
REVIEW

Emerging importance of oxidative stress in regulating striated
muscle elasticity

Lisa Beckendorf • Wolfgang A. Linke

Received: 2 September 2014 / Accepted: 3 October 2014 / Published online: 6 November 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The contractile function of striated muscle cells

is altered by oxidative/nitrosative stress, which can be

observed under physiological conditions but also in dis-

eases like heart failure or muscular dystrophy. Oxidative

stress causes oxidative modifications of myofilament pro-

teins and can impair myocyte contractility. Recent evi-

dence also suggests an important effect of oxidative stress

on muscle elasticity and passive stiffness via modifications

of the giant protein titin. In this review we provide a short

overview of known oxidative modifications in thin and

thick filament proteins and then discuss in more detail

those oxidative stress-related modifications altering titin

stiffness directly or indirectly. Direct modifications of titin

include reversible disulfide bonding within the cardiac-

specific N2-Bus domain, which increases titin stiffness, and

reversible S-glutathionylation of cryptic cysteines in

immunoglobulin-like domains, which only takes place after

the domains have unfolded and which reduces titin stiff-

ness in cardiac and skeletal muscle. Indirect effects of

oxidative stress on titin can occur via reversible modifi-

cations of protein kinase signalling pathways (especially

the NO-cGMP-PKG axis), which alter the phosphorylation

level of certain disordered titin domains and thereby

modulate titin stiffness. Oxidative stress also activates

proteases such as matrix-metalloproteinase-2 and (indi-

rectly via increasing the intracellular calcium level) cal-

pain-1, both of which cleave titin to irreversibly reduce

titin-based stiffness. Although some of these mechanisms

require confirmation in the in vivo setting, there is evidence

that oxidative stress-related modifications of titin are rel-

evant in the context of biomarker design and represent

potential targets for therapeutic intervention in some forms

of muscle and heart disease.

Keywords Oxidative modification � Myofilaments �
Sarcomere proteins � Titin � Passive tension � Diastolic

stiffness

Introduction: Oxidative stress as an important modifier

of myocyte properties

Oxidative stress occurs in the cell when reactive oxygen/

nitrogen species (ROS/RNS) are increased or when the

antioxidant defence mechanisms are decreased; i.e., when

one or both of these factors go out of balance. Under

pathological conditions, ROS can react with and thereby

damage DNA, lipids and proteins, initiating tissue damage

and cell death. However, at physiological concentrations,

ROS can be critical regulators of cellular signalling path-

ways. ROS/RNS are increased, e.g., in myocardial ische-

mia/reperfusion (I/R) injury (Canton et al. 2004), in the

course of heart failure (Haywood et al. 1996; Sawyer et al.

2002; Canton et al. 2011), and in various muscular dys-

trophies, such as dysferlinopathy (Terrill et al. 2013),

Duchenne muscular dystrophy (DMD), and the mdx mouse

model of DMD (Haycock et al. 1996; Disatnik et al. 1998;

Kim et al. 2013; Canton et al. 2014). Among the targets of

oxidative modification are various contractile and regula-

tory proteins of the sarcomeres, the structural and func-

tional units of striated muscle. Oxidative modification of

these myofilament proteins can have dramatic functional

consequences, including altered calcium sensitivity of

force production, contractile impairment and muscle
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weakness (Andrade et al. 2001; Smith and Reid 2006;

Lamb and Westerblad 2011; Balogh et al. 2014), and

sometimes also improvements in cardiac or skeletal muscle

function (Gao et al. 2012; Lovelock et al. 2012; Mollica

et al. 2012).

Important sources of ROS in striated muscle cells

(Fig. 1) include xanthine oxidase (XO) (Baldus et al.

2006), NADPH oxidases (Nox) (Heymes et al. 2003),

uncoupled endothelial nitric oxide synthase (eNOS) (Xia

et al. 1998), inducible nitric oxide synthase (iNOS) (Shah

and MacCarthy 2000) as well as neuronal nitric oxide

synthase (nNOS) (Zhang et al. 2014), and mitochondrial

enzymes such as respiratory chain complex I or III and

monoamine oxidase (MAO) (St-Pierre et al. 2002; Di Lisa

et al. 2009). Well-known examples of ROS/RNS are

hydrogen peroxide (H2O2), hydroxyl radicals (OH�),
superoxide anions (O2

-), and the highly reactive perox-

ynitrite (ONOO-), which is formed in the reaction of nitric

oxide (NO) and O2
- (Fig. 1). Antioxidant defense

mechanisms are also in place, involving enzymes such as

catalase and superoxide dismutase (SOD), the thioredoxin

system, as well as non-enzymatic factors like vitamins E

and C (Fig. 1). ROS/RNS can alter miscellaneous cellular

properties by reacting with amino acids in proteins. These

proteins are then modified either reversibly (i.e., the oxi-

dized protein can be enzymatically repaired) or irreversibly

(i.e., the oxidized protein must be replaced by de novo

synthesis), depending on the nature and amount of ROS

(Canton et al. 2014). Reversible modifications caused by

ROS/RNS include disulfide bridge formation, S-glutath-

ionylation, nitrosylation, and sulfenylation; irreversible

modifications include sulfinylation, sulfonylation, nitration,

and carbonylation (Canton et al. 2014; Steinberg 2013).

