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striations over the whole length of the fibre. Under an elec-
tron microscope, the striations are revealed as sarcomeres 
joined end to end via the Z-lines (Fig. 1a, b). Actin filaments 
emanate from each side of the Z-line and overlap with the 
myosin filaments in the A-band. The myosin filaments have 
crossbridges over most of their length, and the crossbridges 
interact with actin filaments to increase the length of their 
overlap, producing contraction of the muscle. Myosin fil-
aments are bipolar and at their centre are tethered by the 
M-band assembly into a hexagonal lattice, which also deter-
mines their axial rotations.

Since vertebrate striated muscle is highly ordered, small 
angle x-ray diffraction has provided much insight into its 
ultrastructure, although it does not give actual images (e.g. 
Figure 2a, b), and gives information on live muscle with-
out any processing steps. Electron microscopy (EM), on 
the other hand, gives direct images, although the various 
chemical processing steps required means that the inter-
nal structure of the sample may be altered. However, when 
used together, periodicities of live muscle derived from 
x-ray diffraction can help to confirm the structural features 
observed by EM. The pioneer of x-ray diffraction of muscle 
was Hugh Huxley with his classic tour de force study in 
1967 (Huxley and Brown 1967). They noticed that for frog 
muscle, while the x-ray reflections on the equator (labelled 
e in Fig. 2c, d) are compatible with thick filaments based on 
a hexagonal lattice, diffraction spots on the 1st and 2nd layer 
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Introduction

In this review, we celebrate the role of our esteemed friend 
John Squire in highlighting the occurrence, and solving 
the nature, of the myosin superlattice in vertebrate striated 
muscles, and describe how we linked the finding to a funda-
mental phenomenon in physics. We review this journey and 
provide some new insight into the nature of the superlattice. 

Striated muscles in vertebrates are impeccably ordered, 
giving beautiful patterns at different scales. Fibres viewed 
under a high-power light microscope display fine ~ 2  μm 
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Abstract
Early x-ray diffraction studies of muscle revealed spacings larger than the basic thick filament lattice spacing and led to 
a number of speculations on the mutual rotations of the filaments in the myosin lattice. The nature of the arrangements 
of the filaments was resolved by John Squire and Pradeep Luther using careful electron microscopy and image analysis. 
The intriguing disorder in the rotations, that they termed the myosin superlattice, remained a curiosity, until work with 
Rick Millane and colleagues showed a connection to “geometric frustration,” a well-known phenomenon in statistical and 
condensed matter physics. In this review, we describe how this connection gives a satisfying physical basis for the myosin 
superlattice, and how recent work has shown relationships to muscle mechanical behaviour.
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lines (Fig. 2a, c) cannot be indexed on this simple lattice 
(Fig. 1c), but they can be indexed on a lattice √3 times larger 
(indices shown in red in Fig. 2c). This means that there are 
subtle differences between the axial rotations of neighbour-
ing filaments. They suggested that the rotations are the same 
only for second-nearest neighbours, and the filaments are 
arranged on a superlattice √3 times larger than the regular 
lattice (Fig. 1c, d). This is in contrast to fish skeletal muscle 
which shows only the simple lattice reflections (Fig. 2b, d).

Huxley and Brown suggested that if the thick filaments 
are composed of myosin molecules packed in a 2-stranded 
fashion, then a perfect hexagonal superlattice can be gener-
ated if neighbouring filaments are mutually rotated by 60o, 
as shown in Fig. 3a. John showed that other arrangements 
are also possible (Squire 1974). Firstly, he proposed that the 
filaments may be 3 or 4-stranded. He proposed that for a 
3-stranded filament a perfect superlattice could be achieved 
with 40o mutual rotations between neighbours (Fig. 3b). In 

Fig. 2  X-ray diffraction patterns of frog skeletal muscle (superlattice, 
a), and fish skeletal muscle (simple lattice, b), and diagrams of their 
main features (c,d). Muscle fibres are mounted vertically. The helical 
order of the crossbridges is revealed by reflections on the meridian (m) 
and along the layer lines (labelled 1,2, etc. in c) which are orders of 
the 430 Å repeat of the myosin crossbridges. Perpendicular to the fibre 
direction is the equator (e) comprising reflections from the hexagonal 
lattice of the filaments (indices labelled 01, 11 etc. in black in c and 
d). Huxley and Brown (1967) found that reflections on the 1st and 2nd 
layers lines in some muscles (frog in the case shown here) index on 
a superlattice which is 

√
3 times larger than the simple (basic) hex-

agonal lattice (indices 10, 11 etc. labelled in red in c). (Adapted from 
Harford and Squire (1986)).

