heterogeneity metrics. Some species with high dispersal power such as Trechus quadristriatus were more abundant in landscapes with high spatial heterogeneity, whereas the abundance of less mobile species such as Poecilus cupreus were only positively influenced by temporal crop dynamics.

Conclusions

Our results suggest that both the spatial and temporal heterogeneity of the crop mosaic affects farmland biodiversity, at least for species that use crops during their life cycle or disperse through fields. We highlight the importance of taking this heterogeneity into account in further ecological studies on biodiversity in agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aviron S, Burel F, Baudry J, Schermann N (2005) Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. Agric Ecosyst Environ 108(3):205–217

    Article  Google Scholar 

  • Barton K (2013) MuMIn: multi-model inference. R package version 1.9.0. http://cran.r-project.org/web/packages/MuMIn/. Accessed 5 Sept 2014

  • Bates D, Maechler M, Bolker B (2012) lme4: linear mixed-effects models using S4 classes. R package version 0.999999-0. http://cran.r-project.org/web/packages/lme4/. Accessed 5 Sept 2014

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18(4):182–188

    Article  Google Scholar 

  • Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273(1595):1715–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Billeter R, Liira J, Bailey D, Bugter R, Arens P, Augenstein I, Edwards PJ (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45(1):141–150

    Article  Google Scholar 

  • Burel F (1992) Effect of landscape structure and dynamics on species diversity in hedgerow networks. Landscape Ecol 6(3):161–174

    Article  Google Scholar 

  • Burel F, Baudry J, Butet A, Clergeau P, Delettre Y, Le Coeur D, Lefeuvre JC (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19(1):47–60

    Article  Google Scholar 

  • Burel F, Butet A, Delettre YR, Millàn de La Peña N (2004) Differential response of selected taxa to landscape context and agricultural intensification. Landsc Urban Plan 67(1):195–204

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res 33(2):261–304

    Article  Google Scholar 

  • Chang GC, Snyder WE (2004) The relationship between predator density, community composition, and field predation of Colorado potato beetle eggs. Biol Control 31(3):453–461

    Article  Google Scholar 

  • Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14(9):922–932

    Article  PubMed  Google Scholar 

  • Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118(1):285–290

    Article  Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8(5):691–703

    Article  Google Scholar 

  • Dancey C, Reidy J (2004) Statistics without maths for psychology: using SPSS for windows. Prentice Hall, London

    Google Scholar 

  • de Blois S, Domon G, Bouchard A (2001) Environmental, historical, and contextual determinants of vegetation cover: a landscape perspective. Landscape Ecol 16(5):421–436

    Article  Google Scholar 

  • Den Boer PJ (1977). Dispersal power and survival: carabids in a cultivated countryside. Miscellaneous papers 14

  • Den Boer PJ (1990) The survival value of dispersal in terrestrial arthropods. Biol Conserv 54(3):175–192

    Article  Google Scholar 

  • Duflot R, Georges R, Ernoult A, Aviron S, Burel F (2014) Landscape heterogeneity as an ecological filter of species traits. Acta Oecol 56:19–26

    Article  Google Scholar 

  • Duflot R, Aviron S, Ernoult A, Fahrig L, Burel F (2015) Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecol Res 30:75–83

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Fahrig L (1992) Relative importance of spatial and temporal scales in a patchy environment. Theor Popul Biol 41(3):300–314

    Article  Google Scholar 

  • Fahrig L (2007) Non-optimal animal movement in human-altered landscapes. Funct Ecol 21(6):1003–1015

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14(2):101–112

    Article  PubMed  Google Scholar 

  • Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, Tischendorf L (2015) Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ 200:219–234

    Article  Google Scholar 

  • Firbank LG, Petit S, Smart S, Blain A, Fuller RJ (2008) Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Philos Trans R Soc B 363(1492):777–787

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • French BW, Elliott NC (1999) Spatial and temporal distribution of ground beetle (Coleoptera: Carabidae) assemblages in riparian strips and adjacent wheat fields. Environ Entomol 28(4):597–607

    Article  Google Scholar 

  • Gardiner MM, Landis DA, Gratton C, Schmidt N, O’Neal M, Mueller E, Heimpel GE (2010) Landscape composition influences the activity density of Carabidae and Arachnida in soybean fields. Biol Control 55(1):11–19

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, Van Wingerden W, Schweiger O, Speelmans M, Aviron S, Bugter ROB (2007) How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol 44(2):340–351

    Article  Google Scholar 

  • Hendrickx F, Maelfait JP, Desender K, Aviron S, Bailey D, Diekotter T, Bugter R (2009) Pervasive effects of dispersal limitation on within-and among-community species richness in agricultural landscapes. Glob Ecol Biogeogr 18(5):607–616