Frequent targets of oxidative modification are the thiol-

containing amino acids, cysteine and methionine. Nitration

affects predominantly tyrosine residues, whereas the main

targets of carbonylation are lysine, arginine, threonine, and

proline (Canton et al. 2014). Some of the modifications

Fig. 1 Schematic overview of important sources and targets of

oxidative stress, as well as protectors against it, in striated muscle

cells. Sources of reactive oxygen/nitrogen species include xanthine

oxidase (XO), NADPH oxidases (Nox), uncoupled endothelial nitric

oxide synthase (eNOS), inducible nitric oxide synthase (iNOS),

neuronal nitric oxide synthase (nNOS), and mitochondrial factors

such as complex I or III and monoamine oxidase (MAO). Antioxidant

enzymes include superoxide dismutase (SOD), catalase, and thiore-

doxins, whereas non-enzymatic antioxidants are vitamins C and E.

Oxidative stress damages DNA, lipids, and proteins, and among

others, causes oxidation of myofilament proteins and alterations to the

ratio between oxidized (GSSG) and reduced forms (GSH) of

glutathione. Among the sarcomere proteins biochemically modified

by oxidative stress are actin, tropomyosin (Tm), troponin I (TnI) and

troponin C (TnC), myosin light chains 1 and 2 (MLC1 and MLC2),

myosin heavy chain (MHC), myosin-binding protein-C (MyBP-C),

and titin
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greatly impact protein structure and function, whereas for

other modifications, the functional implications are

incompletely understood or unknown. The reversibility of

oxidative modifications can play a role in signal trans-

duction processes and may also have a protective effect on

the protein.

In this review we focus exclusively on the role of oxi-

dative stress in altering the properties and functions of

myofilament proteins. We begin with a brief overview of

known oxidative modifications in thin and thick filament

proteins, before discussing recent evidence for oxidative

modifications of the giant titin filament, the protein

responsible for the elasticity of cardiac and skeletal myo-

cytes. We also touch on the pathophysiological implica-

tions of these findings and the potential for biomarker use

and therapeutic intervention in disease. Overall, we make a

case for the emerging importance of oxidative modifica-

tions of the titin springs in regulating myocyte elasticity

and ‘passive’ stiffness under oxidative stress conditions.

Impact of oxidative stress on thin filament proteins

Various myofilament proteins are biochemically and

functionally altered under oxidative stress. Among these

proteins are the components that constitute the sarcomeric

thin filaments, actin, tropomyosin, and subunits of troponin

(Fig. 1). Mass spectrometry identified actin among the S-

thiolated cardiomyocyte proteins showing increased abun-

dance in rat hearts following I/R (Eaton et al. 2002). Fur-

thermore, S-glutathionylation of actin at Cys374 occurred

already at baseline but was substantially elevated under

ischemic conditions, and this oxidation impaired the

interaction between actin and tropomyosin and the poly-

merisation of G-actin to F-actin (Dalle-Donne et al. 2003;

Chen and Ogut 2006; Passarelli et al. 2010). S-glutath-

ionylation of actin also reduced the activity of the acto-

myosin S1-ATPase (Pizarro and Ogut 2009). Additionally,

carbonylation of actin caused disruption of the actin fila-

ments in vitro (Dalle-Donne et al. 2001). Actin carbonyl-

ation was increased in end-stage failing human hearts and

correlated with contractile impairment and reduced car-

diomyocyte viability (Canton et al. 2011). Moreover,

increased carbonylation of actin and other myofilament

proteins was shown to be associated with a reduced

Ca2?-sensitivity of force production in infarcted mouse

hearts (Balogh et al. 2014).

Oxidation of the regulatory protein tropomyosin in

microembolized pig hearts decreased contractile function,

and this decrease correlated with the formation of tropo-

myosin homodimers (Canton et al. 2006). Tropomyosin

dimer formation due to disulfide bonding was also detected

in mouse cardiac tissue following myocardial infarction

(Avner et al. 2012), in isolated rat hearts after postischemic

reperfusion (Canton et al. 2004), and in failing rabbit hearts

exposed to elevated oxidative stress caused by rapid left

ventricular pacing (Heusch et al. 2010). Additionally,

tropomyosin formed disulfide bridges with actin in H2O2-

perfused rat hearts (Canton et al. 2004). Nitroxyl (HNO), a

RNS activating signalling pathways different from NO

(Miranda 2005), caused the formation of actin-tropomyosin

heterodimers via actin Cys257 and tropomyosin Cys190

(Gao et al. 2012), which probably added to the beneficial

effects on myocardial contractile function observed with

HNO (Gao et al. 2012; Sabbah et al. 2013; Arcaro et al.

