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Abstract
Nimesulide (NMS) is a widely used non-steroidal anti-inflammatory drug, however, presents low aqueous solubility. One way 
to overcome the solubility issue of drugs is altering their solid forms through some approaches like cocrystals, coamorphous, 
and eutectic mixtures. The purpose of this work was to prospect new multicomponent solid forms of NMS. A virtual-
experimental cocrystal screening was carried out through COSMOquick software and mechanochemical experiments. 
Alternatively, dual-drug coamorphous systems were investigated by quench cooling and/or cryomilling processes. All solid 
samples were characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and infrared 
spectroscopy (FTIR). The results confirmed the successful synthesis of a NMS-piperazine cocrystal (NMS-PPZ), two new 
eutectic mixtures NMS-gentisic acid (NMS-GSA) and NMS-isoniazid (NMS-INH), as well as novel drug-drug coamorphous 
systems. The eutectic compositions were determined by binary solid–liquid phase diagram construction and Tamman’s 
triangle plot. Nimesulide-omeprazole (NMS-OMP) coamorphous system was found to be stable for at least 120 days in dry 
conditions. The coamorphous system with bicalutamide (NMS-BICA) prepared by quench cooling process is more stable 
than that obtained by cryomilling. Finally, the dissolution rate study demonstrated that NMS multicomponent systems are 
dissolved relatively faster than pure drug.

Keywords  Non-steroidal anti-inflammatory drug · Dual-drug solid systems · Virtual-experimental screening · Thermal 
analysis · Dissolution rate study

Introduction

Nimesulide (NMS), shown in Fig. 1, is a non-steroidal 
anti-inflammatory drug (NSAID) that is extensively used 
worldwide, especially in Brazil, due to its therapeutic 
properties against pain, fever and inflammation, and also 
its availability as over-the-counter drug, allowing self-
medication [1–3]. Typically, a NMS dosage of 100 mg twice 
daily is orally administered, but the dose can vary from 100 
to 400 mg per day depending on the disorders [4–6]. NMS 
belongs to the group of NSAIDs that present preferential 
selective inhibition of the enzyme cyclooxygenase-2 (COX-
2), therefore presenting a low incidence of side effects 
[7, 8]. However, NMS has low aqueous solubility (about 
0.01 mg mL−1 at 25 °C) [9–11].

The low aqueous solubility of active pharmaceutical 
ingredients (APIs) compromises the desired plasmatic 
concentration and, consequently, limits their oral 
bioavailability and clinical efficacy [12–14]. NMS, as 
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well as other NSAIDs, is categorized as a class II drug 
in Biopharmaceutical Classification System (BCS), 
corresponding to those that present high permeability and 
low aqueous solubility [9–11].

Several strategies have been used to overcome the 
solubility issue. One of them is the use of multicomponent 
solid forms, like salts, cocrystals, eutectic mixtures and 
coamorphous systems, which are capable of altering the 
physicochemical properties of drugs without affecting the 
pharmacological ones [15–21]. In the case of dual-drug 
multicomponent solid forms, in addition to pharmacokinetic 
improvement, there may be an increase in its activities 
synergistically, therapeutic combination and/or reduction 
of side effects [11, 22, 23].

Pharmaceutical cocrystals are multicomponent crystalline 
forms, in which an API and one or more coformers are 
linked in a defined stoichiometry by non-covalent and 
non-ionic intermolecular interactions, such as hydrogen 
bonding, van der Waals forces and π-π stacking. Commonly, 
the cocrystal-forming components are neutral and solids at 
ambient conditions [24–27]. Meanwhile eutectic mixtures 
comprise two (or more) solids that result in a mixture with 
lower melting point than the precursors, being miscible 
in the liquid state and immiscible in the solid state. They 
maintain the crystal structure of the starting materials [28, 
29].