 

Fig. 1  Vertebrate striated muscle sarcomere and the myosin filament 
superlattice. (a) Electron micrograph of frog sartorius muscle sarco-
mere and (b) schematic diagram of the sarcomere. The sarcomere is 
bounded by the Z-bands from which emanate actin filaments which 
overlap with the myosin filaments in the A-band. Contraction of mus-
cle occurs when crossbridges on the myosin filaments interact with 
actin filaments to bring them closer to the centre of the A-band. The 
bipolar myosin filaments are crosslinked at the centre by the M-band 
assembly (b,c) which determines their relative rotation about the long 
axis. (c,d,e) Show schematic views of cross-sections in the M-band, 
bare region and the crossbridge region, respectively. (f) Shows elec-
tron micrographs of transverse sections through the M-band (left), 
bare region (centre) and crossbridge region (right). In the crossbridge 
region, the filament cross-section profile is indistinct hence the axial 
rotations of the filaments cannot be determined. In the bare region 
between the A-band and the start of the crossbridge region, the myosin 
filaments have a triangular profile (d and f centre) and this enables 
determination of the axial rotations of the filaments within 60o. In a 
hexagonal lattice we can define a simple unit cell (c, dashed outline). 
In certain vertebrate muscles, the myosin filaments tend to have iden-
tical orientations for second-next nearest neighbours (d) and so are 
arranged on a superlattice (dashed outline). Parts b,c,d,e adapted from 
Millane et al. (2021)
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the end, as described below, neither John’s 40o nor Huxley’s 
60o arrangements were found.

To understand how the superlattice is organised, direct 
imaging by EM was required. This was not an easy task, 
as cross-sections of thick filament show fuzzy outlines over 
most of their length (Fig. 1f). It was John’s sharp insight to 
notice that in the tiny ~ 50  nm “bare”  region between the 
M-band and the start of the crossbridge region (Fig.  1b,f 
centre), the thick filaments have triangular profiles, allow-
ing their rotations to be measured to within 60o. In 1974, he 
assigned this as the project for his first PhD student (one of 
the authors, PKL).

Finding the nature of the superlattice by 
electron microscopy

There were two obstacles to overcome in the project. 
Since the bare region has a small axial width of ~ 50 nm, 
a near perfect transverse section was required to obtain a 
reasonable area of bare region. To achieve this, the embed-
ded muscle block was viewed with an inverted compound 
microscope to check the orientation of the sarcomere stria-
tions and the block face edge (Fig. 4a). Then, the block was 
rotated to make the face parallel to the striations (Fig. 4a). In 
native muscle, the myofibrils in a fibre are organised so that 
the Z-lines and M-bands are in register, however this is eas-
ily disrupted during EM processing. To improve the lateral 
register of the myofibrils, handling of the muscle was min-
imised by fixing the whole skinned leg in glutaraldehyde 
and then a superficial slice cut from the sartorius muscle 

Fig. 4   Preparation of “perfect” transverse sections. (a) To obtain 
almost perfectly oriented transverse sections, the block with face par-
tially trimmed was removed from the microtome and observed under a 
microscope (preferably inverted) to view the block edge and the stria-
tions of the embedded muscle. The block was returned to the micro-
tome and the block oriented to ensure that the block edge was parallel 

to the striations. (b) Transverse section of bare region of frog sarto-
rius muscle. A superlattice unit cell is outlined. (c) Diffraction pattern 
(Fourier transform) of (b) shows simple lattice spots (white circles) 
and superlattice spots (red circles). The pattern is symmetrical about 
the centre (yellow star) and the circled spots can be compared to the 
unmarked spots in the upper half of the pattern

 

Fig. 3   Crossbridge environments within a thin slice of vertebrate stri-
ated muscle within a single superlattice unit cell. M and A depict myo-
sin and actin filaments, respectively. By definition, the rotations of the 
corner filaments of the superlattice unit cell are identical. Where the 
rotations are different to the corner rotations, they are coloured yel-
low. Initially, perfect superlattice arrangements were proposed (a and 
b). (a) For a 2-stranded myosin filament (where rotations of 0o and 
180o are equivalent), Huxley and Brown (1967) proposed 60o rota-
tions between neighbouring filaments. (b) For a 3-stranded myosin 
filament, Squire suggested 40o rotations between neighbouring fila-
ments (Squire 1974). Perfect superlattice arrangements were not found 
however in electron micrographs, but the arrangement is a statistical 
superlattice (Luther and Squire 1980). Crossbridge arrangements for 
a simple lattice (c) and a superlattice muscle (d). (c) In simple lat-
tice muscle (unit cell shown in dashed lines), all myosin filament rota-
tions are identical and the actin filaments are approached by three or 
no crossbridges. In superlattice muscles (d), the two internal filaments 
are arranged statistically and the actin filaments are approached by one 
or two crossbridges
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unlikely. Note that the rules are not always satisfied, and it 
was estimated that Rule 1 is violated about 2% of the time 
and Rule 2 is violated about 25% of the time.

Luther and Squire (1980) used the two rules to build 
(computationally) synthetic lattices, and the resulting dis-
tribution of rotations showed patches of superlattice, i.e. 
regions where second-nearest neighbour filaments have the 
same rotation, as is observed in the micrographs. They also 
constructed optical diffraction patterns from these simula-
tions, and these showed the presence of superlattice reflec-
tions in addition to the primary reflections, as is observed 
in muscle x-ray fibre diffraction patterns. This study there-
fore established the nature of the superlattice disorder, and 
the intimate relationship between the superlattice rules, the 
superlattice, and superlattice diffraction.

