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Abstract
Shakhmatkin and Vedishcheva thermodynamic model (SV TDM) of the 45S5 Bioglass® doped with three different amounts 
of  Li2O (4.1, 9.9, and 12.3 mol%) was evaluated at T = 800 K. The 55 components of SV TDM were considered, among 
them 12 lithium containing compounds. Different number of components with not negligible equilibrium molar amount 
was found for different glass compositions (9 or 10). In all glass compositions containing nonzero amount of  Li2O, the four 
lithium compounds with not negligible equilibrium amount were identified, i.e.,  Li2O·SiO2,  3Li2O·P2O5,  Li2O·2CaO·2SiO2, 
and  2Li2O·SiO2. In the 45S5 glass composition four phosphate compounds with not negligible abundance were identified: 
 9Na2O·6SiO2·2P2O5,  Na2O·2CaO·P2O5,  5Na2O·4SiO2·P2O5, and  Na2O·CaO·P2O5. In all other glasses the  3Li2O.P2O5 was 
found with not negligible abundance. Moreover, in the glass with 4.1 mol%  Li2O the  Na2O·2CaO·P2O5 and  3Li2O·P2O5 
compounds were found with not negligible abundance. For each studied glass the glass transition temperature, coefficient of 
thermal expansion of glass and metastable melt were measured by thermodilatometry. The low temperature viscosity was 
measured by thermomechanical analysis. The viscous flow activation energy was evaluated from the viscosity temperature 
dependence. The compositional dependence of measured thermal properties was analyzed by correlation analysis with the 
Q-distribution of silicate and phosphate units.
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Introduction

One of the most successful glassy materials in the field of 
biomedicine is the Bioglass® denoted 45S5. This glass has 
the following composition: 45 mass%  SiO2 (hence the deno-
tation “45S”), 24.5 mass% CaO, 24.5 mass%  Na2O and 6 
mass%  P2O5. The high Ca:P ratio favor’s the formation of 
apatite crystals, where the silicon and calcium atoms can act 
as crystallization centers. At the same time, this ratio (which 

is close to that of the actual bone matter) ensures that the 
human body will accept this artificial material without a neg-
ative immune response. Typical utilization of the Bioglass® 
45S5 involves bone transplants, maxillofacial, and dental 
replacements, or stimulation of vessel/nerve regeneration 
[1–6]. The functionality of the Bioglass® particles is based 
on the formation of the surface coat of silica gel supporting 
(at contact with the body fluid) the adhesion of PO3−

4
 , CO2−

3
 

and  Ca2+ ions, creating a porous layer of hydroxyapatite. 
Such surface is then colonized by the stem cells, produc-
ing osteocytes and osteoblasts. The osteoblasts then secrete 
mineral precursors (calcium and phosphate rich structures 
containing organic material, such as acidic proteins) that 
consequently form the bone tissue [4–10]. The Bioglass® 
can be doped by large variety of elements, influencing its 
bioactivity, mechanical and biological response:

Zn—antibacterial, antifungal and anti-inflammatory 
effects [11–13];

Sr—supports bone regeneration [14, 15];
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Ce—exhibits anti-inf lammatory and antibacterial 
properties and supports osteogenesis (bone development) 
[16–19];

Ga—promotes osteogenesis and exhibits antibacterial 
activity [20, 21].

One of the very important dopants are the  Li+ ions. 
Substitution of the sodium ions by the lithium ones has 
markedly positive effect on the growth rate of the cell 
cultures, as well as on the activity of the alkaline phos-
phatase [22, 23]. Formation of the higher density bone tis-
sue was reported [24–26] because of the cultivation on the 
Li-doped the Bioglass®. Similarly, positive influence of 
Li-incorporation on the bioactivity of the 45S5 Bioglass® 
was reported in [27, 28]. The confirmation of the enhanced 
bioactivity of the Li-doped the Bioglass® is, however, 
only half the picture needed for the successful application 
of these materials. The physico-chemical properties of the 
glasses are just as important, as they determine their work-
ability, long-term stability, and processing conditions. 
Surprisingly, no available literature sources on the glass 
transition kinetics and the structural relaxation phenomena 
in the Li-doped the Bioglass® 45S5 have been found by 
the authors. Therefore, this work is aimed to investigate 
the above-mentioned features of the Li-doped bioactive 
glasses. In the work of the authors Khorami et al. [27] 
reported the incorporation of  Li+ into bioactive glasses, 
who focused on the modification of  Na2O with different 
amounts of  Li2O (3, 7 and 12 wt%) in the Bioglass® 45S5 
glass system. Many other studies focused on investigating 
the effect of adding  Li+ to various biomaterials to investi-
gate the osteogenic potential [26–31], but not on the evalu-
ation of physicochemical and structural properties.

When studying the relationships between the struc-
ture, composition and properties of glasses, the method 
of thermodynamic modeling is intensively used, e.g. 

Conrad et al., Liška et al., Vedishcheva et al., Pedone et al., 
Bhaskar et al. [32–37].

This work deals with the application of the Shakhmat-
kin and Vedishcheva thermodynamic model (SV TDM) for 
the 45S5 Bioglass® doped with three different amounts of 
 Li2O (4.1, 9.9, and 12.3 mol%). SV TDM was evaluated 
at T = 800 K roughly corresponding to the glass transition 
temperature (Tg). For each studied glass the glass transi-
tion temperature, coefficient of thermal expansion of glass 
(αg) and metastable melt (αm) were measured by thermodi-
latometry. The low temperature viscosity was measured by 
thermomechanical analysis. The activation energy of the 
viscous flow was evaluated from the measured temperature 
dependence of viscosity. The compositional dependence 
of the measured thermal properties was analyzed using 
correlation analysis with the Q-distribution of silicate and 
phosphate units.