The conversion of a crystalline API to its amorphous 
phase could achieve an increased solubility and dissolution 
rate. However, amorphous drugs present higher energy and 
entropy due to the lack of long-range order, the solid is 
more unstable than its crystalline counterparts and tends to 
crystallize over time [30–32]. Alternatively, co-amorphous 
systems mix small coformers with the API preventing 
the drug molecules aggregation, therefore increasing the 
kinetic stability. They are homogeneous multicomponent 

amorphous phases characterized by a single glass-transition 
temperature (Tg) and are stabilized by intermolecular 
interactions and/or mixing effects [10, 32, 33].

Considering that few papers report obtaining of NMS 
multicomponent solid forms [9, 10, 33–36], the present 
work focused in prospecting new NMS multicomponent 
solid systems, using coformers with different functional 
groups, systematic molecular diversity, and/or with potential 
for desired therapeutic combination with NMS. A set of 30 
coformers was selected, as presented in Table S1. A deeper 
investigation was performed concerning the coformers 
piperazine, gentisic acid, isoniazid, omeprazole and 
bicalutamide, Fig. 1.

Materials and methods

List of chemicals used

A detailed list of all chemicals employed in this study is 
displayed in Table S1 (supplementary material).

Virtual‑experimental cocrystal screening approach

The virtual cocrystal screening of NMS was performed 
using COSMOquick software (Biovia version 2021, Dassault 
Systèmes, Germany). The COSMOquick software is a tool 
based on the COSMO-RS theory, that contains a database 
of already compiled σ-profiles of several compounds and 
avoids the time-consuming and costly quantum-chemical 
calculations [37, 38]. The method calculates the excess 
enthalpy (ΔHexcess) of an undercooled liquid mixture of the 
components, reflecting the interaction strength of the API 
and coformer. Another important parameter in the cocrystal 

Fig. 1   Chemical structures of 
NMS and selected coformers 
explored in this study
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formation prediction is the flexibility parameter (Ffit) that 
combines the molecular interactions (ΔHexcess) with the 
number of rotatable bonds in the molecules [37–39].

A set of 30 coformers was chosen to explore diverse 
functional groups that could be compatible with NMS 
ones and/or in a dual-drug perspective (see Table  S2, 
supplementary material), and submitted to the “cocrystal 
and solvate screening” tool. The SMILES notation, for each 
compound was employed as input data. The output result 
generated a list which could be compiled by excess enthalpy 
(ΔHexcess) and flexibility parameter (Ffit) [38, 40]. In parallel 
to the virtual screening, NMS + coformer mixtures were 
submitted to an experimental cocrystal screening through 
a mechanochemical approach. Some were also slurried in 
ethyl acetate and/or acetonitrile as mentioned below.

Mechanochemical synthesis

Equimolar mixtures of starting materials (approximately 
100 mg in total) were milled in a MM400 Retsch ball mil 
(Retsch GmbH & Co., Germany) at an operating frequency 
of 15 and/or 30 Hz for 30 min. The samples were placed 
in a 10 mL stainless steel jar with one 7 mm stainless steel 
ball. A small amount of ethanol (η = 0.25 µL mg−1) was 
employed in the liquid-assisted grinding (LAG) process 
[41]. Some samples were ground in a neat (NG) condition. 
All the resultant solid products were collected and stored in 
hermetically sealed containers till further characterization 
and evaluation.

It is worth pointing out that all the precursors employed in 
this step of experimental cocrystal screening were submitted 
to LAG experiments—and subsequently characterized by 
DSC, PXRD and FTIR techniques—to ensure that this 
process does not alter their structural characteristics. 
Furthermore, other binary compositions were prepared at 
15 Hz for NMS-GSA and NMS-INH systems and analyzed 
by DSC.

Slurry

In a first batch, NMS binary equimolar solid mixtures with 
caffeine (CAF), ciprofloxacin (CIP), norfloxacin (NOR), 
piperazine (PPZ), theobromine (TBM) and theophylline 
(THEO) were slurried overnight in ethyl acetate (η = 5 µL 
mg−1) [42, 43]. On a second batch, the selected coformers 
(except PPZ) were slurried with NMS for 72 h in acetonitrile. 
The wet paste was stirred at 400 rpm using a magnetic stirrer 
under 25 °C (controlled using a thermostatic bath). After the 
experiments, all samples were analyzed by PXRD.