Identification of the superlattice as a 
frustrated system

The superlattice structure in vertebrate muscle was well-
established by the work of Luther and Squire in the 1980s, 
but new insights began when John described their findings 
at a Fiber Diffraction Workshop, at McCormick’s Creek 
State Park, Indiana, USA, in June 1993. His talk resulted 
in a fruitful collaboration with one of the authors (RPM) in 
further understanding of the nature of the disorder. I (RPM) 
had met John previously through both of our work in fiber 
diffraction, although our main common interest until then 
had been in the development of digital methods for extract-
ing data from fiber diffraction patterns, a topic that John 
championed and to which he made important contributions. 
John’s description of the myosin lattice disorder piqued my 
interest, as we had been working for some time on models 
of disorder in crystalline fiber specimens and the effects of 
the disorder on the diffraction. This was important because 
polynucleotide fibers, in particular, sometimes exhibit char-
acteristics in their diffraction patterns that indicate specific 
kinds of disorder in the specimen. To rigorously use the dif-
fraction data for structure determination, these effects need 
to be accounted for in a quantitatively rigorous manner. Our 

followed by conventional processing. Perfecting the sam-
ple preparation involved many trials and took PKL nearly 
2 years. This slow progress worried John immensely and 
near the end of this period, he started planning to abandon 
the superlattice EM project and start PKL on a new non-EM 
project.

Finally, however, ideal samples were prepared from 
which excellent EM images of transverse sections were 
obtained which showed extensive areas of bare region with 
marked triangular profile myosin filaments (Fig.  4b). The 
images also showed new details of the M-band that we 
reported in Luther and Squire (1978). Optical diffraction 
of the bare region electron micrographs showed beautiful, 
clear superlattice spots in addition to the simple (basic) 
lattice spots (red and white circles spots, respectively, in 
Fig. 4c).

While small patches of superlattice could be seen, it was 
not clear what the rotations between neighbouring filaments 
were. Now the task began to find these rotations and whether 
the superlattice was due to 40o mutual rotations between 
neighbours to generate a perfect lattice as John had pre-
dicted. Evidence had gathered that myosin filaments were 
not 2-stranded as Huxley had proposed but 3-stranded as 
proposed by John. Direct inspection of bare region micro-
graphs (Fig.  4b) showed myosin filaments with varying 
rotations that were possibly 40o rotations. It was a Eureka 
moment to realise that there were not three rotations (0, 40, 
80o) but only two, 0 and 180o (the latter is equivalent to 60o 
due to the triangular symmetry). With the revelation of only 
two possible rotations, inspection of the distribution of the 
two rotations revealed that they are only statistically (i.e. not 
regularly) distributed, and allowed us to derive two rules, 
the no-three-alike rules, that we called Superlattice Rules 1 
and 2, that describe the propensity for like and unlike rota-
tions of neighbouring filaments. Rule 1 states that for any 
three neighbouring filaments on an elementary triangle, two 
have the same orientation and the third is different (Fig. 5a). 
Rule 2 states that for any three neighbouring filaments along 
a row in the lattice, two filaments have the same rotation 
and the third is different (Fig. 5b). Essentially, the rules state 
that three like rotations, either on a triangle or on a line, are 

Fig. 5   The no-three-alike or 
superlattice rules. The up (red) 
and down (blue) triangles denote 
the two filament rotations. (a) 
Rule 1 and (b) Rule 2, in which 
all three filaments do not have 
the same rotation. (c) A unit cell 
of the superlattice, in which the 
rotations at the vertices of the 
unit cell have the same rotation. 
The two internal filaments may 
have like (as here) or unlike 
rotations
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John and Pradeep indicated that a suitable description of the 
correlation field might be obtainable. Furthermore, the correla-
tion field is all that is required to compute the diffraction inten-
sity. The disorder described by John then offered an interesting 
challenge for us (Millane and co-workers), to characterize the 
disorder and derive more accurate expressions for diffraction 
from a muscle fiber. The results should be useful for more rig-
orous, and more accurate, interpretation of x-ray diffraction 
data from muscle for structure determination.

Superlattice Rule 1 offers the key insight into the character-
istics of the system. This rule implies that nearest neighbour 
adjacent filaments on a triangle arrange themselves so that the 
number of adjacent filaments with the same rotation is mini-
mized. It is not possible, of course, to have no adjacent fila-
ments on a triangle with the same rotation, at least two must 
have the same rotation, simply as a result of the topology of the 
triangle. There is therefore a preference for adjacent filaments 
to have opposite rotations. It is easy to see that the main obser-
vations are a consequence of this simple fact. Rule 1 is a clear 
consequence. Rule 2 is a simple consequence, since any three 
like rotations in a row maximizes the number of undesirable 
interactions, and is therefore unlikely.

