
Vol.:(0123456789)1 3

Journal of Muscle Research and Cell Motility (2020) 41:11–22 
https://doi.org/10.1007/s10974-019-09514-0

Actin–tropomyosin distribution in non‑muscle cells

Dietmar J. Manstein1,2,3  · J. C. M. Meiring4 · E. C. Hardeman4 · Peter W. Gunning4

Received: 21 January 2019 / Accepted: 23 April 2019 / Published online: 4 May 2019 
© The Author(s) 2019

Abstract
The interactions of cytoskeletal actin filaments with myosin family motors are essential for the integrity and function of 
eukaryotic cells. They support a wide range of force-dependent functions. These include mechano-transduction, directed 
transcellular transport processes, barrier functions, cytokinesis, and cell migration. Despite the indispensable role of tropomy-
osins in the generation and maintenance of discrete actomyosin-based structures, the contribution of individual cytoskeletal 
tropomyosin isoforms to the structural and functional diversification of the actin cytoskeleton remains a work in progress. 
Here, we review processes that contribute to the dynamic sorting and targeted distribution of tropomyosin isoforms in the 
formation of discrete actomyosin-based structures in animal cells and their effects on actin-based motility and contractility.
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Introduction

Tropomyosins are a large family of integral components of 
most actin filaments (Gunning et al. 2005; Wang and Coluc-
cio 2010; Meiring et al. 2018). They consist of rod-shaped 
dimers that polymerise along both sides of the actin filament 
in a head-to-tail fashion (Caspar et al. 1969; Greenfield et al. 
2006). Originally isolated from muscle tissues and intensely 
studied for their role in muscle contraction (Bailey 1946; 
see Lehman and Craig 2008 and Perry 2001 for reviews), 
tropomyosin isoforms have since been identified in plate-
lets and subsequently in all examined mammalian tissue 
types (Cohen and Cohen 1972; Garrels and Gibson 1976; 
Schevzov et al. 2005b; Uhlén et al. 2015) and implicated in 

a vast array of actin-based cytoskeletal structures (Table 1). 
However, details of the mechanisms underlying the sorting 
of cytoskeletal tropomyosin isoforms to these discrete struc-
tures remain to be elucidated.

Protein sorting has been extensively studied over the last 
50 years. The two primary mechanisms involve either sort-
ing at the level of individual proteins or within vesicles. In 
general, sorting involves recognition of a signal sequence 
within the protein. Signal sequences can usually be experi-
mentally transferred to a marker protein to demonstrate the 
autonomous function of the signal sequence (see Alberts 
et al. 2015). Such signal sequences cannot be detected in 
tropomyosins, which makes their sorting particularly inter-
esting (Martin et al. 2010).

Cytoskeletal tropomyosin isoforms are thought to deter-
mine actin filament function by influencing the stability 
of actin filaments, promoting or inhibiting the binding of 
other actin binding proteins, and regulating the activity of 
myosin isoforms in an isoform dependent manner (Gunning 
et al. 2005; Gunning et al. 2015) (Table 2). This is apparent 
from studies where individual tropomyosin isoforms have 
been over-expressed resulting in a change in the predomi-
nant actin structures, a change in the ratio of monomeric to 
polymeric actin, and altered recruitment of actin binding 
proteins (Bryce et al. 2003; Jalilian et al. 2015; Creed et al. 
2011; Bach et al. 2009). Knock down of subsets of tropo-
myosin isoforms in cultured cells results in a reduction or 
loss of specific actin structures including cell–cell junctions 
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(Caldwell et al. 2014); and stress fibres (Tojkander et al. 
2011) or expansion of the lamellipodium (Brayford et al. 
2016). Furthermore, isoform-specific effects on the stabil-
ity of actin–tropomyosin interactions and ability to resist 
cofilin severing (Gateva et al. 2017) and myosin activity 
have been reproduced in cell-free assays using purified actin, 
tropomyosin isoforms, cofilin, alpha-actinin and nonmus-
cle myosin-2B (NM-2B) (Pathan-Chhatbar et al. 2018). 
Moreover, cytoskeletal tropomyosins have been reported 
to protect actin filaments from severing by gelsolin in an 
isoform-dependent manner in cell-free assays (Kis-Bicskei 
et al. 2018; Khaitlina et al. 2013).