Coamorphous preparation

The coamorphous systems preparation was conducted 
through three different approaches, cryomilling, “cold NG” 
and/or quench cooling, as detailed bellow.

Cryomilling (Cryo) and “cold NG”

Cryogenic milling experiments were performed using a 
MM400 Retsch ball mil (Retsch GmbH & Co., Germany), 
a 10 mL stainless steel jar with two 7 mm stainless steel 
balls and liquid nitrogen as coolant. The anti-inflammatory 
NMS and the selected coformers were mixed in a 1–1 
molar ratio (100 mg sample in total). The cryo process 
was conducted at 30 Hz for 4 cooling cycles, with total 
milling time of 60 min. Each cycle consisted of immersion 
of the jars containing the mixtures in liquid nitrogen for 
approximately 2.5 min, followed by milling for 15 min. 
The samples were collected and stored in a desiccator 
at room temperature until further characterization and 
evaluation.

For the NMS-OMP system, additional experiments 
were carried out that are identified as “cold NG”: The jars 
containing the solid mixture were pre-cooled in the freezer 
at T ≈ −20 °C, for 1.5 h prior to milling (30 Hz. 30 min).

Quench cooling (QC)

Quench cooling processes were performed in situ using a 
PerkinElmer Pyris1 calorimeter (PerkinElmer, USA) with 
liquid nitrogen cryofill cooling unit. In such analysis, about 
2.5 mg of sample was placed in 50 μL aluminum crucibles 
with perforated lid and submitted to a nitrogen atmosphere 
(20 mL min–1). An empty similar aluminum pan was used 
as a reference. The samples were equilibrated at 25 °C 
and heated until complete melting (with 10  °C  min−1 
heating rate) to erase the solid history of the samples 
and ensure mixing of components. After melting, the 
samples were quickly cooled to −35 °C at a cooling rate 
of 50 °C min−1. The second heating (10 °C min−1) was 
carried out to analyze the propensity of conversion of 
the crystalline material into amorphous state, and then, 
the Tg temperatures were recorded (midpoints of the 
characteristic baseline step changes). The calorimeter was 
calibrated with cyclohexane (for gas chromatography), 
biphenyl (CRM LGC 2610), and indium (Perkin Elmer, 
x = 99.99%).

Quench cooling scale‑up procedure  This procedure was 
performed to obtain enough sample for dissolution rate 
tests for the NMS-BICA system. An equimolar mixture 
was heated in a sealed container to complete melting 
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in an oven (185  °C) and rapidly cooled in an ice bath. 
Prior to dissolution rate tests, the obtained QC sample 
was grinded gently using a mortar and pestle, and DSC 
and PXRD analyses were carried out to ensure complete 
coamorphization of the mixture.

Characterization

Differential scanning calorimetry (DSC)

Samples grinded at 15 Hz were analyzed through the Mettler 
Toledo DSC1 Stare System equipment (Mettler Toledo, 
Switzerland). The solid material was heated at a heating 
rate of 10 °C min−1 from 25 °C until the thermal stability of 
each sample under synthetic air atmosphere with a flow rate 
of 50 mL min−1. The sample mass was kept in the range of 
2.5 mg and aluminum crucibles (40 µL) with perforated lid 
was used as reference and sample holder. Additionally, the 
DSC data of the NMS-GSA and NMS-INH systems were 
used to construct the binary solid–liquid phase diagrams and 
Tamman’s triangle plot.

The DSC curves from 30 Hz samples were obtained using 
a PerkinElmer DSC7 calorimeter (PerkinElmer, USA) with 
an intracooler unit at −20 °C (ethyleneglycol-water, 1:1, 
V/V) and nitrogen purge (20 mL min−1) at a heating rate 
β = 10 °C min−1. Approximately 2.5 mg of sample were 
sealed in 50 µL aluminum crucibles with a single hole 
punched in the lid. An empty pan of the same type was 
employed as a reference.

The instruments were calibrated using an indium metal 
standard for Mettler Toledo DSC1 and as described by Silva 
et al. [44] for PerkinElmer DSC7 calorimeter.