2014). In skeletal myocytes from the mdx mouse model of

DMD, ROS production as well as the overall content of

oxidized thiols were increased in comparison to wildtype

animals, and tropomyosin cross-linking occurred (Menazza

et al. 2010; El-Shafey et al. 2011). Nitration of tropomy-

osin was shown to occur in aging rat skeletal muscles

(Kanski et al. 2005b).

The cardiac troponin subunits, cTnI and cTnC, contain

tyrosine residues which are targets of nitration in aging rat

hearts (Kanski et al. 2005a), although the functional impact

from this biochemical modification is not known. The TnI

isoform from fast-twitch skeletal muscle was identified as a

target of S-glutathionylation in rat and human, and this

modification increased the Ca2? sensitivity of the con-

tractile apparatus (Mollica et al. 2012). In this TnI isoform,

Cys133 was the only accessible cysteine. Since the phos-

phorylation of a homologous serine in cTnI impedes the

interaction with cTnC (Ward et al. 2001), oxidation of

Cys133 in fast-twitch muscle TnI may also lead to a reduced

binding affinity to TnC (Mollica et al. 2012).

Taken together, an established effect of oxidative

modifications in thin filament proteins is the reduced

myofilament Ca2?-sensitivity of force production (although

this parameter can transiently increase under oxidative

stress), which depresses contractile performance in both

cardiac and skeletal muscle (Lamb and Westerblad 2011;

Steinberg 2013). Oxidative stress-related effects on the

structure of thin filament components and on the actin-

myosin interface presumably contribute to the contractile

impairment. In some cases, the contractile activity can be

improved under oxidizing conditions (Steinberg 2013).

Impact of oxidative stress on thick filament proteins

Thick filament proteins impaired by oxidative modifica-

tions include the myosin light chains 1 and 2 (MLC1 and

MLC2), myosin heavy chain (MHC), and cardiac myosin-

binding protein-C (cMyBP-C). As regards MLC1 and

MLC2, tyrosine nitration (Tyr73 and Tyr185 in MLC1, and

Tyr182 in MLC2) promoted the degradation of these
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proteins by matrix metalloproteinase-2 (MMP-2) (Dor-

oszko et al. 2010; Polewicz et al. 2011). Nitrotyrosine-

containing sequences from MLC were also detected in

aging skeletal muscle (Kanski et al. 2005b). Oxidation of

sulfhydryl groups in cysteines or methionines of MLC1

reduced the contractile force of human cardiomyocytes

(Hertelendi et al. 2008).

MyBP-C appears to be modified by oxidative stress in

various ways (Brennan et al. 2006). The protein showed

similar levels of carbonylation in normal and infarcted

mouse hearts (Balogh et al. 2014). Reversible S-glutath-

ionylation of MyBP-C could be induced in detergent-

extracted cardiac fibres in vitro by treatment with oxidized

glutathione (GSSG) or reducing agent, dithiothreitol

(DTT), and the sites of S-glutathionylation in MyBP-C

were identified as Cys479, Cys627, and Cys655 (Patel et al.

2013). These oxidative modifications resulted in enhanced

myofilament Ca2? sensitivity and diastolic dysfunction

(Lovelock et al. 2012; Patel et al. 2013).

MHC was found to be nitrated at several different

tyrosine residues (Tyr114, Tyr116, Tyr134, and Tyr142) in

aging rat heart (Hong et al. 2007) and increased MHC

nitration negatively influenced the force generation of rat

ventricular trabeculae (Mihm et al. 2003). Peroxynitrite-

induced oxidation of two cysteines in MHC (Cys697 and

Cys707) close to the catalytic centre inhibited the activity of

the skeletal muscle S1-ATPase and reduced the maximum

force (Tiago et al. 2006). Furthermore, in infarcted mouse

hearts, the levels of MHC carbonylation were increased,

which was suggested to partly explain the contractile

impairment of these hearts (Balogh et al. 2014). Treatment

of cardiomyocytes with HNO induced cross-bridge for-

mation between cysteines of MHC and MLC1, and this

modification was associated with an improved contractility

(Gao et al. 2012). In conclusion, an increasing number of

oxidative modifications are known to affect the major thick

filament proteins, frequently with negative (but sometimes

with positive) consequences for cardiomyocyte contractil-

ity. Oxidative modification can also predispose some thick

filament proteins to increased degradation.

Regulation of muscle elasticity via modifications of titin

For the remainder of the review, we focus on the titin

protein chain, the ‘third’ filament of the sarcomere next to

the thin and thick filaments, and we begin with a brief

discussion of some relevant titin properties (for a more

comprehensive recent review, see Linke and Hamdani

2014). A well-established function of titin is to help

determine the elastic properties of cardiac and skeletal

muscles and to generate a ‘passive’ force upon stretching.