Tropomyosin structure and dynamics

Mammalian cells have four different tropomyosin genes 
that give rise to at least 28 different isoforms as a result of 
alternate splicing (see Fig. 1 for known isoforms) (Schevzov 
et al. 2011). Tropomyosin dimers span across 6–7 subunits 
of actin depending on whether the isoform is a low molecu-
lar weight (LMW) or a high molecular weight (HMW) iso-
form (Barua et al. 2011). The structural difference between 
HMW and LMW isoforms is that HMW isoforms contain 
exon 1a and either 2a or 2b derived sequences, while LMW 
isoforms contain sequences derived from exon 1b, but none 
from exon 2 (Fig. 1) (Wieczorek et al. 1988, Schevzov et al. 
2011). Due to exon sharing between tropomyosin isoforms, 
antibodies or reagents developed against tropomyosins 

typically target more than one tropomyosin isoform (Schev-
zov et al. 2011). As a result certain tropomyosin isoforms 
are not easily distinguishable. In these cases tropomyosin 
isoforms are addressed as subsets, such as Tpm3.1/3.2 or 
Tpm1.8/1.9.

The C-terminal domain of tropomyosin can bind the 
N-terminus of an adjacent tropomyosin and this interaction 
is important for stabilizing tropomyosin on actin filaments 
(Caspar et al. 1969, see Tobacman 2008 for review). End-
to-end linked tropomyosin associates with approximately 
1000-fold greater affinity than an individual tropomyosin 
dimer, thus promoting the complete gap-free coating of actin 
filaments (Wegner, 1980). While tropomyosins are known 
to be able to coat unbranched actin filaments, an in vitro 
study found that Drosophila non-muscle tropomyosin 1A 
(for which there is no known vertebrate counterpart isoform) 
was also unable to bind Arp2/3 nucleated branched rabbit 
muscle actin networks after severing of the branches with 
cofilin (Hsiao et al. 2015). This and the results of a similar 
study, which used rabbit muscle tropomyosins, suggest that 
a tropomyosin polymer is first nucleated at the minus-end 
of the actin filament before extending towards the plus-end 
(Hsiao et al. 2015; Bugyi et al. 2010). In branched networks 
the Arp2/3 complex blocks the minus-end of the actin fila-
ment and this is thought to be the reason why tropomyosin 
cannot bind to branched filaments (Hsiao et al. 2015). In 
agreement with the in vitro data, most tropomyosin isoforms 
are absent from lamellipodia, the largest hub of branched 
actin networks in the cell. However, a recent study showed 

Table 1  List of actin structures containing tropomyosin

a Drosophila tropomyosin isoforms

Actin structure Tropomyosin isoform References

Sarcomeres Tpm1.1-1.4, Tpm2.2, Tpm3.12 Jagatheesan et al. (2010)
Stress fibres Tpm1.6, Tpm1.7, Tpm2.1, 

Tpm3.1/3.2, Tpm4.2
Bryce et al. (2003), Tojkander et al. (2011), Meiring et al. (2018)

Lamellipodia Tpm1.8/1.9 Brayford et al. (2016)
Granules Tpm3.1 Masedunskas et al. (2018)
Endosomes Tpm3.1, Tpm4.2 Gormal et al. (2017)
Cell cortex Tpm1.9, Tpm3.1/3.2, Tpm4.2 Kee et al. (2015, 2017, 2018), Sung et al. (2000), Martin et al. 

(2010)
Epithelial zonula adherens Tpm3.1/3.2, Tpm4.2 Caldwell et al. (2014), Meiring et al. (2018)
Podosomes Tpm1.8/1.9, Tpm4.2 McMichael et al. (2006)
Cleavage furrow Tm1Aa, Tpm1.6/1.7/2.1, Tpm3.1 Goins and Mullins (2015), Hughes et al. (2003)
Mitotic spindles Tm1Ja Goins and Mullins (2015)
Golgi-associated short filaments Tm1Ja,  Tm2Aa, Tpm3.2 Goins and Mullins (2015), Percival et al. (2004)
Filopodia Tpm1.7 Creed et al. (2011)
Post-synaptic density of dendritic spines Tpm3.1-3.9, Tpm4.2 Suchowerska et al. (2017), Had et al. (1994)
Sarcoplasmic reticulum Tpm4.2 Vlahovich et al. (2009)
Endoplasmic reticulum Tpm4.2 Kee et al. (2017)
Skeletal muscle triad Tpm3.1/3.2, Tpm4.2 Vlahovich et al. (2009)
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selective recruitment of Tpm1.8/1.9 to lamellipodia (Bray-
ford et al. 2016). Tpm1.8/1.9 recruitment to lamellipodia 
can be perturbed by depletion of either coronin 1B or cofi-
lin, suggesting that coronin 1B- and cofilin-mediated actin 
debranching must occur before Tpm1.8/1.9 is able to associ-
ate with the Arp2/3 nucleated actin filaments.