Binary solid–liquid phase diagrams and Tamman’s triangle 
construction  NMS-GSA and NMS-INH mixtures of 
different compositions were analyzed by DSC. Through 
the thermoanalytical data it was possible to construct the 
binary solid–liquid phase diagram and Tamman’s triangle 
of these systems, which are tools used for eutectic checking 
composition. The Tamman’s triangle was constructed by 
plotting the eutectics enthalpy correlated to the sample 
composition, while binary phase diagrams were constructed 
by taking the solidus and liquidus temperatures – the onset 
temperature (Tonset) of first DSC melting event and peak 
temperature (Tpeak) of second event that corresponds to the 
complete melting, respectively – of each sample [9, 29, 
45, 46]. For several mixtures, for the determination of the 
eutectic melting enthalpy, deconvolution of the complex 
melting peaks was carried out using the peak fitting module 
in the Origin 7 software (version 7.0300, from OriginLab 
Corporation). A theoretical diagram (represented by 
calculated liquidus temperatures) was estimated using the 

Schröder van-Laar equation, that assumes solid-ideal liquid 
mixture equilibrium [45–48].

Infrared spectroscopy (FTIR)

The FTIR spectra were obtained in the Nicolet 380 IR 
spectrophotometer (Thermo Scientific, USA), using an 
accessory of attenuated total reflectance with diamond 
crystal, in the range of 4000–400  cm−1, resolution of 
2 cm−1 and 32 scans per spectrum.

Powder X‑ray diffraction (PXRD)

The PXRD patterns were obtained using a Rigaku powder 
X-ray diffractometer (Rigaku, Japan), model MiniFlex 
600, using a copper tube providing radiation CuKα, 
λ = 1.5418 Å subjected to 40 kV, current of 15 mA. The 
samples were scanned in a 2θ angle range from 3 to 40°, in 
continuous scan mode, with a step size of 0.01° and scan 
speed of 5° min−1. Silicon was used as external calibrator 
(SRM 640e). The samples were placed in round zero 
background holders with spin prior to analysis.

Dissolution rate study

The dissolution rate measurements were carried out 
in triplicate using a rotating disk apparatus (Wood’s 
apparatus) coupled to a Sotax dissolution tester (SOTAX 
AG, Switzerland). 50 mg of crystalline NMS and selected 
systems were taken in the dissolution accessory and 
compressed to a 0.4 cm radius (0.5026 cm2) stainless-steel 
disk using a hydraulic press (Specac press) at a pressure 
of 1.0 ton during 10 s. The accessory was placed in a jar 
of 900 mL with phosphate buffer pH 7.4 with 2% of tween 
80 (v/v) as dissolution media, pre-heated to 37 °C and 
stirred at 75 rpm. The experimental conditions follow the 
Brazilian pharmacopeia for nimesulide tablets [49].

NMS concentration was determined from the 
absorbance measured online in a Lambda 365 
PerkinElmer UV–vis spectrophotometer every 5  min 
at 397 nm. A calibration curve for pure NMS, obtained 
at this wavelength, was used. Prior to the experiments, 
the selectivity of NMS determination by this 
procedure, relatively to the coformers, was evaluated 
(see Figures  S1 and S2, supplementary material, for 
details). The remaining solids were analyzed by PXRD 
and no significant phase transition occurred due to the 
compression and dissolution processes.
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Results and discussion

Virtual‑experimental cocrystal screening 
and coformers selection

Only one article reports obtaining NMS cocrystals 
[36]. In this regard we explored a combined virtual and 
experimental screening of NMS cocrystals.

The results obtained, using COSMOquick, for cocrystal 
screening of NMS with the 30 selected compounds, as 
well as with the coformers tested by Wang et al. [36], are 
presented in Table S2 (coformers are organized by structural 
similarities). It is worth reminding that the coformers 
were chosen in order to have different functional groups, 
systematic molecular diversity and/or a combination of 
desired therapeutic action with NMS. According to the 
COSMOquick software, the more negative the ΔHexcess 
and the lowest the Ffit values, the highest the probability of 
interaction between the precursors [37, 39, 50, 51]. Negative 
ΔHexcess were obtained for all the coformers tested by Wang 
et al. [36]. Among them, 1,3-bis(4-pyridyl)propane has 
the highest Ffit value and does not give rise to cocrystals. 
However, as observed in Table  S2, the ΔHexcess values 
for most of the coformers were positive or only slightly 
negative. This data indicates the low tendency of obtaining 
NMS cocrystals.