The presence of the superlattice is also a direct consequence. 
The superlattice rhombus joins second-nearest-neighbours 
of the elementary triangular lattice (Fig. 5c). From the most 
simplistic point of view, if nearest neighbours prefer unlike 
rotations, then second-nearest-neighbours will prefer like rota-
tions (Fig. 5c). Overall then, the rotations at the vertices of the 
superlattice cell (second-nearest neighbours) will tend to be 
the same. A slightly better approximation is obtained by con-
sidering the two elementary triangles most closely involved in 
second-nearest neighbours, as shown in Fig. 6. Labelling the 
two rotations as A and B, fixing the rotation at the left site as 
A, the four possible rotations (A and B) at the center two sites 
are shown, and the resulting lowest energy rotation at the right 
hand (second-nearest neighbour) site is shown in the figure. 
The number of undesirable interactions (adjacent like rota-
tions, or the energy) of each configuration is shown on the 
right. Inspection of the figure shows that A occurs at the right 
hand (second-nearest neighbour) site with the lowest energy, A 
or B occur at the next highest energy, and B occurs at the next 
highest energy. The same rotation (A) is therefore preferred at 
the second-nearest neighbour site.

In order to conduct a quantitative analysis of the disor-
der, parameters are needed to characterize its spatial char-
acteristics. Three parameters were initially chosen for this 
purpose. These were the frequencies with which the two 
superlattice rules are violated, denoted frv1 and frv2, and the 
superlattice content, denoted fs. The rule violation frequen-
cies are the fraction of sets of three neighbouring filaments 
(as shown in Fig. 5a,b) for which the rules are not satisfied. 
The superlattice content is the fraction of all superlattice 

approach was to derive analytic expressions for the dif-
fraction (e.g. Stroud and Millane (1995)), rather than sim-
ply averaging over an ensemble of disordered states. This 
approach provides more insight into the effects of the dis-
order and is computationally much more efficient than the 
latter approach.

The disorder in the myosin filaments described by John 
mapped precisely to the kinds of specimens we had been con-
sidering. The myofibrils are essentially a crystalline array of 
molecules, with some form of disorder in the disposition of the 
molecules within the array, and the diffraction is measured from 
a collection of oriented myofibrils that are randomly rotated 
about their orientation axis in the muscle fiber. This is exactly 
identical to the problem of diffraction by a disordered polycrys-
talline fiber (such as a polynucleotide fiber specially prepared 
for structure determination by fiber diffraction analysis). The 
disorder described by John was more complicated than any we 
had previously considered however, which had involved either 
uniformly or normally distributed translations or rotations 
of the molecules away from the positions in an undistorted 
array. We had, however, considered correlated translations of 
the molecules at different sites of the lattice, but the correla-
tions were described by a simple exponential correlation field 
(Stroud and Millane 1996). It was clear to me that the myosin 
lattice disorder involved a more intricate correlation field of 
the filament rotations, but the superlattice rules described by 

Fig. 6   Simple illustration of the preference for like second-nearest-
neighbour rotations arising from a preference for unlike adjacent rota-
tions, as described in the text, and leading to the superlattice. Second-
nearest neighbour sites are shown at the left and right, and the vertices 
of the two associated elementary triangles above and below. The four 
configurations as described in the text are shown, and the number of 
undesirable interactions for each is shown on the right
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minimize the energy of all interactions. If two sites have oppo-
site spins (minimum energy), then the total energy is indepen-
dent of the spin at the third site. This is referred to in physics as 
frustration. The system is frustrated as it cannot decide on the 
configuration to select to minimize the energy. This particular 
manifestation is called geometric frustration as it results from 
the geometry, or the topology, of the triangular lattice in this 
context. An antiferromagnetic system on a square lattice, for 
example, is not frustrated. As the size of the system increases, 
from the elementary triangle to a large lattice, the number of 
minimum energy states increases exponentially with system 
size. Frustrated systems have many interesting properties and 
are widely studied in physics (Ramirez 2003). For example, 
they have a finite zero-point entropy, i.e. there are many mini-
mum energy configurations even at a temperature of absolute 
zero. The myosin filament lattice appears, therefore, to be a 
geometrically frustrated system. Although widely studied in 
physics, this is the first observation of which we are aware of 
geometric frustration in a native biological system.

We conducted some initial simulations of the superlattice 
structure by generating lattices based on the rules, similar 
to that done by (Luther and Squire 1980), but analyzing the 
results in terms of the rule violations and superlattice content 
(Millane and Goyal 2000). This basically confirmed the obser-
vations of Luther and Squire (1980). Although the observed 
myosin filament superlattice appears to map to the TIA, we 
next concerned ourselves with confirming this proposal. This 
was done by simulating TIA configurations (arrangements of 
spins or myosin filament orientations) and comparing them 
with configurations seen in the micrographs.

Minimum energy configurations of the TIA correspond to 
ground states, which occur at a temperature of absolute zero. 
So-called excited states occur at finite temperatures. Since the 
muscle fiber is assembled at physiological (non-zero) tem-
peratures, excited state configurations are expected. There is 
therefore a parameter for the Ising model that is its effective 
temperature. As the temperature increases, the arrangements 
become more random, rule violations become more frequent, 
and there is less superlattice.

Metropolis Monte Carlo simulation, a standard technique 
for simulating such systems, was used to generate finite tem-
perature configurations for the TIA. The overall distribution of 
filament rotations obtained from these simulations was remi-
niscent of those observed in the micrographs. The rule viola-
tions and superlattice content were calculated for comparison 
of the simulation results with the micrograph data. By vary-
ing the temperature of the simulation, it was found that there 
is a particular temperature that gives a good match with the 
rule violations and superlattice content observed in the micro-
graphs. This gave good support that we were on the right track. 
An example of the result of such a simulation is shown in 
Fig. 7. The figure shows the distribution of filament rotations in 

rhombi (Fig. 5c) that have the same filament rotation at all 
four vertices).