Fluorescently-tagged tropomyosin Tpm3.1 has been 
observed to cycle on and off actin filaments in cellulo and 
in vivo in rodents, suggesting that tropomyosins themselves 
are more dynamic than actin filaments (Appaduray et al. 
2016). In vitro FRAP experiments report that the dynamics 
of HMW tropomyosins are slower than those of the LMW 
isoforms, suggesting that HMW isoforms associate in a more 
stable fashion with actin filaments (Gateva et al. 2017).

Another factor found to impact tropomyosin affinity for 
actin is N-terminal acetylation. Based on the fact that 80% of 
human proteins are acetylated at their N-terminus (Arnesen 
et  al. 2009; Silva and Martinho 2015), it is likely that 

cytoskeletal tropomyosins too are predominantly acetylated 
and this has been confirmed for Tpm3.1/3.2 and Tpm4.2 
(Meiring et al. 2018). However, the extent to which all indi-
vidual cytoskeletal tropomyosin isoforms are acetylated 
remains unknown. The introduction of an acetyl group at 
the N-terminus of a protein eliminates the positive charge 
of the N-terminal amino group. The in vitro actin-binding 
capacities of skeletal muscle as well as smooth muscle tro-
pomyosin isoforms are greatly enhanced by N-terminal 
acetylation, which strengthens head-to-tail Tpm–Tpm con-
tacts. In fact, both isoforms have a very poor actin binding 
capacity without N-terminal modification (Urbancikova 
and Hitchcock-DeGregori 1994; Coulton et al. 2006). Sar-
comeric tropomyosin isoforms are known to be acetylated 
in vivo and N-acetylation of their N-terminal methionine 
contributes critically to the formation and stabilization of 
a stable overlap complex (Frye et al. 2010; Lehman et al. 
2014). In contrast, the ability of cytoskeletal tropomyosin 

Table 2  List of isoform specific functions of tropomyosin

Tropomyosin isoform Function References

Tpm1.6 Stabilizes stress fibres Tojkander et al. (2011)
Modulates myosin-1b and myosin-1c actin-affinity and 

motor activity
Tang and Ostap (2001), and Kee et al. (2015)

Rescues transformed cells Gimona et al. (1996)
Protects filaments against severing by cofilin Gateva et al. (2017)

Tpm1.7 Promotes formation of filopodia Creed et al. (2011)
Co-operatively associates with actin filaments with fascin Creed et al. (2011)
Recruits ADF Creed et al. (2011)
Protects filaments against severing by cofilin Gateva et al. (2017)
Inhibits neuronal morphogenesis Schevzov et al. (2005a)

Tpm1.8/1.9 Promotes focal adhesion formation and lamellipodial per-
sistence

Brayford et al. (2016)

Regulates Cystic Fibrosis Transmembrane conductance 
Regulator (CFTR) in the membrane

Dalby-Payne et al. (2003)

Regulates mammary gland differentiation Zucchi et al. (2001)
Tpm2.1 Helps to establish focal adhesions Tojkander et al. (2011, 2012), Desouza-Armstrong et al. 

(2017)
Restores stress fibres in transformed cells Prasad et al. (1993), Desouza-Armstrong et al. (2017)
Sensitizes cells to apoptosis and anoikis Desouza-Armstrong et al. (2017), Raval et al. (2003)
Tension sensing Wolfenson et al. (2016)

Tpm3.1/3.2 Regulates insulin-stimulated GLUT4 transport to the plasma 
membrane and glucose uptake

Kee et al. (2015, 2017)

Regulates cell motility and migration Bach et al. (2009)
Promotes formation of NM-2A enriched stress fibres Bryce et al. (2003)
Activates NM-2A ATPase Gateva et al. (2017)
Promotes cell proliferation Schevzov et al. (2015)
Supports myosin-5a engagement and activity Sckolnick et al. (2016)