Despite in silico indications, all binary NMS mixtures 
were submitted to an experimental screening through 
mechanochemical processes. For some coformers, caffeine, 
ciprofloxacin, norf loxacin, piperazine, theobromine 
and theophylline, low negative ΔHexcess values were 
obtained, with different Ffit. Nimesulide binary systems 
with these coformers were also slurried in ethyl acetate 
and/or acetonitrile. Table S2 (supplementary material) 
summarizes the virtual-experimental screening results. As 
a result of this combined screening approach, in addition 
to the already known NMS cocrystals with bipyridyl and 
its derivatives [36], only a new cocrystal was identified, a 
NMS-PPZ 1–1 cocrystal (for this system ΔHexcess = −0.32; 
Ffit = 2.7), as will be shown in the next section.

When positive ΔHexcess are obtained the overall 
experimental results are in agreement with the virtual 
screening predictions, since cocrystal formation is not 
expected. For low negative values, as observed for several 
NMS coformers such as caffeine, theobromine, and 
ciprofloxacin, the results are not predictable and certainly 
depend on subtle association factors.

Nimesulide cocrystals

The DSC data, shown in Fig.  2, gives an unequivocal 
proof of NMS-PPZ association since the mixture 
melts above the pure precursors (Tonset = 161.9  °C; 
Tpeak = 164.9 °C; ΔH = 131.4 J g−1). Nimesulide presents 
melting temperature around 149 °C (Tonset = 149.0 °C; 
Tpeak = 150.5 °C; ΔH = 98.7 J g−1), while the DSC curve 
of piperazine presents two endothermic peaks related to 
water removal and melting/vaporization around 45–60 °C 
and at 85 °C, respectively [52–55].

The formation of a novel multicomponent solid form 
is confirmed by PXRD and FTIR analyses, as observed 
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in Fig. 3a and b, respectively. The diffractograms of raw 
material correspond to the NMS polymorph form I (CCDC 
Number: 773602) and PPZ monohydrated form (CCDC 
Number: 1473720) [52, 56–58]. The NMS-PPZ 1–1 system 
shows a distinct PXRD pattern when compared to the 
starting compounds, with new peaks at 2θ = 4.27°, 8.56°, 
13.38°, 17.17°, 20,01°, 20.87°, 22.31°, 25.88°, 26.94°, 
28.86°. Characteristic reflections of the precursors are also 
absent, as expected.

The FTIR spectrum of pure NMS (Fig. 3b) reveals the 
main modes of vibration characteristic of N–H stretching 
at 3277  cm−1, aromatic C=C stretching at 1587  cm−1, 
N–H bending at 1513  cm−1, symmetric and asymmetric 
NO2 vibrations at 1318 cm−1 and 1501 cm−1, respectively. 
Furthermore, strong vibrational modes of sulfonyl group 
appear at 1331 cm−1 and 1150 cm−1 attributed to asymmetric 
and symmetric stretching, respectively [9, 59]. The main 
vibrational bands of PPZ are observed at 3287 cm−1 and 
1501  cm−1 attributed to N–H stretching and bending, 
respectively [53].

On the other hand, the FTIR spectrum of NMS-PPZ 
1–1 system presents evident changes related to the amine 
and sulfonyl groups. It is possible to verify a decrease of 
intensity and hypsochromic displacement of the N–H 
stretching vibrational mode of NMS and PPZ, respectively, 
from 3277 cm−1 and 3216 cm−1 to 3287 cm−1 in the mixture. 
Moreover, the symmetrical and asymmetrical stretches 
of SO2 group are shifted to higher wavenumbers from 
1150 cm−1 and 1331 cm−1 to 1156 cm−1 and 1340 cm−1, 
respectively. The intensity of SO2 bands also decreased [52, 
53, 56, 60]. Therefore, the hypsochromic displacements 
foremost suggest the formation of a new hydrogen bonding 
network involving NH and SO2 groups, confirming the 
obtaining of a novel crystal structure. Spectral assignment 
is summarized in Table S3.