It is instructive to make some initial quantitative observa-
tions in terms of these parameters. First, the rule violations. 
As noted by Luther and Squire (1980), Rule 2 is violated 
more frequently than Rule 1. Referring to Fig.  5a,b, this 
is unsurprising since a violation of Rule 1 involves three 
undesirable (adjacent like rotations) interactions whereas a 
violation of Rule 2 involves only two undesirable interac-
tions. Measurement of the rule violation frequencies from 
the micrograph data for frog (correctly accounting for the 
effects of the unknown filament rotations) gave frv1 = 0.03 
and frv2 = 0.07 (Yoon 2008). Using a simple model of the 
local environment where the rules apply gives a relation-
ship between frv1 and frv2 (see Appendix), and for frv1 = 0.03 
this implies that frv2 ≈ 0.17. This value is somewhat larger 
than the observed value of 0.07, but given the approxima-
tion of the full lattice by the local environment it is overall 
consistent with the observations, and provides a quantitative 
explanation for the higher frequency of Rule 2 violations 
compared to Rule 1 violations. Second, the superlattice con-
tent. For a random distribution of filament rotations, choos-
ing the rotation of one site, the three remaining sites of the 
superlattice unit cell (Fig. 5c) would have the same rotation 
each with a probability of one-half. Therefore, the prob-
ability of all four sites being the same, i.e. the superlattice 
content, would be fs = (1/2)3 = 0.125. Measurement of the 
superlattice content from a frog micrograph gave fs = 0.36, 
so the superlattice content is considerably greater than what 
would be present in a random system.

The above analyses are simple approximations as they are 
local and ignore the rest of the lattice surrounding the sites 
considered and that have an effect on the energy of the sys-
tem. However, they do help to explain the characteristics of the 
expected distribution of rotations that result from the simple 
postulate of a preference (lower energy) for unlike nearest 
neighbour rotations, and that the resulting characteristics con-
cur with what is observed.

We realized early on that the present situation corresponds 
to a so-called Ising model in statistical physics (see e.g. Cas-
quilho and Teixeira (2014)). An Ising model consists of entities, 
often called spins, on a lattice, and physicists are concerned 
with studying configurations that emerge on such a system, 
and associated bulk quantities, as a function of the energet-
ics of the local interactions between nearby spins. A classical 
two-state spin system on a triangular lattice with only nearest-
neighbour interactions, for which unlike nearest-neighbour 
spins are preferred, i.e. have a lower interaction energy than 
that for like nearest neighbour spins, is called the triangular 
Ising antiferromagnet, or TIA for short (Wannier 1950). A key 
characteristic of the TIA is that described above: On an elemen-
tary triangular plaquette, it is not possible to simultaneously 
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the triangular lattice, but the points are joined by straight lines 
in the figure for clarity. The correlation function decreases with 
distance, since the interdependence of the rotations at two sites 
decreases as the distance between the two sites increases. Note 
that the correlation function fluctuates rapidly, between posi-
tive and negative values, as a function of distance. However, in 
the figure, we connect the correlation values by two curves, one 
for pairs of points that belong to a superlattice, and one for pairs 
of points that do not belong to a superlattice. This shows two 

a full myofibril derived from a micrograph (left) and that from 
a Monte Carlo simulation (right). Also shown are the superlat-
tice cells in each. The figure shows the similar nature of the 
disorder in the myofibril and simulation, and the similar degree 
of superlattice in each.

Rule violations and superlattice content are only three 
parameters that describe the system and also are not standard 
parameters. It was decided therefore to use, instead, the spatial 
correlation function, the correlation between the rotations at 
two sites, as a function of the separation between the sites, as a 
more comprehensive function with which to compare models 
with the data. The correlation function gives a full picture of 
the second-order statistics of the system. It is also the function 
that is required to calculate the diffraction intensity. The cor-
relation between two sites would equal 1 if the rotations at the 
two sites are always the same, would equal − 1 if the rotations 
at the two sites are always different, would equal zero if the 
rotations at the two sites are unrelated, and is equal to values in 
between if there is a preference for like (positive correlation) or 
unlike (negative correlation) rotations at the two sites.