Tpm4.2 Recruits NM-2A to stress fibres Tojkander et al. (2011, 2012)
Activates NM-2A ATPase Gateva et al. (2017)
Supports ER to Golgi trafficking Kee et al. (2017)
Inhibits formation of filopodia Tojkander et al. (2011)
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Fig. 1  Schematic of mammalian 
tropomyosin genes and known 
isoforms generated as a result 
of alternative exon splicing. 
Coloured boxes represent 
alternately spliced protein cod-
ing exons, black boxes indicate 
protein coding exons common 
to all isoforms, lines represent 
introns and white boxes repre-
sent untranslated regions. Com-
mercially available antibodies 
are noted in blue text under-
neath their respective epitopes. 
Isoforms marked with an asterix 
(*) are cytoplasmic. (Color 
figure online). Figure adapted 
from Schevzov et al. (2011). 
Note that there is evidence for 
additional isoforms
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isoforms to interact with F-actin was reported to be less 
critically affected by N-terminal acetylation. Other subtle 
changes near the N-terminus were reported to have a critical 
effect on tropomyosin head-to-tail interactions including a 
compensatory effect in regard to the N-terminal acetylation 
of sarcomeric tropomyosin isoforms. The ability of sarcom-
eric tropomyosin isoforms to polymerize and efficiently bind 
to F-actin was shown to be enhanced by the addition of a sin-
gle glycine residue, an Ala–Ser dipeptide, or a Gly–Ala–Ser 
tripeptide to their N-termini (Frye et al. 2010; Greenfield 
et al. 2001; Monteiro et al. 1994). Similar, the effect of a 
lack of N-acetylation of the skeletal muscle isoform Tpm1.1 
on actin binding was compensated by the replacement of 
exons 1a and 2b with the N-terminal exon 1b that is pre-
sent in cytoskeletal isoforms Tpm1.8, Tpm1.12, or Tpm3.1 
(Moraczewska et al. 1999). Exon 9-encoded sequences were 
reported to correspond to another decisive determinant in 
regard to head-to-tail interactions. Replacement of the stri-
ated muscle-specific exon 9a encoded C-terminus with exon 
9d, which is found in smooth muscle and cytoskeletal tropo-
myosin isoforms, allowed nonacetylated hybrid tropomyosin 
to efficiently bind to F-actin (Cho and Hitchcock-DeGregori 
1991).

Tropomyosin expression and turnover

Given the diversity of functions of different tropomyosin 
isoforms and their association with discrete cytoskeletal 
structures, it follows that their cellular concentration and 
localisation needs to be tightly regulated. Indeed, when 
fibroblasts were synchronised via serum starvation, all 
tropomyosin isoforms tested showed cell cycle-dependent 
changes in protein levels. In addition, some isoforms showed 
changing localisation patterns (Percival et al. 2000). This 
indicates that tropomyosin isoform concentration and dis-
tribution are regulated both spatially and temporally. For 
example, Tpm3.1/3.2 expression is decreased during cell 
migration and increased during cell reattachment (Percival 
et al. 2000; Bach et al. 2009; Lees et al. 2013). This is in 
agreement with the finding that Tpm3.1 stabilises focal 
adhesions and reduces the speed of cell migration (Bach 
et al. 2009). Tpm3.2 has been reported to have a similar 
function to Tpm3.1 (Caldwell et al. 2014).

Total muscle tropomyosin levels are known to be tightly 
regulated for the sarcomere-associated tropomyosin iso-
forms Tpm1.1, Tpm2.2, and Tpm3.12 (Schevzov and 
O’Neill 2008). The over-expression of muscle Tpm2.2 in 
adult mouse heart was observed to cause depletion of endog-
enous muscle tropomyosins from the α-tropomyosin gene 
(Muthuchamy et al. 1995). Similarly, overexpression of a 
mutant Tpm3.12 in mouse muscle resulted in a reduction of 
endogenous Tpm2.2 and to a lesser degree Tpm1.1 (Corbett 

et al. 2005). In the case of cytoskeletal tropomyosins, iso-
form compensation mechanisms have only been observed in 
red blood cells. Here, the targeted deletion in alternatively 
spliced exon 9d of Tpm3 (Tpm3/9d(−/−)) leads to absence 
of Tpm3.1 along with a compensatory increase in Tpm1.9 
of sufficient magnitude to maintain normal total tropomyo-
sin content (Sui et al. 2017). In contrast, no such feedback 
mechanism has been observed for the cytosolic tropomy-
osins produced by mouse embryo fibroblast, primary hip-
pocampal neurons, and mouse eye lenses. In these cell types 
neither the overexpression (Schevzov et al. 2008) nor the 
knockdown (Cheng et al. 2018) of a cytosolic tropomyosin 
isoform results in compensating changes in the production of 
other isoforms. In the case of Tpm3.1, overexpression leads 
to an increase in F-actin (Schevzov et al. 2008; Jalilian et al. 
2015; Kee et al. 2015).