The elasticity of titin resides within the extensible I-band

portion of the protein, which is differentially spliced, giv-

ing rise to the major titin isoforms termed N2BA and N2B

(both expressed in cardiac muscle) and N2A (expressed in

skeletal muscle). I-band titin is composed of ‘proximal’,

‘middle’, and ‘distal’ (relative to the Z-disk) immuno-

globulin-like (Ig-)domain regions; the PEVK domain rich

in proline, glutamate, valine, and lysine, which is a disor-

dered region; the N2-A element; and the cardiac-specific

N2-B element, which contains a large disordered segment,

the N2B-unique sequence (N2-Bus) (Fig. 2). The Ig-

domain regions and the disordered segments are all

involved in the molecular mechanism of titin elasticity

(Linke 2000; Linke and Fernandez 2002; Li et al. 2002).

Titin stiffness is regulated in various different ways. In

the long-term, the titin isoform size and variant can be

altered (‘isoform switch’), which greatly affects myocyte

passive stiffness. In the perinatal heart, a transition occurs

from a highly compliant, fetal N2BA isoform (3.7 MDa) to

shorter/less compliant N2BA isoforms and the short/stiff

N2B titin (Lahmers et al. 2004; Opitz et al. 2004; Warren

et al. 2004). This isoform transition can partially be

reversed in the failing human heart, where the N2BA:N2B

expression ratio increases again (Neagoe et al. 2002;

Makarenko et al. 2004). In the short-term, titin stiffness is

regulated by post-translational modifications (Linke and

Hamdani 2014). Phosphorylation of the N2-Bus or the

PEVK domain is mediated, e.g., by protein kinase (PK)A,

cyclic guanosine monophosphate (cGMP) activated PKG,

PKCa, or calcium/calmodulin-dependent protein kinase II

(CaMKII), and these modifications—with the exception of

the PKCa-mediated phosphorylation—decrease titin-based

stiffness (Yamasaki et al. 2002; Krüger and Linke 2006;

Krüger et al. 2009; Hidalgo et al. 2009; Hamdani et al.

2013c). In human heart failure, a phosphorylation deficit

was observed, especially for PKG-mediated titin phos-

phorylation, and this was correlated with increased myo-

cardial stiffness (Krüger et al. 2009; Kötter et al. 2013).

Additional means by which titin stiffness can be modulated

are now emerging, and these mechanisms are triggered by

oxidative stress. The main purpose of this review is to

discuss how ROS/RNS can modify the titin springs via

different pathways, which can have opposing effects on the

protein’s stiffness.

Hypo-phosphorylation of titin due to impaired NO/

cGMP/PKG signalling

NO produced by NOS enzymes (Fig. 1) activates soluble

guanylyl cyclase (sGC) by binding to its heme moiety. The

sGC then increases cGMP production and thereby activates

PKG. This signalling mechanism is impaired by oxidative

stress. Under oxidant conditions, eNOS becomes
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uncoupled by direct S-glutathionylation or via depletion of

the enzyme’s co-factor, tetrahydrobiopterin, which

decreases NO but increases the production of the highly

reactive superoxide anion, O2
- (De Pascali et al. 2014).

The lowered NO bioavailability reduces sGC activation

and depresses the cGMP-PKG pathway. Moreover, the

ferrous heme iron Fe2? can be oxidized to Fe3? under

oxidative stress, further reducing the activity of sGC

(Schrammel et al. 1996).

Due to the impaired NO/cGMP/PKG signalling under

oxidizing conditions, titin may become hypo-phosphory-

lated mainly at the N2-Bus, which would increase the

stiffness of the titin spring (Fig. 2a). Evidence that these

alterations are presumably important in heart disease

comes from the following observations: (i) a PKG-

dependent titin phosphorylation deficit exists in failing

human hearts, along with increased passive stiffness

(Krüger et al. 2009; Kötter et al. 2013); (ii) a reduced

myocardial cGMP concentration and PKG activity can be

found in human and canine diastolic heart failure (van

Heerebeek et al. 2012; Hamdani et al. 2013a); and (iii)

increased nitrotyrosine levels are detectable in the hearts

of diastolic heart failure patients (van Heerebeek et al.

2012). Furthermore, the pathologically high passive

stiffness can be corrected ex vivo by administering

cGMP-PKG to isolated cardiomyocytes (Borbély et al.

2009; van Heerebeek et al. 2012; Hamdani et al. 2013a;

Hamdani et al. 2013b) and in vivo by boosting the cGMP-

PKG pathway through pharmacological interventions in

the dogs with diastolic heart failure (Bishu et al. 2011).

These findings suggest that oxidative/nitrosative stress

increases cardiac titin stiffness by impairing upstream

Fig. 2 Oxidative stress-related modifications of titin affecting titin-

based passive stiffness. The top panel illustrates the different

segments of the titin chain (N2BA isoform) in a half-sarcomere,

focusing on the various regions making up the elastic I-band segment.