    Article  Google Scholar 

  • Hillebrand H, Bennett DM, Cadotte MW (2008) Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89(6):1510–1520

    Article  PubMed  Google Scholar 

  • Holland JM, Luff ML (2000) The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr Pest Manag Rev 5(2):109–129

    Article  Google Scholar 

  • Hothorn T, Buehlmann P, Dudoit S, Molinaro A, Van Der Laan MJ (2006) Survival ensembles. Biostatistics 7(3):355–373

    Article  PubMed  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landscape Ecol 27(7):929–941

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2014) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24(1):52–63

    Article  Google Scholar 

  • Jeanneret P, Schüpbach B, Pfiffner L, Herzog F, Walter T (2003) The Swiss agri-environmental programme and its effects on selected biodiversity indicators. J Nat Conserv 11(3):213–220

    Article  Google Scholar 

  • Jonsen ID, Fahrig L (1997) Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12(3):185–197

    Article  Google Scholar 

  • Kromp B (1999) Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric Ecosyst Environ 74(1):187–228

    Article  Google Scholar 

  • Le Féon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissière BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101

    Article  Google Scholar 

  • Lee Y, Nelder JA (2000) Two ways of modelling overdispersion in non-normal data. J Roy Stat Soc: Ser C (Appl Stat) 49(4):591–598

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Lovei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41(1):231–256

    Article  CAS  PubMed  Google Scholar 

  • Luff ML (1987) Biology of polyphagous ground beetles in agriculture. Agric Zool Rev 2:237–278

    Google Scholar 

  • Maisonhaute JE, Peres-Neto P, Lucas E (2010) Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agric Ecosyst Environ 139(4):500–507

    Article  Google Scholar 

  • Marrec R, Badenhausser I, Bretagnolle V, Börger L, Roncoroni M, Guillon N, Gauffre B (2015) Crop succession and habitat preferences drive the distribution and abundance of carabid beetles in an agricultural landscape. Agric Ecosyst Environ 199:282–289

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277(5325):504–509

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, Marks BJ (1995). FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station

  • Men X, Ge F, Yardim E, Parajulee M (2004) Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids. Biocontrol 49(6):701–714

    Article  Google Scholar 

  • Menalled FD, Lee JC, Landis DA (1999) Manipulating carabid beetle abundance alters prey removal rates in corn fields. Biocontrol 43(4):441–456

    Article  Google Scholar 

  • Öberg S, Mayr S, Dauber J (2008) Landscape effects on recolonisation patterns of spiders in arable fields. Agric Ecosyst Environ 123(1):211–218

    Article  Google Scholar 

  • Östman Ö (2004) The relative effects of natural enemy abundance and alternative prey abundance on aphid predation rates. Biol Control 30(2):281–287

    Article  Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J (2001a) Landscape heterogeneity and farming practice influence biological control. Basic Appl Ecol 2(4):365–371

    Article  Google Scholar 

  • Östman Ö, Ekbom B, Bengtsson J, Weibull AC (2001b) Landscape complexity and farming practice influence the condition of polyphagous carabid beetles. Ecol Appl 11(2):480–488

    Article  Google Scholar 

  • Palmu E, Ekroos J, Hanson HI, Smith HG, Hedlund K (2014) Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic Appl Ecol 15(3):241–249

    Article  Google Scholar 

  • Pasher J, Mitchell SW, King DJ, Fahrig L, Smith AC, Lindsay KE (2013) Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landscape Ecol 28(3):371–383

    Article  Google Scholar 

  • Petit S, Burel F (1998) Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agric Ecosyst Environ 69(3):243–252

    Article  Google Scholar 

  • Pimentel D, Stachow U, Takacs DA, Brubaker HW, Dumas AR, Meaney JJ, Corzilius DB (1992) Conserving biological diversity in agricultural/forestry systems. BioScience 42:354–362

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-108. http://cran.r-project.org/web/packages/nlme/. Accessed 5 Sept 2014

  • Puech C, Baudry J, Joannon A, Poggi S, Aviron S (2014) Organic vs. conventional farming dichotomy: does it make sense for natural enemies? Agric Ecosyst Environ 194:48–57

    Article  Google Scholar 

  • Puech C, Poggi S, Baudry J, Aviron S (2015) Do farming practices affect natural enemies at the landscape scale? Landscape Ecol 30(1):125–140

    Article  Google Scholar 

  • Purtauf T, Dauber J, Wolters V (2004) Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc Urban Plan 67(1):185–193

    Article  Google Scholar 

  • Purtauf T, Dauber J, Wolters V (2005a) The response of carabids to landscape simplification differs between trophic groups. Oecologia 142(3):458–464

    Article  PubMed  Google Scholar 

  • Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005b) Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agric Ecosyst Environ 108(2):165–174