To maintain protein homeostasis, cells actively main-
tain a delicate equilibrium between protein degradation and 
protein synthesis. The associated turnover of tropomyosin 
isoforms has been studied by subjecting cells to a pulse 
with radio-labelled methionine, and collecting cell lysates 
at several time points afterwards. Newly synthesised proteins 
directly after the pulse will contain the largest fraction of 
radio-labelled methionine. Therefore, the rate of decrease in 
radioactive protein with time may be interpreted as the rate 
of protein turnover. In this way the major HMW tropomyo-
sin isoforms identified (Tpm1.6, 1.7 and 2.1) were discov-
ered to turnover with a half-life of 1.5–8.25 h. The LMW 
isoforms identified (Tpm3.1/3.2, Tpm4.2) showed minimal 
turnover for the duration of the experiment (half-life > 20 h) 
(Lin et al. 2008). This may reflect the proteasomal turnover 
of HMW, but not LMW tropomyosins upon their dissocia-
tion from actin filaments (Meiring et al. 2018).

Tropomyosin recruitment

While differences are observed in localisation between tropo-
myosin isoforms (Table 1), it is still not clear what determines 
the recruitment of different isoforms to specific actin structures 
(Tojkander et al. 2011; Martin and Gunning 2008; Suchow-
erska et al. 2017; Brayford et al. 2016). There is evidence that 
tropomyosin is not actively transported to particular locations 
in the cell (Martin et al. 2010). The localisation of cytoskel-
etal tropomyosin isoforms can be perturbed via drugs that 
target actin assembly such as Cytochalasin D (Dalby-Payne 
et al. 2003; Schevzov et al. 1997) and targeting is abolished in 
mutated Tpm3.1 which is made incapable of assembling into a 
co-polymer with actin (Martin et al. 2010). It is therefore likely 
that cytoskeletal tropomyosin sorting requires incorporation of 
the tropomyosin into a co-polymer with actin.

Currently, one hypothesis for selective tropomyosin 
recruitment is that formin nucleators preferentially promote 
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the formation of co-filaments of β- or γ-actin filaments with 
particular cytoskeletal tropomyosin isoforms. This hypoth-
esis is supported by experiments performed in yeast. The fis-
sion yeast Schizosaccharomyces pombe produces acetylated 
and un-acetylated variants of a single tropomyosin isoform 
(Cdc8). Formation of actin co-filaments with the acetylated 
and un-acetylated CDC8 variants result in distinct functions. 
In this system Johnson et al. (2014) showed that swapping 
the localisation of two formin homologues, For3 and Cdc12, 
resulted in a switch in the localisation of N-terminally acety-
lated and un-acetylated Cdc8. A related study performed 
with human osteosarcoma cells showed that the formin 
mDia2 is able to influence tropomyosin recruitment (Toj-
kander et al. 2011). However, the extent to which this effect 
is isoform-specific remained unclear. A recent study of actin 
assembly on salivary granules in live mice supports the view 
that actin and Tpm3.1 co-assemble during their recruitment 
to granules, whilst the recruitment of non-muscle myosin-
2A (NM-2A) to granules occurs only after a significant 
delay (Masedunskas et al. 2018). Based on the observation 
that cytoskeletal tropomyosin isoforms co-assemble with 
actin, the notion that formin nucleators selectively produce 
actin–tropomyosin co-polymers is indeed plausible.

The formin-mediated tropomyosin recruitment model 
proposed in Johnson et al. (2014) suggests that tropomy-
osins are recruited via a mechanism that involves the N-ter-
minus of tropomyosin directly interacting with a formin. 
This model was derived from the observation that the S. 
pombe tropomyosin CDC8 is specifically sorted based on 
its N-terminal acetylation status and predicts that the N-ter-
mini of tropomyosin isoforms determine isoform localisation 
(Johnson et al. 2014). However, mammalian tropomyosin 
chimeras with N-terminal exons from differently localising 
tropomyosins do not show altered tropomyosin localisation, 
indicating that tropomyosin localisation is not dependent 
on the N-terminal region in mammals (Martin et al. 2010). 
Structural biochemical studies have suggested that N-ter-
minal acetylation of tropomyosin also impacts tropomyosin 
structure distant from the N-terminus (Johnson et al. 2017; 
East et al. 2011). Perhaps then, rather than the N-terminus 
of tropomyosin associating with a formin directly, different 
formin isoforms may produce actin filaments with different 
intrinsic physical properties that are more favourable for cer-
tain tropomyosins or actin binding proteins. Although con-
troversial, conventional and cryo-electron microscopy has 
revealed that F-actin has several possible states and confor-
mations (Galkin et al. 2010; Egelman and Orlova 1995; von 
der Ecken et al. 2015). Further, the formin mDia1 is able to 
nucleate cofilin-resistant actin filaments by rotating along 
the axis of a tethered actin filament during elongation and 
twisting the filament (Mizuno et al. 2018). One potential 
mechanism for formin-mediated actin filament specialisa-
tion may then be to impart a different helical rotation or 