Segments where oxidative modifications occur are marked by arrows;

the letters correspond to the respective type of oxidative modification

indicated in panels (a–d). a Oxidative stress induces hypo-phosphor-

ylation of the titin N2-Bus as it impairs NO-cGMP-PKG signalling;

this modification increases titin stiffness. b Oxidizing conditions

promote the formation of disulfide bonds in the titin N2-Bus; this

modification increases titin stiffness. c Under oxidative conditions,

buried cysteines in titin immunoglobulin (Ig-)domains are S-glutath-

ionylated after they become exposed by domain unfolding (triggered

by sarcomere stretch); this modification prevents domain refolding

and thus reduces titin stiffness. d Oxidative stress increases the

activity of proteases such as matrix metalloproteinase-2 (MMP2) and

(via a rise in intracellular Ca2? concentration) calpain-1, which

degrade titin; these alterations would decrease titin stiffness

J Muscle Res Cell Motil (2015) 36:25–36 29

123



signalling pathways relevant for PKG-mediated titin

phosphorylation.

Disulfide bridge formation in the cardiac titin N2-Bus

A direct oxidative stress-related modification of titin,

which increases cardiomyocyte stiffness, is disulfide

bonding in the cardiac-specific N2-Bus (Fig. 2b). Under

oxidizing conditions, the six conserved cysteines present

in the human N2-Bus can form up to three S–S bridges

(Grützner et al. 2009). The disordered N2-Bus is thus

mechanically stabilized and its extensibility is greatly

impaired, as shown by single-molecule force-extension

experiments on recombinant N2-B constructs using the

atomic force microscope (AFM) (Grützner et al. 2009).

Consistent with this, the reducing agent, thioredoxin, had

a de-stiffening effect on isolated human cardiomyofibrils

exposed to a cyclic stretch-release protocol (Grützner

et al. 2009). Moreover, the maximum extension of the

N2-Bus studied ex vivo by immunoelectron microscopy

of stretched rabbit cardiac sarcomeres was only *100 nm

if a reducing agent was excluded from the medium (Linke

et al. 1999), but *200 nm if DTT (1 mM) was present

(Trombitás et al. 1999). These values are very close to

those measured for the N2-Bus in vitro using AFM force

spectroscopy in the absence and presence of DTT,

respectively (Grützner et al. 2009). Another aspect is that

disulfide bonding in the N2-Bus most certainly also

interferes with the regulation of titin stiffness by phos-

phorylation of this region. Indeed, it was observed that

the de-stiffening effect of PKA on isolated cardiac myo-

fibrils, which is caused by phosphorylation of the N2-Bus,

is more pronounced in the presence of DTT than in the

absence of it (Krüger and Linke 2006).

S–S bridge formation in titin’s N2-Bus may not only

have a mechanical effect on the cardiomyocyte, but could

also modify intracellular signalling pathways intersecting

with the N2-Bus (Krüger and Linke 2011). This cardiac

titin region binds the four-and-a-half LIM-domain proteins,

FHL1 and FHL2 (Lange et al. 2002; Sheikh et al. 2008),

and the small heat shock proteins (sHSPs), aB-crystallin

and HSP27 (Bullard et al. 2004; Kötter et al. 2014).

Disulfide bonds in the N2-Bus could alter these interactions

and thus affect pathways of mechanosensation and protein

quality control in the cardiomyocyte (Linke and Hamdani

2014). In conclusion, the N2-Bus of cardiac titin is a pre-

ferred target of oxidative modification in vitro and proba-

bly also in isolated cardiomyocytes. It remains to be

established whether S–S bonding in the N2-Bus occurs

under oxidative stress in vivo and if so, what impact this

modification may have on myocardial stiffness and

mechanical signalling.

S-glutathionylation of cryptic cysteines in the Ig-

domains of I-band titin

A recently elucidated direct modification of titin under

oxidative stress is the S-glutathionylation of cryptic cys-

teines in the Ig-domains of the elastic I-band region (Al-

egre-Cebollada et al. 2014) (Fig. 2c). These cysteines are

usually buried inside the Ig-domain fold but become

exposed if the Ig-domain unfolds. Out of the maximally 93

Ig-domains present in the I-band titin spring, 89 domains

contain cryptic cysteines that can potentially be oxidized

upon domain unfolding. Interestingly, the I-band Ig-

domains of titin contain, on average, between two and three

cysteines, whereas most Ig-domains in all other parts of the

titin molecule contain only one cysteine (Alegre-Cebollada

et al. 2014). The majority of cysteines in the I-band Ig-

domains are evolutionary well conserved. Some of these

cysteines were suggested earlier to form disulfide bridges

under oxidizing conditions, with the proximal and middle

Ig-domains being a potential hotspot for such modifications

(Mayans et al. 2001). However, single-molecule mechan-

ical measurements by AFM force-clamp, using Ig-domain

I91 (nomenclature of Bang et al. 2001), revealed that the

two buried cysteines contained within this domain usually

form mixed disulfides with glutathione in the presence of

GSSG—but only if the domain is unfolded (Alegre-Ce-

bollada et al. 2014) (Fig. 2c). The S-glutathionylation

decreased the mechanical stability of the domain and pre-

vented domain refolding. Importantly, to inhibit domain

refolding, GSSG needed to be exposed for several tens of

seconds, whereas exposure for only a few seconds had no

or little effect. Treatment with reduced glutathione (GSH)