Virtual screening pointed out to NMS-PPZ cocrystal 
formation, which was confirmed by the experimental 
results. Since the excess enthalpy (ΔHexcess) can be roughly 
approximated to the free energy of cocrystalization, 
NMS-PPZ cocrystal formation could be favored [37, 39]. 
Furthermore, the mechanochemical process can provide 
mechanical stress, through shear and friction forces, 
exposing the precursors surface, promoting molecules 
reorganization and leading to the interaction between NMS 
and the low molecular-weight coformer PPZ [29, 42]. On 
the other hand, apart from the good correlation between 
the virtual and experimental screening of the NMS-PPZ 
system, the other coformers tested experimentally did not 
form cocrystals with NMS, as expected. In these cases, 
the positive or slightly negative ΔHexcess values, as well as, 
the substantially high Ffit values indicate low tendency of 
cocrystallization [37, 39].

Nimesulide eutectic mixtures

Gentisic (GSA, or 2,5-dihydroxycarboxylic) acid is a 
phenolic acid that has been associated as coformer in 
multicomponent solid approaches since it presents anti-
inflammatory, antimicrobial, and antioxidant activities, 
among others [61, 62]. On the other hand, isoniazid (INH) is 
an antibiotic drug widely used to treat tuberculosis [63–65]. 
In this context, NMS-GSA and NMS-INH systems were 
explored due to their potential for combined therapy.

The DSC curves (Fig. 4a and b) show that NMS-GSA 
and NMS-INH equimolar samples melt at 138.4 °C and 
132.7 °C, respectively, a lower melting temperature than 
the starting material (NMS at 149.0 °C, GSA at 201.7 °C 
and INH at 171.0 °C). Infrared spectra and PXRD shown in 
Figures S3 and S4 for the equimolar samples confirm that 
they are mixtures of the starting solid precursors.

Both systems show a profile of DSC heating curves, for 
different compositions, Figs. 5a and 6a that correspond 
to a typical binary system with a diagram of a simple 
eutectic. An invariant point—beginning of melting at the 
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same temperature—below the melting of pure compounds 
is observed at 138  °C to NMS-GSA mixtures and at 
132 °C to NMS-INH mixtures [29, 66]. Furthermore, both 
experimental binary solid–liquid diagrams show some 
deviation from the respective theoretical diagrams, predicted 
using the Schröder-van Laar equation, that assumes ideality 
of the liquid mixtures (Figs. 5b and 6b) [9, 29, 46, 48].

The phase diagrams give an indication of the eutectic 
compositions that were determined using the Tamman’s 
plots (Figs. 5c and 6c). Tamman’s triangle was constructed 

by plotting the enthalpy of eutectic melting as a function 
of NMS molar fraction in the mixtures. Therefore, the 
intersection of the linear fits for hipo and hiper-eutectic 
compositions pointed out the NMS molar fractions in the 
eutectic mixture as 0.75 for NMS-GSA and 0.61 for NMS-
INH, relative to the mixture with highest enthalpy value 
[29, 46].

Fig. 5   DSC heating curves 
(a), binary solid–liquid phase 
diagram (b) and Tamman’s 
triangle (c) of NMS-
GSA system for different 
compositions. In the phase 
diagram, the dashed lines, 
correspond to the prediction of 
Schröder-van Laar equation [48]
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Nimesulide coamorphous systems

Additionally, the present work also explored a 
coamorphization approach. As mentioned before, a set of 
APIs were selected focusing on an interesting association 
with NMS, in a dual-drug perspective. In the literature, 
only two articles recently report the investigation of 
NMS coamorphous systems with profen-analogues and 
indomethacin [10, 33].