conformational state on an actin filament (Papp et al. 2006), 
which may in turn be more conducive to binding by dif-
ferent tropomyosin isoforms. However, a recent test of the 
roles of two formins, either separately or in combination, to 
determine the assembly of tropomyosin isoforms into co-
polymers with actin failed to identify any impact in mamma-
lian cells ruling out a simple one formin for one tropomyosin 
isoform relationship (Meiring et al. 2019).

It is likely that there is more than one mechanism in place 
for the assembly of actin and tropomyosin co-polymers, 
since actin nucleated by Arp2/3 may be bound by tropo-
myosin after debranching (Brayford et al. 2016). Moreo-
ver, recent studies have demonstrated that actin nucleated 
by Arp2/3 at the cell membrane is remodelled into various 
other types of tropomyosin-containing structures such as 
focal adhesions, stress fibres and the contractile actin ring 
at the zonula adherens (ZA) (Brayford et al. 2016; Tojkander 
et al. 2015; Michael et al. 2016).

Complexes formed by actin (A), myosin (M) and tropo-
myosin (Tpm) isoforms contain large stereospecific contact 
areas. Thus, the A–M, M–Tpm, and A–Tpm contact areas 
comprise 1800, 300, and 210 Å2, respectively (Behrmann 
et al. 2012; von der Ecken et al. 2016). Based on atomic 
models of discrete A-Tpm-M complexes, it is possible to 
begin relating known differences in their interactions to the 
structural features of individual myosin and tropomyosin 
isoforms (Manstein and Mulvihill 2016). The structure of a 
human actomyosin–tropomyosin complex, composed of the 
motor domain of NM-2C, filamentous γ-actin and Tpm3.1 
shows that the interface between the NM-2C motor domain 
and F-actin is formed on the myosin-side mainly by con-
tacts between the helix-loop–helix motif, the CM-loop, loop 
2, loop 3, and the proline-rich ‘activation’ loop and on the 
actin-side by subdomains 1 and 3 of one actin molecule and 
the D-loop in subdomain 2 of the adjacent actin molecule. 
Arginine 384 in loop 4 of NM-2C contributes a critical 
interaction with a cluster of acidic residues on the Tpm3.1 
surface (von der Ecken et al. 2016). Therefore, the contribu-
tions of differences in the length and amino acid composi-
tion of loop 4 and the impact of variations in the periodic 
pattern of evolutionarily conserved basic and acidic residues 
on the tropomyosin surface are now starting to emerge. They 
explain why actin–tropomyosin co-filaments, which contain 
different cytoplasmic tropomyosin isoforms, show distinct 
preferential interactions with myosins in functional assays 
(Stark et al. 2010, Clayton et al. 2014, 2015, Hundt et al. 
2016, Kee et al. 2015, von der Ecken et al. 2016, Gateva 
et al. 2017). Thus, Tpm3.1- and Tpm4.2-containing actin fil-
aments were reported to enhance the recruitment of NM-2A 
and NM-2B, respectively (Hundt et al. 2016; Pathan-Chhat-
bar et al. 2018). Tpm4.2 and Tpm1.8 were shown to promote 
the processive behaviour of NM-2A and NM-2B, respec-
tively (Hundt et al. 2016; Pathan-Chhatbar et al. 2018). In 
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the case of Myo1c, it was reported that Tpm3.1-containing 
actin filaments have a restricting effect on actin binding (Kee 
et al. 2015). Tpm1.12 was shown to weaken the recruitment 
of NM-2B significantly (Pathan-Chhatbar et al. 2018).