or removal of the two cysteines by site-directed mutagen-

esis restored the ability of the Ig-domain to refold in the

AFM experiments. Furthermore, S-glutathionylation of the

unfolded I91 domain in the presence of GSSG was con-

firmed by Western blotting and was found to be fully

reversible with the administration of DTT (Alegre-Cebol-

lada et al. 2014). These findings showed for the first time

that mechanical unfolding can enable oxidative modifica-

tion of titin’s cryptic cysteines, which disrupt the domain

folding/unfolding dynamics and cause sustained but

reversible changes in titin elasticity.

Mechanical experiments on single skinned human

cardiomyocytes demonstrated that oxidation by GSSG

greatly reduces titin-based passive tension if the myocytes

are exposed to the oxidizing agent in an over-stretched

state favouring Ig-domain unfolding (Alegre-Cebollada

et al. 2014). The reduction in cardiomyocyte stiffness is

expected, because the unfolding of an Ig-domain causes a

gain in contour length by *30 nm compared to the folded

state, such that the titin spring becomes longer and more

extensible (Linke and Fernandez 2002). In the absence of
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over-stretch, GSSG still reduced cardiomyocyte stiffness

by some amount (Alegre-Cebollada et al. 2014), due

probably to a number of unfolded Ig-domains present in

I-band titin at physiological sarcomere lengths (Linke and

Fernandez 2002). The reduction in cardiomyocyte stiffness

on GSSG-treatment was reversible with GSH or DTT.

In summary, evidence from in vitro and ex vivo

experiments suggests that S-glutathionylation of cysteines

in unfolded titin Ig-domains could be an important mech-

anism of myocyte stiffness regulation under oxidant stress,

in both the heart and the skeletal muscles. In support of this

notion, increased S-glutathionylation of sarcomere proteins

was found in mouse heart tissue following myocardial

infarction, and among these proteins was titin (Avner et al.

2012; Alegre-Cebollada et al. 2014). Future studies should

explore how important this oxidative modification of titin

is in the context of heart failure or muscle disease and to

what degree it affects titin-based passive stiffness in vivo.

Titin degradation by oxidative/nitrosative stress-

activated proteases

Yet another way by which oxidative/nitrosative stress

could alter titin stiffness is indirectly via activation of

proteases that degrade titin (Fig. 2d). One of these prote-

ases is MMP2, which is abundant in the cardiomyocyte

(Kandasamy et al. 2010) and localizes to various subcel-

lular compartments, including the Z-disk (Ali et al. 2010).

MMP2 cleaved cardiac titin in a concentration-dependent

manner and in rat hearts the titin cleavage was increased

after myocardial I/R injury causing rapid induction of the

highly pro-oxidant ONOO- (Ali et al. 2010). Conversely,

titin degradation induced by I/R damage was diminished by

an MMP inhibitor. Previously, oxidative stress-activated

MMP2 was shown to degrade various sarcomeric targets

next to titin, including TnI, MLC1, and a-actinin (Wang

et al. 2002; Sawicki et al. 2005; Sung et al. 2007). The

MMP2-mediated structural alterations of sarcomeric pro-

teins may be one reason for the reduced myocardial sys-

tolic and diastolic dysfunction observed with I/R injury

(Linke 2010).

The Ca2?-dependent intracellular protease, calpain-1,

also degrades titin in cardiomyocytes, preferentially within

the elastic spring segment, and calpain inhibitors prevent

this degradation (Lim et al. 2004; Barta et al. 2005).

Although there is no evidence for direct activation of cal-

pain-1 by oxidant stress, the protease is thought to be

induced by cardiac I/R damage due to Ca2? overload (In-

serte et al. 2012). This increase in calcium levels through

oxidative stress occurs by various means, especially via

activation/sensitization of the ryanodine receptor Ca2?-

release channels (Allen et al. 2008). Interestingly, in the

presence of Ca2?, calpain-1 binds to titin’s Ig-domain I4 in

the proximal I-band region (titin domain nomenclature of

Bang et al. 2001) where it could be ‘‘stored until further

use’’ in the myocyte (Coulis et al. 2008). A remarkable

observation in this context is that titin is more susceptible

to calpain-1-mediated proteolysis when it is stretched

(Murphy et al. 2006), suggesting that in extended, or per-

haps overstretched, sarcomeres titin is particularly sus-

ceptible to such proteolysis. Taken together, current

evidence suggests that preferential proteolysis of I-band

titin by activation of calpain-1 is an early process in

myocyte injury and that oxidative stress may play a role in

this structural damage.