The simulations described above were repeated, and the 
results analysed in terms of the correlation function. This 
also produced a good match, at the appropriate temperature, 
between the correlation function for the TIA and that calculated 
from the micrographs, out to an intersite spacing of about 8 
lattice spacings. An example of the correlation function ver-
sus the distance between two sites, derived from a micrograph 
and from a Monte Carlo TIA simulation at the optimum tem-
perature, is shown in Fig. 8a. Note that the correlation function 
exists only at the discrete distances that occur between sites on 

Fig. 8  (a) The correlation function of the filament rotations versus 
the distance between two sites on the myosin lattice measured from 
a micrograph of frog sartorius muscle (blue points) and calculated 
from a Monte Carlo simulation of the TIA at the optimum temperature 
(red points) (Yoon 2008). The error bars show one standard deviation 
for the measurements and for the Monte Carlo simulation. The points 
are joined by line segments for clarity. The upper curves show sites 
on a superlattice and the lower curves for sites off a superlattice. (b) 
Final comparison of a frog sartorius muscle correlation function (filled 
circles with bars showing two-standard-errors) and those calculated 
from the empirical expressions for the TIA at the optimum temperature 
(curves). The three colours show the three sublattices as described in 
the text (Millane et al. 2021)

 

Fig. 7   Distribution of myosin filament rotations derived from a micro-
graph from frog satorius muscle (left) and from a Monte Carlo simula-
tion of the TIA (right) (Yoon 2008). The two rotations are shown by 
the red and green filled circles, and unknown rotations by the small 
blue dots. Also shown are the regions of superlattice marked by the 
rhombi between second-nearest-neighbour sites that all have the same 
rotation. The two distributions of rotations are not identical, but show 
similar statistical behavior
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a micrograph and compare it with that from Monte Carlo 
simulations.

The TIA has been studied extensively in statistical physics 
and we were keen to see if we could use these results to sim-
plify and provide more insight into our analysis. In particular, 
there are some analytical results for the correlation function of 
the TIA (Stephenson 1964). With analytical expressions for the 
correlation function, the Monte Carlo simulations of the TIA 
could be avoided completely, practically eliminating most of 
the computational cost, and providing a more satisfying analy-
sis. While we were initially enthusiastic, it soon became appar-
ent that the available analytical results are very limited. They 
are accurate only for the “on axis” correlations and at zero tem-
perature. Some approximate expressions are available for finite 
temperatures, but these are not particularly accurate, and little 
information is available for the off-axis correlations. Since all 
of the correlation function (both on- and off-axis) is needed, 
and for non-zero temperatures, these results were not useful.

However, a useful outcome of this investigation was a 
better understanding of the so-called sublattice structure of 
the TIA correlation function. Every third site along the pri-
mary axis of the lattice corresponds to a site of the superlat-
tice (e.g. the horizontal line through the 4 sites in Fig. 5c). 
The on-axis zero-temperature correlation function is there-
fore positive at every third site, decaying with distance. 
However, the behavior of the correlation at the two inter-
vening sites has a slightly different analytical form, i.e. for 
distances of 3n + 1 versus 3n + 2 lattice spacings, where n is 
an integer. This distinction also extends off the primary axis. 
This means that the correlation behavior is better described 
on three sublattices, one of which corresponds to the super-
lattice and the other two which are off the superlattice but 
are distinct. This is in contrast to the description above that 
considers two sublattices (i.e. on and off the superlattice). 
The sublattice structure is described in more detail by Woj-
tas and Millane (2009) and Millane et al. (2021). The differ-
ence is quite subtle, but inspection of Fig. 8a shows a small 
zig-zag in the correlations in the lower curves, i.e. those off 
the superlattice, that is diagnostic of this subtle difference. 
This observation provided more evidence for the validity of 
the TIA model.

Since accurate analytic expressions for the full TIA cor-
relation function at finite temperatures are not available, we 
embarked on a project to develop simple, accurate empirical 
expressions for these functions. The form of the expressions is 
guided by the on-axis analytical approximations and takes the 
three sublattices into account, and the expressions were fitted to 
numerical values derived from Monte Carlo simulations for a 
range of temperatures. This was very successful and the results 
are described by Wojtas and Millane (2009). This gave easy 
to compute correlation functions, without the need for Monte 

smoothly varying functions, with positive correlations for pairs 
of sites on a superlattice, and negative correlations for pairs 
of sites not on a superlattice. This emphasizes the superlattice 
structure, i.e. a tendency for filaments on superlattice sites to 
have the same orientation, or a positive correlation.

The initial calculations described above used filament 
rotation data derived from Fig.  10 of Luther and Squire 
(1980). However, their analysis of the micrograph was a little 
subjective, and also more data from additional micrographs 
were needed in order to be able to confirm that the TIA is a 
universal model of the disorder. We therefore developed an 
image processing system that, using a micrograph as input, 
automated location of the filaments, and determination and 
classification of their rotations (Yoon et al. 2009). An exam-
ple portion of a micrograph, and the location, rotation and 
classification of the filaments as determined by this system 
are shown in Fig.  9. This allowed multiple micrographs 
to be analysed in a convenient, rapid, objective and accu-
rate manner. The system was ultimately used to analyse 15 
micrographs from 4 species. Software was developed to use 
the rotation data to calculate the correlation function from 

Fig. 9   Illustration of analysis of a myosin bare region electron micro-
graph using the image analysis system (Yoon et al. 2009). A portion of 
one myofibril in a micrograph through the bare region of frog sartorius 
muscle (top), and the resulting analysis showing location of the myo-
sin filaments (triangles), estimated rotation of the filaments (indicated 
by the rotation of the triangles), and classification of the rotations into 
two populations 60o apart (black and white triangles) (bottom) (Yoon 
et al. 2009)
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description of the diffraction remains to be seen, but it is 
certainly likely that this will improve the reliability of struc-
tural results.

