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Gestalt-binding of tropomyosin to actin filaments

Kenneth C. Holmes Æ William Lehman

Received: 16 October 2008 / Accepted: 1 December 2008 / Published online: 31 December 2008

� The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract We argue that the overall behavior of tropo-

myosin on F-actin cannot be easily discerned by examining

thin filaments reduced to their smallest interacting units. In

isolation, the individual interactions of actin and tropo-

myosin, by themselves, are too weak to account for the

specificity of the system. Instead the association of tropo-

myosin on actin can only be fully explained after

considering the concerted action of the entire acto-tropo-

myosin system. We propose that the low Ka describing

tropomyosin:actin interaction, when taken together with

the form-fitting complementarity of tropomyosin strands on

F-actin and the tendency for tropomyosin to polymerize

end-to-end, make possible unique thin filament functions

both locally and at higher levels of filament organization.
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Introduction

Tropomyosin is a two-chained, coiled-coil protein that is

found bound to actin filaments in most eukaryotic cells.

The tropomyosin coiled-coil itself assumes a helical con-

tour and thus represents a coiled coiled-coil. Tropomyosin

molecules link end-to-end to form continuous strands that

are wound tightly along the surface of helically disposed

actin subunits of thin filaments (for reviews see Perry 2001;

Brown and Cohen 2005; Hitchcock-DeGregori 2008;

Lehman and Craig 2008). The presence of tropomyosin on

actin strengthens thin filaments by increasing their rigidity

and reducing their susceptibility to depolymerizing factors.

Under the control of troponin and Ca2? in skeletal and

cardiac muscles, and perhaps other factors in most cellular

systems including smooth muscles, tropomyosin partici-

pates in a molecular switching mechanism to regulate the

traffic of myosin motors on actin filaments. Here access of

myosin onto actin is gated by tropomyosin, with troponin

in the case of striated muscle filaments playing the role of

gatekeeper. This is accomplished by azimuthal movement

of tropomyosin among different set positions along thin

filaments, thereby either exposing or blocking myosin-

binding sites on actin (Haselgrove 1972; Huxley 1972;

Parry and Squire 1973; Lehman et al. 1994; Vibert et al.

1997; Poole et al. 2006). An intrinsic ability of tropomy-

osin molecules to undergo such shifts in position on actin at

low energy cost is inherent to this steric mechanism

(Lehman et al. 2000), and it is troponin that causes

tropomyosin to favor one position or another depending on

the concentration of Ca2?. This steric mechanism is not

just limited to regulating myosin function. Thus, the pres-

ence of smooth muscle and non-muscle isoforms of

tropomyosin on actin, possibly in concert with caldesmon

(Hodgkinson et al. 1997; Hodgkinson 2000; Lehman et al.

2000), no doubt also gate access of a host of cellular actin-

binding proteins onto thin filaments (Ishikawa et al. 1989,

1998; Blanchoin et al. 2001; Gunning et al. 2008). How-

ever, despite the crucial role played by tropomyosin in
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actin function, the properties of tropomyosin that contrib-

ute to its F-actin binding and lead to its regulatory

movements on actin are incompletely understood. In this

commentary, we propose a novel mechanism for the

tropomyosin–actin association that we call ‘‘Gestaltbin-

dung’’ or ‘‘Gestalt-binding’’ to contrast the interaction with

more typically described lock-and-key models involving

stereo-specific protein–protein binding. The use of the term

is intended to connote several intertwined meanings.

Gestalt, a German word for ‘‘form’’, reflects our argument

that the native three-dimensional form taken by tropomy-

osin is designed to match the actin filament surface, a

complementarity which we regard as essential for actin-

binding. As in Gestalt-theory [a psychological theory

developed by von Ehrenfels (1890) and later by his student

Wertheimer (1912)], we also argue that the behavior of the

whole system cannot be inferred by examining single

‘‘atomistic’’ units (here single tropomyosin molecules) but

only emerges from an understanding of the concerted

action of the entire system, viz. the elongated tropomyosin

strand as a whole on actin. Finally, we argue that mutations

leading to perturbations in tropomyosin shape cause a

deficit in ‘‘Gestaltbindung’’, in which irrelevant conform-

ers, lacking complementarity to the contours of actin, fail

to bind to thin filaments, as if the system were divorced

from its collective genomic memory.