Proteolytic degradation of the titin spring segment

induced by oxidative stress will decrease the passive

stiffness of the myocytes irreversibly (Fig. 2d). Active

contraction will also be compromised, as the damage to

I-band titin impairs the accurate positioning of the thick

filaments in the middle of the sarcomere and thus, force

generation by actomyosin (Horowits et al. 1986). More-

over, titin is important for the length-dependent activation

of cardiac and skeletal myocytes (Fukuda and Granzier

2005; Mateja et al. 2013) and titin proteolytic damage will

depress this function. Increased oxidative stress and severe

titin degradation can be observed in human ischemic car-

diomyopathy (Hein et al. 1994; Morano et al. 1994), sug-

gesting that a connection exists between these two events,

although a causative relationship remains to be proven.

Considerations on the possible net effect of oxidative

titin modifications on cell stiffness

The various direct and indirect effects of oxidative stress

on titin (Fig. 2) may occur concomitantly with one another,

which would make it unpredictable in which direction they

alter the stiffness of the myocyte. Whereas the titin phos-

phorylation deficit and the disulfide bonding in the N2-Bus

will increase titin-based stiffness, the S-glutathionylation of

cryptic cysteines and the irreversible protease-dependent

titin cleavage will decrease it. Which one of these effects

may be dominating under which physiological or disease

condition in the heart or the skeletal muscles remains to be

seen. Notably, the oxidative modifications directed at the

titin N2-Bus (Fig. 2a, b) can occur in cardiac but not in

skeletal myocytes, because only the former express the N2-

Bus-containing titin isoforms (N2BA, N2B). In contrast,

the protease-mediated titin degradation and the S-glutath-

ionylation of cryptic cysteines in titin Ig-domains can take

place in both cardiac and skeletal muscle. This S-glutath-

ionylation presumably requires increased muscle stretch

(increased cardiac preload) in order to exert a significant

effect on (cardio) myocyte stiffness. Thus, the higher the

J Muscle Res Cell Motil (2015) 36:25–36 31

123



preload on the cardiac chamber filled under oxidative

stress, the more pronounced may be the mechanical

weakening due to oxidized, unfolded titin Ig-domains.

Along the same line, pre-stretch of a skeletal muscle to

long sarcomere length under oxidant conditions may have a

noticeable softening effect on that muscle. One can also

speculate that oxidative stress in conjunction with high

stretch could have a de-stiffening effect on skeletal myo-

cytes but not on cardiomyocytes, because in the latter the

different means of oxidative titin modifications may neu-

tralize one another in their effect on total passive stiffness.

Oxidative stress is often coupled with other important

changes to the intracellular milieu, especially acidosis (e.g.,

during I/R). Both these conditions evoke a protective

response by the myocyte mediated by inducible heat shock

proteins, such as the sHSPs, aB-crystallin and HSP27

(Mymrikov et al. 2011; Larkins et al. 2012). Under oxidant/

acidic stress, these chaperones associate preferentially with

the I-band titin springs in both cardiac and skeletal myo-

cytes (Bullard et al. 2004; Kötter et al. 2014). Importantly,

the titin-sHSP interaction affects titin stiffness. Folded titin

Ig-domains appear to be stabilized mechanically by this

interaction (Bullard et al. 2004), whereas unfolded Ig-

domains are protected from aggregation by sHSP-binding,

which prevents excessive myocyte stiffening (Kötter et al.

2014). Whether this binding of sHSPs would interfere with

the exposure of cryptic cysteines and their S-glutathiony-

lation under oxidizing conditions is unknown. However,

the sHSP-titin binding adds to the complexity of possible

effects of oxidative stress on titin-based stiffness.

Last but not least, oxidative modifications have been

shown to increase the activity of several protein kinases,

including PKA, PKG, PKC, and CaMKII (reviewed by

Steinberg 2013), and to reduce the activity of protein

phosphatases (Wright et al. 2009). Since the phosphoryla-

tion state of I-band titin affects titin-based stiffness (Linke

and Hamdani 2014), any oxidative stress-mediated increase

in kinase activity or reduction in phosphatase activity will

also have an impact on myocyte stiffness. In conclusion,

while oxidative stress seems almost certain to alter titin

stiffness via multiple mechanisms in vivo, the magnitude

and the direction of the stiffness modulation need to be

established in additional studies.