On the one hand, cytoskeletal tropomyosin isoforms 
could be acting as a filter, controlling the recruitment of 
specific myosin isoforms to actin–tropomyosin co-filaments. 
On the other hand, the contact of a cluster of a specific type 
of myosin with an actin–tropomyosin co-filament could be 
driving the exchange of the associated tropomyosin isoform 
for one that displays greater stereospecific interactions. 
There exists currently no strong evidence that favours one 
process over the other. Both scenarios are in broad agree-
ment with the available in vitro data, but require more direct 
experimental verification. In addition, it was shown that the 
exchange of tropomyosin isoform can affect the coupling 
between actin binding and nucleotide turnover within the 
myosin motor. Tpm3.1 was reported to inhibit the ability 
of Myo1c to enter into a force-generating state (Kee et al. 
2015). In the case of NM-2B, the presence of saturating con-
centrations of Tpm1.8, Tpm1.12, or Tpm3.1 was reported to 
affect the release of the ATP hydrolysis products ADP and 
phosphate from the active site to different extents (Pathan-
Chhatbar et al. 2018). As phosphate release gates a transi-
tion from weak to strong F-actin–binding states and ADP 
release has the opposite effect, both the affinity for filamen-
tous actin in the presence of ATP and the duty ratio, the frac-
tion of time that NM-2B spends in strongly F-actin bound 
states during ATP turnover, are affected. Compared to bare 
F-actin, the duty ratio is thereby increased threefold in the 
presence of saturating concentrations of Tpm1.12 and five-
fold for both Tpm1.8 and Tpm3.1. The presence of Tpm1.12 
extends the time required per ATP hydrolysis cycle 3.7-fold, 
whereas it is shortened by 27 and 63% in the presence of 
Tpm1.8 and Tpm3.1, respectively. During active turnover 
of ATP, the affinity for F-actin was reported to be signifi-
cantly increased by all three Tpm isoforms. The apparent 
second-order rate constant kcat/Kapp-actin, which reflects the 
behaviour of the fully activated complex and is a measure 
of the coupling efficiency between the actin- and nucleo-
tide-binding sites of myosin (Dürrwang et al. 2006), was 
reported to increase 2.9-fold in the presence of Tpm1.8 and 
2.5-fold in the presence of Tpm3.1 while a 14.3% reduction 
was observed in the presence of Tpm1.12 (Pathan-Chhatbar 
et al. 2018). The exchange of isoforms can thus gear motor 
activity towards slower or faster movement, tension holding 
or active constriction (Hundt et al. 2016; Gateva et al. 2017; 
Pathan-Chhatbar et al. 2018). The associated tropomyosin 
isoform-specific changes in the frequency, duration, and 
efficiency of actomyosin interactions establish a molecular 
basis for the ability of these complexes to support cellular 
processes with divergent demands in regard to speed, force, 
and processivity.

Tropomyosin association with stress fibres

Actin structures may be bundled or cross-linked in cells 
for the purpose of building stronger structures or struc-
tures capable of exerting force or tension. Several specific 
actin bundling and cross-linking proteins exist. Fascin, 
fimbrin and α-actinin all cross-link actin filaments into 
bundles of parallel filaments. However, they each have dif-
ferent roles and localisations (Adams 1995; Kovac et al. 
2013; Yamashiro et al. 1998; Bretscher 1981). Fascin and 
fimbrin are best known for their role in the formation of 
membrane protrusions (Yamashiro et al. 1998; Bretscher 
1981). Meanwhile α-actinin is known to be a critical cross-
linker in stress fibres (Kovac et  al. 2013). Other actin 
cross-linkers found in stress fibres include filamin (Wang 
et al. 1975) and palladin (Dixon et al. 2008). However, 
their exact contributions in stress fibres have not yet been 
determined. Finally, it should be noted that single- and 
double-headed cytoskeletal myosin isoforms can also sup-
port the dynamic cross-linking of actin filaments (Laevsky 
and Knecht 2003).

Currently, the only structures known to recruit all the 
major non-muscle and non-neuronal tropomyosins are 
stress fibres (Tojkander et al. 2011). Ventral stress fibres 
are contractile structures that allow cells to respond to 
mechanical force, to remodel connective tissue, apply 
force on neighbouring cells or on tubules and ducts (Pel-
legrin and Mellor 2007). Stress fibres in non-motile cells 
tend to be thick and relatively stable, while stress fibres in 
motile cells are typically thin and more dynamic (Pellegrin 
and Mellor 2007). Moreover, the structure of the stress 
fibre depends on the stress fibre type. Dorsal stress fibres 
are not contractile. They contain α-actinin and Tpm1.6, but 
not NM-2 isoforms (Tojkander et al. 2011). Ventral stress 
fibres, transverse arcs and the perinuclear actin cap are 
all contractile structures with a quasi-sarcomeric organi-
sation consisting of actin filaments in a bipolar arrange-
ment, crosslinked by α-actinin and NM-2 (Tojkander et al. 
2012). Contractile stress fibres share structural similarities 
with other contractile actin structures. These include the 
contractile actin ring that pinches the cell membrane in 
cytokinesis (Henson et al. 2017) and the contractile actin 
ring that supports cell–cell adhesions in epithelial cells 
(Ebrahim et al. 2013). The major non-muscle tropomy-
osins have been found in contractile stress fibres (Tpm1.6, 
1.7, 2.1, 3.1/3.2 4.2). Depletion of any of these isoforms 
was found to perturb the stress fibre network (Tojkander 
et al. 2011). This suggests that the network is formed by 
different types of actin filaments, whose functional prop-
erties are defined by the association with different tropo-
myosins. However, it is not yet known how the different 
isoforms are organised with respect to one another or to 
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the other actin binding proteins found in stress fibres. Of 
the major tropomyosin isoforms present, Tpm4.2 depletion 
impaired NM-2 recruitment, but had only a minor impact 
on stress fibre integrity. The specific functions of other 
stress fibre-associated isoforms are not fully understood 
(Tojkander et al. 2011).