Tropomyosin is a modular protein with seven pseudo-

repeating units designed to bind to and match the polarity

of seven adjacent actin monomers along a 385 Å path of

the helical strands of actin filaments (Parry 1975; Stewart

and McLachlan 1975; McLachlan and Stewart 1976;

Phillips et al. 1986; Brown and Cohen 2005). The binding

strength of individual tropomyosin molecules to F-actin is

very weak [Ka * 2–5 9 103 M-1, Wegner (1980)]. If

each pseudo-repeat module binds actin with roughly

equivalent affinity, then the Ka of one repeat would be *3,

close to the binding strength of a single salt bridge in

proteins, a value so low that thermal energy would readily

cause dissociation. The low Ka, atypical of actin-binding

proteins, indicates that strong stereo-specific interaction is

not a significant factor in F-actin–tropomyosin association.

Tropomyosin only binds to actin filaments because of

the collective interactions conferred by linking tropomyo-

sin end on end. Estimates for the equilibrium of the

tropomyosin end-to-end association are modest [2–

4.5 9 102, Wegner (1980)]. However, the overall effect of

gluing tropomyosin molecules together over an F-actin

substrate significantly raises the effective binding of

tropomyosin to thin filaments by many orders of magnitude

(in principle to Ka
25 for 25 tropomyosin molecules linked in

tandem over a 1 lm distance). Thus, it is hardly surprising

that altered tropomyosin molecules that are incapable of

forming end-to-end links cannot associate appreciably with

F-actin (Johnson and Smillie 1977; Heald and Hitchcock-

DeGregori 1988; Cho et al. 1990; Monteiro et al. 1994).

The modular design of tropomyosin

In addition to the continuously repeating, seven amino acid

long ‘‘heptads’’ that define all a-helical coiled-coils, tropo-

myosin displays a unique longer-range period that is roughly

forty amino acids long (Crick 1953; Stone and Smillie 1978;

Parry 1975; Stewart and McLachlan 1975; McLachlan and

Stewart 1976; Phillips et al. 1986). The latter accounts for

the seven modular domains of tropomyosin, which traverse

seven actin-binding partners along thin filaments. Other

coiled-coils present in muscle that lack the 7-fold modular

periodicity do not bind to actin (e.g. the rod portion of thick

filament associated myosin and paramyosin in inverte-

brates). However, Nature, unlike the Pythagoreans, did not

settle on seven-fold motifs as an ideal application of a per-

fect number. In fact, most somatic cells contain truncated

tropomyosin isoforms with four to six *40 amino acid-long

actin-binding modules designed to bind to shorter stretches

of thin filaments (Gunning et al. 2005, 2008).

A series of elegant experiments by the Hitchcock-De-

Gregori and Tobacman groups (Hitchcock-DeGregori and

An 1996; Landis et al. 1999; Rosol et al. 2000; Hitchcock-

DeGregori et al. 2001, 2002) showed that strict precision in

the modular quantization of tropomyosin is essential for

actin-binding. Tropomyosin was truncated by deleting one

or more internal repeat modules. When the remaining

modules were left intact to conform to the actin filament

periodicity, these constructs still bound to actin. In contrast,

when insertions or deletions were introduced that changed

the lengths of one or another of the modules, the actin–

tropomyosin alignment was corrupted and actin-binding

diminished considerably. Similarly, substitution of random

coils in place of coiled-coil modules abolished actin-

binding.

Tropomyosin contains strategically placed acidic resi-

dues on the surface of each of its repeating modules. These

no doubt interact electrostatically with positively charged

residues present on the complementary flat face of actin

subunits along thin filaments (Lorenz et al. 1995; Brown

et al. 2005). Such an interaction is consistent with sensi-

tivity of tropomyosin–actin binding to monovalent ion

concentration (Eaton et al. 1975; Hill et al. 1992; Willad-

sen et al. 1992). Lacking a high-resolution crystal structure

of the actin–tropomyosin complex, the positions of inter-

facial interactions cannot be plotted unambiguously.