Oxidative titin modification as a potential biomarker

and therapeutic target

Since oxidative stress plays a crucial role in the pathology

of various cardiac and skeletal muscle diseases (see

Introduction), the question arises whether oxidative modi-

fications in titin may be characteristic of some of those

conditions. Interestingly, in Chagas’ disease, which is

caused by Trypanosoma cruzi infection but presents with

severe cardiac symptoms (cardiomegaly, ventricular dila-

tation), the increased oxidative/nitrosative stress associated

with this disease was shown to cause nitration of Ig-repeats

from the cardiac N2B-titin isoform, and the nitrated pep-

tides were detectable in the plasma from a rat model and

from patients (Dihman et al. 2008). The nitrated titin was

also recognized by antibodies from the host’s immune

system and evoked a self-directed immune response

(Dihman et al. 2012). Thus, ROS/RNS-dependent modifi-

cations of titin could indeed serve as biomarkers of specific

forms of cardiac and skeletal muscle disease. In this con-

text, titin has recently been suggested as a specific bio-

marker of DMD detectable in urine samples of affected

patients and in serum samples from the mdx mouse

(Rouillon et al. 2014; Hathout et al. 2014). Since oxidative

stress is an established hallmark of this muscle disease, it

may be worth extending the analysis to oxidated/nitrated

titin peptide species to improve marker specificity.

Oxidative titin modifications could also serve as

potential therapeutic targets in skeletal or heart muscle

diseases associated with myocyte stiffening. While car-

diomyocyte stiffening is well-documented especially in

diastolic heart failure (Linke and Hamdani, 2014), skeletal

muscle fibres can also get stiffer under disease conditions,

e.g., in certain neurological disorders (Olsson et al. 2006;

Mathewson et al. 2014). An interesting treatment option in

heart failure associated with elevated diastolic stiffness

may arise from the fact that oxidative stress modulates the

NO-cGMP-PKG pathway, an important modifier of titin-

based stiffness. In the transition to heart failure, oxidative

stress can be triggered by co-morbidities, such as old age,

renal insufficiency, obesity, diabetes mellitus, or hyper-

tension, all of which can increase ROS/RNS levels (Paulus

and Tschöpe 2013). Oxidative stress would reduce NO

bioavailability, block sGC activity, down-regulate cGMP-

PKG signalling, and thus cause hypo-phosphorylation of

titin at the N2-Bus and pathologically increased passive

tension. A (diastolic) heart failure patient may well benefit

from the use of NO donors, inhibitors of cGMP-degrading

enzymes, antioxidants, or other drugs that block the oxi-

dative-stress effects on titin stiffness (Gladden et al. 2014),

in that cardiomyocyte stiffness will be reduced and myo-

cardial diastolic function improved.

Finally, a yet speculative opportunity to help improve

symptoms in some cardiac (and skeletal myopathy?)

patients may involve promoting the oxidative/nitrosative

modification of cysteines in unfolded titin Ig-domains. For

instance, when treating patients or dogs in acute heart

failure with HNO donors (e.g., Angeli’s salt), improve-

ments in both systolic and diastolic mechanical properties

(including diastolic stiffness) were observed (Sabbah et al.

2013; Arcaro et al. 2014). The de-stiffening effect in
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diastole could be due in part to a reduced titin stiffness

resulting from nitrosative modification (S-nitrosylation) of

cysteines in I-band titin Ig-domains, similar to the effect of

S-glutathionylation on these domains (Alegre-Cebollada

et al. 2014). Notably, the HNO donors are considered to

exert their effects independent from cGMP-PKG (and

cAMP-PKA) signalling.

In conclusion, recent evidence suggests that oxidative/

nitrosative stress-related modifications of titin occur in

both cardiac and skeletal myocytes. These modifications

can alter titin-based passive stiffness and perhaps modulate

additional functions of titin. To which degree the oxidative

modifications of the titin springs may be relevant for

myocyte stiffness in striated muscle disease, remains to be

seen. However, oxidative changes in titin have the potential

to serve as biomarkers and become useful drug targets in

specific forms of muscle/heart disease.
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Hong SJ, Gokulrangan G, Schöneich C (2007) Proteomic analysis of

age dependent nitration of rat cardiac proteins by solution

isoelectric focusing coupled to nanoHPLC tandem mass spec-

trometry. Exp Gerontol 42:639–651

Horowits R, Kempner ES, Bisher ME, Podolsky RJ (1986) A

physiological role for titin and nebulin in skeletal muscle. Nature

323:160–164

Inserte J, Hernando V, Garcia-Dorado D (2012) Contribution of

calpains to myocardial ischaemia/reperfusion injury. Cardiovasc

Res 96:23–31

Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix

metalloproteinase-2 and myocardial oxidative stress injury:

beyond the matrix. Cardiovasc Res 85:413–423

Kanski J, Behring A, Pelling J, Schöneich C (2005a) Proteomic
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Krüger M, Linke WA (2006) Protein kinase-A phosphorylates titin in

human heart muscle and reduces myofibrillar passive tension.

J Muscle Res Cell Motil 27:435–444
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