Overexpression of Tpm3.1 leads to enrichment of non-
muscle myosin isoform NM-2A, but not NM-2B or NM-2C 
in stress fibres (Bryce et al. 2003). The myosin ATPase 
activity and sliding velocity in complex with Tpm3.1-dec-
orated F-actin is enhanced for non-muscle myosin NM-2A 
and 2C, but not for 2B (Barua et al. 2014). Tpm4.2 decora-
tion of actin filaments accelerates the NM-2A ATPase activ-
ity, specifically targeting the rate limiting step of phosphate 
release in cell-free assays. Moreover, Tpm4.2-decorated fila-
ments induce a transition towards an increased processive 
behaviour under resisting force (Hundt et al. 2016). Mean-
while NM-2B catalytic activity is increased in the presence 
of Tpm1.8 and Tpm3.1, but decreased in the presence of 
Tpm1.12 (Pathan-Chhatbar et al. 2018). Tpm3.1 and Tpm4.2 
further show rapid cycling on-and-off actin filaments and 
fail to protect actin filaments from disassembly (Appaduray 
et al. 2016, Gateva et al. 2017). Together these data suggest 
a role for Tpm3.1 and Tpm4.2 in regulating NM-2 function 
in stress fibres, but not actin filament stabilisation.

Along with NM-2 isoforms, actin and α-actinin, Tpm2.1 
have been implicated in the rigidity sensing of contractile 
units at the cell periphery (Wolfenson et al. 2016). The 
HMW Tpm1.6 shows stable interactions with F-actin and 
protects filaments against cofilin-mediated disassembly, but 
does not activate NM-2A (Gateva et al. 2017). These results 
support the view that different types of actin–tropomyosin 
co-filaments have different preferential interactions with 
myosins and make different functional contributions within 
stress fibres. However, further work is required to elucidate 
the organisation and precise contributions of the different 
tropomyosin isoforms within stress fibres.

Conclusions and prospects

The cytoskeletal tropomyosins have proved to be an elegant 
evolutionary solution to the complex problem of the regula-
tion of cell architecture. By virtue of their co-polymerisation 
with actin (Masedunskas et al. 2018), they are responsible 
for the generation of multiple distinct filaments with their 
own functional characteristics. With few exceptions, all ani-
mal cells contain multiple types of specialised actin–tro-
pomyosin co-filaments with associated functional diversity. 
The mechanism by which these specialised filaments are 
generated remains a challenge. The simplest mechanism for 
most filaments is co-polymerisation of actin and tropomyo-
sin. The tropomyosin isoforms appear to have an intrinsic 

preference to form homo-polymers (Gateva et al. 2017), 
which focusses the problem on what determines the initial 
selection of a tropomyosin isoform to initiate co-polymeri-
sation with actin. Is it the actin filament nucleator that initi-
ates the actin filament or the availability and/or activity of 
local actin binding proteins and myosin motors at the site of 
assembly? Whatever the mechanism, we can be confident 
that it will be highly responsive to the local requirements 
of the cell. The importance of elucidating the assembly 
mechanism is that it will provide an understanding of how 
multiple distinct filaments can be assembled into higher 
order structures such as stress fibres. Moreover, elucidation 
of the assembly mechanism promises to provide a direct link 
between local trigger signals and isoform assembly choices. 
The resulting knowledge will help to link the formation of 
specific sets of actin–tropomyosin co-filaments and the asso-
ciated local activity of a well-defined subset of actin bind-
ing proteins and myosin motors to the particular functional 
demands invoked by the trigger signal.
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