Coamorphous systems can be prepared via two different 
mechanisms, kinetic and thermodynamic disordering 
processes, such as mechanochemistry and quench cooling, 
respectively. In mechanochemical methods, the amorphous 
binary system can be formed directly from the crystalline 
solid-state by the continuous mechanical stresses. On the 
other hand, the quenching process involves rapidly cooling 
the molten sample, a thermodynamically stable non-
crystalline form [30, 67].

Equimolar NMS coamorphous systems were investigated 
through mechanochemistry and/or quench cooling processes. 
Novel NMS coamorphous systems were obtained with 
bicalutamide (glass-transition temperature, Tg = 38 °C), 
isoniazid (Tg = 15  °C), metoclopramide (Tg = 39  °C), 
p-aminobenzoic acid (Tg = 19 °C), piracetam (Tg = 10 °C) 
and omeprazole (Tg = 32  °C), as shown in Figure  S5 
(supplementary material). For amorphous nimesulide 
the glass-transition temperature is Tg = 22  °C, which 
is in agreement with literature [10, 33]. Some of these 
equimolar NMS coamorphous mixtures presented glass-
transition temperature below that of NMS. Taking this into 
account, we decided to explore in more detail the NMS-
OMP system using different mechanochemical approaches, 

and NMS-BICA system, using both mechanochemistry and 
quench cooling processes.

Nimesulide–omeprazole system

NMS is a preferential COX-2 inhibitor that can cause 
gastrointestinal disorders [68, 69]. In this regard, we 
selected omeprazole (OMP), an anti-acid drug widely used 
to treat gastric diseases [70, 71], due to the potential of 
pharmacological association between NMS and OMP.

Previously, into the cocrystal screening process, NMS-
OMP equimolar mixture was prepared by mechanochemical 
method at 15 Hz during 30 min, with or without the addition 
of ethanol. Regarding the thermal analytical results (Fig. 7) 
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it is observed that both mixtures presented lower melting 
temperature compared to the isolated APIs.

Complementarily, both PXRD (Fig.  8) and FTIR 
analyses (Fig. S6, supplementary material) showed a pattern 
corresponding to the sum of the starting materials profile, 
indicating that NMS and OMP formed a physical mixture. 
On the other hand, in the PXRD analysis, it was possible 
to see a halo of amorphization in the NMS-OMP 1–1/ 
NG sample. Then, in this regard, we performed a trial of 
coamorphization of this sample. It is worthy mention that 
coamorphization process was performed exclusively through 
mechanochemical methods since OMP degrades on melting 
[72], which makes the quench-cooling approach unfeasible.

Initially, the jars containing the NMS-OMP solid 
mixture were pre-cooled in the freezer for 1.5 h prior to 
milling, as described in Sect.  2.3.1. This process was 
named as “cold NG”. Furthermore, the cryomilling process 
was also performed. These samples were analyzed by 
DSC, shown in Fig. 9. It is possible to observe a unique 
Tg event in both DSC curves of NMS-OMP (Cryo) and 
NMS-OMP (cold NG) at 26 °C and 32 °C, respectively, 
indicating the coamorphization of samples through these 
two methodologies [32]. Moreover, during the heating on the 
DSC analysis, discrete exothermic events around 75 °C can 
be attributed to crystallization of part of material followed 
by slight endothermic event around 120 °C, close to melting 
of NMS-OMP NG physical mixture.

The PXRD of fresh cold NG and cryomilled samples, 
Fig. 10, show totally amorphized pattern [73]. It is important 
to highlight that the binary coamorphous systems (stored 
under dry condition) were periodically analyzed by PXRD. 
Figure  10 also demonstrates the long-term stability of 
the coamorphized NMS-OMP systems. It can be inferred 
that the NMS-OMP cryomilled sample remained totally 
amorphous for at least 120 days (four months). The material 

coamorphized through cryomilling was more stable than 
that obtained by cold NG, since the mixture is cooled much 
lower than the glass transition temperature, favoring the 
formation of a disordered phase upon mechanical activation 
and preventing recrystallization of the sample.
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Nimesulide‑bicalutamide system

Bicalutamide (BICA) is a non-steroidal antiandrogenic 
drug used to treat prostate cancer [74, 75], so its association 
with NMS could be pharmacological interesting. NMS-
BICA equimolar mixture was studied through both 
mechanochemical and quench cooling approaches.