Nonetheless, in silico modeling provides strong support for

the view that complementary surface charges are matched

to each other (Lorenz et al. 1995; Brown et al. 2005; Brown

and Cohen 2005).
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Tropomyosin lies at a high radius on the actin

filament

Lorenz, Holmes and colleagues built an atomic model of

the actin–tropomyosin complex by a fitting a coiled coiled-

coil structure that was based on the tropomyosin sequence

against X-ray fibre diffraction patterns of oriented gels of

F-actin–tropomyosin (Lorenz et al. 1995). The resulting

model indicated that tropomyosin lies over the F-actin

surface at a radius of *39 Å (Fig. 1A). In a subsequent

study, fitting the atomic coordinates of tropomyosin to EM

reconstructions of troponin–tropomyosin regulated thin

filaments gave comparable values for the radius of tropo-

myosin [40 Å radius for Ca2?-treated filaments, 42 Å

radius for Ca2?-free filaments (Poole et al. 2006)]. At an

average radius of close to 40 Å from the center of the

filament, tropomyosin is too far away to ‘‘touch’’ the actin

surface and hence to interact strongly. At this distance, the

closest distance between Ca atoms of actin and tropomy-

osin is *10–11 Å. The distance separating actin and

tropomyosin should preclude stereo-specific lock-and-key

binding. In contrast, the separation is consistent with weak

electrostatic interactions dominating, as the preponderance

of evidence suggests. While notionally a pattern of

repeating electrostatic [and possibly other weak (Brown

and Cohen 2005)] interactions between tropomyosin and

actin subunits is ‘‘specific’’ to the system, the attraction of

single pseudo-repeat modules of tropomyosin and actin can

hardly be considered much more specific than the locali-

zation of a few cations at a charged surface. Instead, we

propose that the basis of the specificity depends crucially

on the shape complementarity of tropomyosin and actin

filaments.

Shape complementarity of tropomyosin

and actin filaments

As described, the binding site for tropomyosin on actin is

385 Å long and made of seven low affinity interactions.

Surely the only reason that the tropomyosin binds to actin

at all is because it assumes the right shape to interact with

seven actins all at the same time. This shape can be

deduced from high-resolution crystal structures of seg-

ments of the molecule that fit very well to contours of

tropomyosin in the Lorenz–Holmes atomic model of actin–

tropomyosin described above (Brown et al. 2001, 2005; Li

et al. 2002, see Fig. 1B.) These structures also dock

extremely well within tropomyosin density envelopes in

3D reconstructions of both Ca2?-treated and Ca2?-free thin

filaments (Poole et al. 2006; see Fig. 1C). No obvious

reconfiguration of tropomyosin is needed for the fittings.

Thus independently determined tropomyosin structures

display a conformation which is directly transposable onto

the actin filament, without any apparent need for significant

coiled coiled-coil conformational flexibility. Hence, these

results indicate that the modular sequence complementary

of tropomyosin and F-actin, described above, and the shape

complementary, described here, are perfectly correlated.

More specifically, these studies not only support the

hypothesis that tropomyosin is designed to match the

contours of actin but also that it is free to move over a flat

actin interface without undergoing an obvious change in

configuration (Poole et al. 2006).

The presence of roughly periodic groups of alanine

clusters (Conway and Parry 1990) in tropomyosin causes

local narrowing and bending of the coiled-coil protein

(Brown et al. 2001; Brown and Cohen 2005, also see Ni-

tanai et al. 2007; Minakata et al. 2008). This bending likely

is partly responsible for the global coiled coiled-coil shape

of tropomyosin, which fits so nicely to the F-actin surface.

The B-factor associated with the alanine clusters in crystal

structures is low, suggesting that the clusters and their

surrounds, while bent, are relatively stable. Formally, ala-

nine clusters can bend a fibrous protein in opposite

orientations. In fact, there must be a bias in folding of the

tropomyosin-coiled coiled-coil, since crystal structures of

tropomyosin fit to right-handed helices that match the

right-handed F-actin helix. Thus the whole molecule

appears to bend collectively when forming the coiled

coiled-coil.