Simple and superlattice muscle in vertebrates

Quite early on, John had seen reports in other EM studies 
that in fish muscle, all the myosin filaments appeared to 
have a single orientation (Franzini-Armstrong and Porter 
1964). Study of the structure of fish slow red and fast white 
muscle was assigned as the PhD project of Peter Munro. 
He used electron microscopy to establish that both fast and 
slow muscles of teleost fish have a single rotation (Luther et 
al. 1995). We wondered whether there was an evolutionary 
relationship of the emergence of the simple and superlat-
tice, and undertook an extensive study of vertebrate skeletal 
muscle looking at diverse species (Luther et al. 1996). First, 
we established that all tetrapods (mammals, reptiles, birds 
and amphibians) had superlattice muscle. Then it was a mat-
ter of finding examples of fish of different classes. Examples 
of all the major classes were obtained from different parts 
of the world with help from scientific colleagues and family 
and friends. For example, Professor Bo Fernholm brought 
a live hagfish in a large flask from Stockholm and deliv-
ered it to PKL at Heathrow Airport. An African lungfish was 
obtained from fishermen at Lake Baringo in Kenya. As the 
majority of the vertebrates sampled showed the superlattice 
form, it was concluded that the superlattice is the primary 
arrangement in evolution and the simple-lattice for which 
teleost fish are the major class, was derived later (Luther et 
al. 1996). A surprise finding was that in sharks (cartilaginous 
fish) the lattice was different in fast and slow muscle: white 
(fast) muscle was superlattice based and slow red muscle 
was simple lattice. This was a strange and interesting obser-
vation, which might be related to the reduced superlattice 
content seen in shark white myotomal muscle, as described 
above.

The superlattice-simple lattice story remained a quirk of 
muscle physiology and was largely forgotten. Then there 
was a surprise finding in 2019 from the lab of Roger Craig 
(Ma et al. 2019). Looking at rat fast extensor digitorum 
longus (EDL) muscle and slow soleus muscles by x-ray 
diffraction, they noticed that while the fast muscle had the 
characteristic pattern from tetrapod muscles (Harford and 
Squire 1986; Huxley and Brown 1967) showing superlattice 
spots, the pattern from slow soleus muscle was different: it 
distinctly resembled the fish X-ray pattern, suggesting that 
the lattice may be simple. They confirmed these findings by 
EM. This finding for one muscle and one species of tetra-
pods coupled with the same phenomenon in shark muscle, 
leads one to suspect that the superlattice/simple lattice 

Carlo simulation, to compare with the micrograph data, and 
these were used for our subsequent studies.

Using all the pieces described above, in our final study we 
optimized the fit of the empirical expressions for the correla-
tion function for the TIA to the data from 15 micrographs (from 
four species: frog, shark, polypterus and turtle), finding the tem-
perature for the best agreement, and measured the quality of the 
fit to the data. The micrograph data and the TIA correlation 
function are shown in Fig. 8b for one of the frog micrographs. 
Note the good fit and also that the small difference between the 
two off-superlattice sublattices (the two lower curves) is repli-
cated in the data. Replication of this subtle feature of the TIA 
provides further evidence for the TIA, and geometric frustra-
tion, as the source of the myosin superlattice disorder. The data 
and analysis results for all 15 micrographs data are described 
by Millane et al. (2021). The end result, then, is very strong 
quantitative evidence that the superlattice disorder in vertebrate 
muscle is a manifestation of geometric frustration, the TIA, and 
giving a sound physical basis for its development. The effective 
temperatures are consistent between all myofibrils and all spe-
cies except for shark white myotomal muscle which showed 
higher temperatures. The shark muscle is evidently more dis-
ordered, i.e. more random or less evidence of superlattice, than 
the other muscles. The reason for this is unknown, but it could 
be related to the observation of super- and simple lattice seen 
in shark white and red muscle, respectively, as described in the 
next section.

Our original motivation for this work was to provide a 
basis for calculating diffraction in the presence of the super-
lattice disorder. The analytical expressions for the correla-
tion function and the effective temperatures derived from 
the fits to the micrograph data provide the information to 
do this, although further theoretical and computational work 
is required. We have made some progress in this direction 
in deriving analytical expressions for calculating the two-
dimensional diffraction pattern from a two-dimensional 
array exhibiting the TIA disorder (Yoon and Millane 2014). 
Using these expressions, simulations of diffraction from 
such an array show, as might be expected, additional diffuse 
diffraction between the Bragg reflections of the basic trian-
gular lattice, and an accumulation of diffraction at points 
reciprocal to the superlattice. There is also modulation of 
the amplitudes of the Bragg reflections. A more accurate 
structural result from conventional analysis of the Bragg 
amplitude data is expected if these modulations are taken 
into account. Furthermore, with a quantitative description 
of the amplitudes of the superlattice reflections available, 
the data set could be expanded to include these data, offer-
ing a more robust result. This work needs to be extended 
to three dimensions and incorporating cylindrical averag-
ing for application to x-ray fiber diffraction studies of mus-
cle specimens. The significance of using a more complete 
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contribute to the greater force production of fast, fatigable 
fibres (Luther and Squire 2014). Fast muscle is essential 
for the rapid movements for escape or pursuit of prey, and 
clearly slow muscle is ideal for gentle motion. Hence the 
lattice type may also affect the fibre contractile speed. The 
lattice type may thus be involved in fine-tuning the mechan-
ical behaviour of muscles.