The NMS-BICA sample prepared by NG showed a PXRD 
pattern (Fig. 11) corresponding to the sum of precursors. 
Meanwhile, a partial crystalline pattern of Cryo system 
and a complete amorphous profile for QC sample was 
observed. In this sense, PXRD results indicate that the 
quench cooling process is more prone to promoting total 
crystallinity breakdown [30], being capable to produce a 
completely amorphous material. Furthermore, the FTIR 
analysis (Fig. S7) is in agreement with PXRD results: NMS-
BICA 1–1 QC system presents broadening of spectral bands, 
characteristic of amorphous forms and shifting of maxima 
which indicates the presence of different intermolecular 
interactions [32, 73, 76].

Concerning to the DSC analysis, Fig. 12, it can be inferred 
that NMS-BICA 1–1 QC sample presented Tg value (38 °C) 
intermediate to the quench cooled NMS (22 °C) and BICA 
(57 °C) [33], and above room temperature. In addition, the 
NMS-BICA QC coamorphous does not crystallizes during 
the second heating step, which indicates that this mixture 
stabilizes the amorphous phase of both drugs.

Dissolution rate study

The dissolution rate tests were performed for pure NMS 
and three systems, the eutectic samples NMS-INH 3–2 and 
NMS-GSA 3–1, and the investigated coamorphous system 
with the highest Tg, NMS-BICA 1–1, an interesting drug-
drug association. As shown in Fig. 13, both NMS-BICA 1–1 

coamorphous system and NMS-GSA 3–1 eutectic mixture 
presented higher dissolution profiles than the crystalline 
NMS in the first 25 and 35 min, respectively, while for the 
NMS-INH 3–2 eutectic mixture only a slight increase is 
observed. Taking into account the concentration of drug 
released in 25 min from tablets to the dissolution media, we 
calculated the increment of NMS released, in percentage, 
for NMS-BICA coamorphous, for NMS-GSA and NMS-
INH eutectic mixtures, relatively to pure nimesulide, that 
corresponded to 181%, 176% and 124%, respectively.

NMS from these multicomponent systems dissolve faster 
than the pure drug, with the rate of NMS-BICA ≈ NMS-
GSA > NMS-INH > NMS. This results demonstrated that the 
coamorphous and eutectic systems showed improvement in 
the dissolution rates, at the initial stage, when compared to 
the respective original drug, which may favor and accelerate 
the NMS therapeutic effect [77]. Therefore, these novel 
multicomponent solid forms may have potential applicability 
for combined administration with nimesulide, since the 
three compounds could provide a complementary therapy 
associated with a non-steroidal anti-inflammatory drug [77].

Conclusions

Using a selected set of coformers, differing in the functional 
groups and in molecular complexicity, both COSMOquick 
software and mechanochemical approaches point out a low 
tendency of NMS to form cocrystals. As a result, a novel 
NMS cocrystal could only be obtained with piperazine, 
a low molecular weight, simple coformer. Investigation 
of eutectic mixtures and coamorphous phases was 
also performed for the coformers with the potential for 
advantageous therapeutic combination with NMS. Binary 
solid–liquid phase diagrams and Tamman’s triangle plots 
were constructed for NMS-GSA and NMS-INH systems, 
and the eutectic compositions determined as 75% and 
61% (molar), respectively. Furthermore, several drug-drug 
coamorphous systems were effectively obtained through 
the employed methods, the most interesting being NMS-
OMP and NMS-BICA. The cryomilled NMS-OMP (1–1) 
coamorphous solid was stable for at least 120  days in 
dry conditions. To conclude, dissolution rate tests were 
performed for NMS-BICA 1–1 coamorphous system, 
NMS-GSA 3–1 and NMS-INH 3–2 eutectic systems. The 
comparison of dissolution profiles revealed that, in general, 
these multicomponent solid systems show higher NMS 
dissolution rate compared to the pure drug.
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supplementary material available at https://​doi.​org/​10.​1007/​
s10973-​024-​13189-2.
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