    Article  Google Scholar 

  • R Development Core Team (2011). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/. Accessed 3 Mar 2013

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12(3):487–506

    Article  Google Scholar 

  • Ribera I, Dolédec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82(4):1112–1129

    Article  Google Scholar 

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11(5):499–515

    Article  PubMed  Google Scholar 

  • Roger J-L, Jambon O, Bouger G (2013). Clé de détermination des Carabidae, paysages agricoles du Nord Ouest de la France. http://www6.rennes.inra.fr/sad/Outils-Produits/Cle-Carabidae. Accessed 10 Aug 2013

  • Saint-Germain M, Larrivée M, Drapeau P, Fahrig L, Buddle CM (2005) Short-term response of ground beetles (Coleoptera: Carabidae) to fire and logging in a spruce-dominated boreal landscape. For Ecol Manage 212(1):118–126

    Article  Google Scholar 

  • Schmidt MH, Roschewitz I, Thies C, Tscharntke T (2005) Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J Appl Ecol 42(2):281–287

    Article  Google Scholar 

  • Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35(1):157–166

    Google Scholar 

  • Schweiger O, Maelfait JP, Wingerden WV, Hendrickx F, Billeter R, Speelmans M, Bugter R (2005) Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J Appl Ecol 42(6):1129–1139

    Article  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8(1):25

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinform 9(1):307

    Article  Google Scholar 

  • Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14(4):323

    Article  PubMed Central  PubMed  Google Scholar 

  • Thenail C, Joannon A, Capitaine M, Souchère V, Mignolet C, Schermann N, Baudry J (2009) The contribution of crop-rotation organization in farms to crop-mosaic patterning at local landscape scales. Agric Ecosyst Environ 131(3):207–219

    Article  Google Scholar 

  • Thies C, Steffan-Dewenter I, Tscharntke T (2008) Interannual landscape changes influence plant-herbivore-parasitoid interactions. Agric Ecosyst Environ 125(1):266–268

    Article  Google Scholar 

  • Townsend CR, Hildrew AG (1994) Species traits in relation to a habitat templet for river systems. Freshw Biol 31(3):265–275

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan‐Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8(8):857–874

    Article  Google Scholar 

  • Turin H, Den Boer PJ (1988) Changes in the distribution of carabid beetles in The Netherlands since 1880. II. Isolation of habitats and long-term time trends in the occurence of carabid species with different powers of dispersal (Coleoptera, Carabidae). Biol Conserv 44(3):179–200

    Article  Google Scholar 

  • Uuemaa E, Mander Ü, Marja R (2013) Trends in the use of landscape spatial metrics as landscape indicators: a review. Ecol Ind 28:100–106

    Article  Google Scholar 

  • Van Huizen THP (1977) The significance of flight activity in the life cycle of amara plebeja Gyll. (Coleoptera, Carabidae). Oecologia 29(1):27–41

    Article  Google Scholar 

  • Vasseur C, Joannon A, Aviron S, Burel F, Meynard JM, Baudry J (2013) The cropping systems mosaic: how does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14

    Article  Google Scholar 

  • Winqvist C, Bengtsson J, Öckinger E, Aavik T, Berendse F, Clement L, Bommarco R (2014) Species’ traits influence ground beetle responses to farm and landscape level agricultural intensification in Europe. J Insect Conserv 18(5):837–846

    Article  Google Scholar 

  • Wissinger SA (1997) Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biol Control 10(1):4–15

    Article  Google Scholar 

Download references

Acknowledgments

C.B. received a Ph.D. scholarship from the French Ministry of Higher Education and Research (Université de Rennes 1). Field work was carried out as part of FarmLand, an ERA-Net BiodivERsA project funded by the French National Research Agency (ANR-11-EBID-0004). Multispectral satellite images were acquired from GEOSUD, a project (ANR-10-EQPX-20) in the program “Investissements d’Avenir” managed by the French National Research Agency, the ISIS Programme of the French space agency CNES and the Zone Atelier Armorique. Special thanks go to Romain Georges, Diab Al Hassan and Olivier Jambon for help in the field, to David Giralt (CTFC, Solsona - Spain), Audrey Alignier and Stéphanie Aviron for valuable suggestions and to Dr. K. Harper for English editing. Finally, we thank the LETG-Rennes-COSTEL lab for the original map used for landscape selection and Julien Deniau for the construction of the land-use maps. This study was made possible by the acceptance of farmers to let us sample in their fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colette Bertrand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Supplementary material 2 (DOCX 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, C., Burel, F. & Baudry, J. Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landscape Ecol 31, 451–466 (2016). https://doi.org/10.1007/s10980-015-0259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0259-4

Keywords

Navigation