We posit that the inherent helical contour of tropomy-

osin is an essential feature that facilitates the binding of the

elongated protein on actin, weak as this interaction might

be. Experimental support for this notion comes from

studies showing that replacing core alanine residues,

responsible for specific bending, with leucine and valine

can reduce the binding of such tropomyosin variants to F-

actin (Singh and Hitchcock-DeGregori 2003). This obser-

vation suggests that disrupting coiled-coil bending

reconfigures the tropomyosin supercoil, which is followed

by a concomitant loss of complementarity and hence Ge-

staltbindung to F-actin. Experimental alteration in

tropomyosin pseudo-repeat lengths will also have the same

effect. Whether or not such mutations cause changes in

flexibility of tropomyosin (Singh and Hitchcock-DeGregori

2003, 2006) may not be as relevant a consideration.

End-to-end polymers of tropomyosin bind

tightly to actin filaments

The head-to-tail polymerization of tropomyosin on the

surface of actin filaments generates a larger scale level of

thin filament organization that is functionally transforma-

tive. As mentioned, tropomyosin assembly and binding on
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actin is only effective once these end-to-end links are

formed. In fact, experimental manipulation that interferes

with tropomyosin strand formation (e.g. expressing

unacetylated tropomyosin constructs or removing

tropomyosin ends) fixes the system at the lower level of

organization and prevents effective actin-binding (Johnson

and Smillie 1977; Heald and Hitchcock-DeGregori 1988;

Cho et al. 1990; Monteiro et al. 1994). There appear to be
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multiple mechanisms for ensuring that distinctive ends of

different tropomyosin isoforms adhere to each other and

several structural models have been offered for the process

(McLachlan and Stewart 1976; Greenfield et al. 2006;

Murakami et al. 2008). Understanding the specificity of the

tropomyosin–tropomyosin connections is important. How-

ever, of possible greater importance is recognition that only

minimum energy cost may be needed to bias tropomyosin

into polymeric strands and thus allow the protein to work

as part of an unbroken cooperative system, where

Aristotle’s dictum, ‘‘The whole is more than the sum of its

parts’’ applies. The Gestalt of the thin filament system as a

whole can only then structure how the parts behave.

Clear and convincing evidence indicates that, in the

complete absence of any accompanying actin-binding

proteins, muscle and non-muscle isoforms of tropomyosin

bind to actin with great precision and regularity (Lorenz

et al. 1995; Lehman et al. 2000; Skoumpla et al. 2007;

Maytum et al. 2008). Binding of the two proteins to each

other is an innate property that is intrinsic to the design of

tropomyosin and actin filaments. However, given the

diversity of tropomyosin isoforms, particularly those in

non-muscle cells (Gunning et al. 2005, 2008), it is not

surprising that different tropomyosins show differences in

their affinity for actin (Pittenger et al. 1995). This poten-

tially could result from subtle changes in surface charge, in

overall coiled coiled-coil shape and flexibility, or in the

end-to-end molecular bonding of tropomyosin. It is also

possible that extrinsic factors such as ancillary actin-

binding proteins may modulate the conformational land-

scape of the actin filament to influence Gestalt-binding (cf.

Hill et al. 1992). In addition, actin or tropomyosin binding

proteins such as troponin-T and caldesmon may tether

tropomyosin to actin, thus stabilizing assembled thin fila-

ments (Hill et al. 1992; Pittenger et al. 1995).

Proposed scheme for tropomyosin binding

to actin filaments

We envision that the following sequence takes place when

tropomyosin assembles on actin filaments (see schematic,

Fig. 2). Individual tropomyosin molecules transiently bind

Fig. 2 Schematic representation of tropomyosin binding to F-actin. a
tropomyosin molecules (multicolored curved rods) in initial mixtures

of F-actin (double chain of beads) and tropomyosin are largely

monomeric, b tropomyosin binds actin with very low Ka, and only

because it has the correct shape to interact with seven successive actin

monomers all at the same time, c tropomyosin molecules form end-to-

end bonds with neighboring tropomyosin molecules on F-actin, d
once a critical concentration is reached, tropomyosin forms polymers

and a sorting process occurs between long and short tropomyosin

strands leading to full saturation of tropomyosin on F-actin (e)

Fig. 1 Structural contraints governing the binding of tropomyosin

and F-actin. A Tropomyosin lies on F-actin at a high radius.