This study is an interesting example of a synergistic rela-
tionship between biological and statistical physics. Map-
ping a complex biological system to a statistical mechanical 
model can give fundamental insight into the nature of the 
biological system, and relate bulk observations (of the pat-
tern of filament rotations seen in electron micrographs) to 
the fundamental interactions of the components. The study 
is also a testament to John Squire’s wide-ranging knowl-
edge of muscle structure, his endless curiosity, and his gen-
erous and enthusiastic relationships with scientists from a 
variety of disciplines.

Appendix: Relationship between the 
superlattice rules

Here we present a simple model that allows an approxi-
mate relationship between the rule violation frequencies 
to be derived. We consider the environments (or cliques) 
of the three filaments defining each of the rules (Fig. 5a,b). 
Note that this is a very simple approximation of the TIA 
since it does not consider the whole lattice. None-the-less, it 
gives a simple, approximate understanding of the quantita-
tive nature of the disorder. We consider a simple statistical 
model for the rotation at each site of the clique, in which 
the probability of like rotations at two neighbouring sites is 
given as the quantity q. This analysis was conducted with 
the assistance of Prof. Peter Smith, Victoria University of 
Wellington.

For the Rule 1 clique, consideration of the symmetry 
shows that there are only two configurations with distinct 
probabilities: Either like rotations at three sites or like rota-
tions at two sites. Matching the single-site and two-site 
marginal probabilities to the probabilities of these two 
configurations allows the Rule 1 violation probability (fre-
quency) to be related to q by

frv1 =
3q − 1

2
� (1)

For the Rule 2 clique, consideration of the symmetry 
shows that there are only three configurations with distinct 
probabilities, which take the forms A-A-A, A-A-B, and 
A-B-A, where A and B denote the two rotations. Match-
ing the one-site and two-site marginal probabilities leaves 

arrangement in fast and slow muscles may be common in all 
vertebrate muscles. This suggests that it may be physiologi-
cally important for the function of the muscles. In our previ-
ous paper, we proposed that the superlattice arrangement in 
fast muscle has a more favourable crossbridge distribution 
around the actin filaments than in simple lattice muscles, 
hence can produce higher force (described below) (Luther 
and Squire 2014).

Discussion

Identification of the TIA as a model for the rotational disor-
der of the myosin filaments provides a very satisfying physi-
cal basis for the observed superlattice in vertebrate muscle, 
and is a unique known occurrence of geometric frustration 
in a biological system, as far as we are aware. Although geo-
metric frustration has been observed in physical systems, 
we are not aware of any in which the frustration is as fully 
developed as in what we observe here. In this study, non-
zero correlations are observed out to eight lattice spacings, 
whereas in physical systems correlations are generally evi-
dent out to only a few lattice spacings.

An explanation of the physical basis of the superlattice 
disorder is the primary result of this work, together with its 
potential applications to improve diffraction calculations 
and thus the precision of the interpretation of such data. 
There are, however, other aspects of the superlattice disor-
der that impinge on muscle structure and function, some of 
which are mentioned in the previous section. Although the 
data described above are from the bare region, the X-ray dif-
fraction of muscle discussed earlier (Fig. 2a) shows that the 
superlattice is also present in the overlap region, and thus 
influences the myosin-actin interactions and the mechanism 
of contraction. The effective temperature derived from the 
fits to the TIA allows the interaction energy differences 
between like and unlike adjacent myosin filaments to be 
estimated (Millane et al. 2021). The superlattice disorder is 
expected to be “locked-in” during assembly and cross-link-
ing through the M-band, so that the energy differences are 
expected to be relevant to connections through the M-band 
proteins. Although somewhat speculative, this allows the 
possible degree of sequence differences between proteins of 
the superlattice and simple lattice muscles to be estimated 
(Millane et al. 2021).

It has been proposed that the superlattice structure may 
allow more efficient sharing of actin binding sites by the 
myosin heads (Luther and Squire 1980). Indeed, there is evi-
dence that slow, fatigue-resistant muscle fibres are associ-
ated with the simple lattice and that fast, fatigable fibres are 
associated with the superlattice (Ma et al. 2019). A greater 
number of actin–myosin interactions in the superlattice may 
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one degree of freedom for the Rule 2 violation frequency. 
The Rule 2 violation frequency is then not uniquely defined 
in terms of q, but (for q < ½, which is the case here) it is 
restricted to the range

0 ≤ frv2 ≤ q � (2)

Using Eqs. (1) and (2) shows that the two rule violation 
frequencies are then related by

0 ≤ frv2 ≤
2frv1 + 1

3
� (3)

Assuming that frv2 is uniformly distributed on this range, 
we can approximate the relationship between the two rule 
violation frequencies by

frv2 ≈
2frv1 + 1

6
� (4)

This gives an approximate relationship between the 
two rule violation frequencies, with the caveat of the local 
approximation to the TIA as described above.
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