Tropomyosin (red, yellow) modeled on F-actin (green, Holmes et al.

2003) as in Poole et al. (2006), shown as a (a) ribbon and (b) space-

filling display. Note that, even at 39 Å radius, only long side chains of

tropomyosin contact the surface of actin and that there is an extensive

layer of water between tropomyosin and actin (also see Brown et al.

2005). The program PyMol (DeLano Scientific LLC) was used for the

graphics display. B Fitting crystal structures of tropomyosin to the

atomic model of tropomyosin. High-resolution crystal structures of

tropomyosin (blue—the N-terminal fragment of tropomyosin (PDB

ID#-1IC2), red—the mid-section of tropomyosin (PDB ID# 2b9c,

Brown et al. 2001, 2005) were fitted to the Holmes/Lorenz coiled

coiled-coil model of tropomyosin (green ribbon—a-carbon, Lorenz

et al. 1995). Note that, with the exception of the ends of the crystal

structures, which may have been unraveled, these the crystal

structures fitted to the full length tropomyosin model very well. In

turn, the tropomyosin model and the crystal structures also fit well to

tropomyosin densities in low- and high-Ca2? reconstructions of thin

filaments (see panel C). C Fitting the tropomyosin coiled coiled-coil

to thin filament reconstructions. The fitting of F-actin (blue, white,

sky-blue) and the Holmes/Lorenz model of tropomyosin (red or

yellow) into (a) high- and (b) low-Ca2? reconstructions of thin

filaments (transparent envelope) reconstituted from actin, tropomyo-

sin and troponin. Note that, despite the movement of tropomyosin, the

same unique tropomyosin model fitted equally well to both thin

filament states. Figure from Poole et al. (2006) with permission

b
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to F-actin filaments with an extremely low Ka. The associ-

ation is only possible because of the structural

complementarity of the F-actin–tropomyosin interface,

decreasing the entropic expense of the interaction. Lacking

any definitive data, it is difficult to judge whether or not

some limited amount of flexibility in either the tropomyosin

supercoil or the F-actin filament facilitates or hampers this

process. Since contours of the 40 nm long tropomyosin

molecule represent a half turn of the actin helix; there is no

need for extensive tropomyosin plasticity for the molecule

to wrap around actin as is sometimes suggested. Thus, in

principle, tropomyosin molecules can approach actin as

fairly rigid coiled–coiled coils and be held roughly in place

by electrostatics. Once a critical concentration of tropomy-

osin on actin is reached, tropomyosin will find partners (the

next tropomyosin molecules along the filament) and link up

to form polymers. It is only then that binding becomes

appreciable (In solution, large entropic factors are likely to

limit building even short tropomyosin oligomers. Quite the

opposite should occur on the surface of actin where the

entropic effects are more or less removed.). As tropomyosin

polymers begin to populate the thin filaments, there will be a

sorting process that favors the binding of long strings of end-

to-end linked tropomyosin over shorter oligomers that are

separated by gaps of tropomyosin-free actin. This stochastic

mechanism will effectively zipper tropomyosin and actin

together and hence lead to full decoration. While the binding

of polymerized tropomyosin strands on fully decorated F-

actin will be strong, the position of tropomyosin on actin at a

local level will still be defined by weak electrostatic inter-

actions and be easily perturbed by troponin, myosin and

other proteins at low energy cost. Thus described, the Ge-

staltbindung of the thin filament system is well adapted to

the physiological demands placed on it. No doubt, Gestalt-

bindung is a general feature that defines other biomolecular

interactions as well, and it is hoped that the foregoing dis-

cussion will stimulate further structural experimentation and

in silico modeling of such systems.
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