Experimental part

The 45S5 Bioglass® and doped the bioactive glass were pre-
pared by mixing raw materials of analytical purity (≥ 99%): 
 SiO2 (Centralchem, Slovakia),  CaCO3 (Centralchem, Slo-
vakia)  Na2CO3 (Penta, Czech Republic),  Li2CO3 (Penta, 
Czech Republic), and  Na5P3O10 (Sigma-Aldrich, Slovakia) 
and subsequent homogenization for 6 h.

The mixture was then melted in an ambient atmosphere in 
a Pt-10% Rh crucible in a superkanthal furnace at tempera-
tures in the range of 1300–1400 °C for two hours. During 
melting, sufficient homogeneity of the melt was ensured by 
manually stirring. After the melt was clarified, the melting 
process ended and the clear glass was poured onto a stain-
less plate, which was then placed in a cooling furnace. The 
cooling process consisted of tempering at a temperature of 
550 °C for 30 min and controlled cooling at 5 °C/min. to 
laboratory temperature.

The amorphous nature of the glasses was confirmed 
using the X-ray diffractometer Panalytical Empyrean 
DY1098—XRD.

The chemical composition of the prepared glasses was 
determined by the XRF analyzer S8 Tiger (Bruker). The 
glasses were ground in an agate ball mill to a powder with a 

Table 1  Composition of the 
studied Li-doped bioactive 
glasses and the 45S5 Bioglass® 
in mol%

Oxide Glass abbreviation

Li0 Li1 Li2 Li3

SiO2 47.5 45.6 43.9 41.8
CaO 27.6 26.3 25.2 23.8
Na2O 22.3 21.9 19.8 20.0
P2O5 2.6 2.1 1.2 2.0
Li2O 0.0 4.1 9.9 12.3

Table 2  Measured thermal 
properties of studied glasses

106αg/°C−1 106αm/°C−1 Tg/°C A B/K sapr/log(η/
dPa  s−1)

Eη*/kJ  mol−1

Li0 15.92 ± 0.02 44.68 ± 0.39 475 ± 0.8 − 27.6 ± 1.1 32 222 ± 980 0.12 617 ± 19
Li1 13.29 ± 0.01 52.07 ± 0.42 402 ± 0.9 − 27.9 ± 1.3 28 913 ± 986 0.15 554 ± 19
Li2 14.46 ± 0.01 48.23 ± 0.37 450 ± 1.0 − 26.3 ± 1.1 29 661 ± 938 0.12 568 ± 18
Li3 15.81 ± 0.02 46.41 ± 0.45 407 ± 0.9 − 26.8 ± 0.7 28 205 ± 521 0.06 540 ± 10
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size fraction below 45 µm. Table 1 shows the experimental 
composition of studied glasses in mole percentages.

The glass transition was investigated using thermome-
chanical analysis using TMA Q EM 402 (TA Instrument) 
[38]. Prismatic samples were prepared by cutting and grind-
ing to a size of 20 × 5 × 5 mm. Dilatometric curves were 
measured at a heating and cooling rate of 5 °C  min−1 at a 
sample load of 5 g. Low-temperature viscosity between  108 
dPa.s and  1012 dPa.s was measured by a thermomechanical 
analyzer (Netzsch, TMA 402) [38].

Shakhmatkin and Vedishcheva proposed a thermody-
namic model that was successfully applied to the study of 
silicate and phosphate glasses [39, 40]. According to this 
model glasses and melts are ideal solutions formed from 
products of equilibrium chemical reactions between oxides 
and from the original un-reacted oxides. The input data for 
construction of SV TDM consists of the molar Gibbs ener-
gies of pure crystalline compounds at particular temperature, 
and the analytical composition of the particular system. The 
equilibrium molar amount of each of the systems species 
is obtained by minimization of the system’s Gibbs energy 
constrained by the overall system composition [41]. It was 
verified that SV TDM can be used for most multicomponent 
glasses using the crystalline state data. The available data-
bases of thermodynamic data (e.g. FACT [37, 42]) enable 
the simple construction of the SV TDM for various multi-
component systems. This approach enabled a direct connec-
tion between the glass structure and the balanced representa-
tion of individual glass components.

Results and discussion

The temperature dependence of measured viscosity was 
described by the Andrade's equation [43, 44]:

(1)log � = A +
B

T

Table 3  Input data of SV TDM (considered components, their 
Q-units, and molar Gibbs energies Gm)

No Abbr Formula − Gm/MJ  mol−1 Qn

1 N Na2O 0.5034 –
2 C CaO 0.6078 –
3 P P2O5 1.6457 2Q3

P

4 Si SiO2 0.9671 Q4

Si

5 Li Li2O 6.4775 –
6 NS2 Na2O·2SiO2 2.6698 2Q

3

Si

7 NS Na2O·SiO2 1.6985 Q2

Si

8 N3S2 3Na2O·2SiO2 4.0146 2 Q1

Si

9 N2S 2Na2O·SiO2 2.3218 Q0

Si

10 N3S8 3Na2O·8SiO2 9.8947 2 Q4

Si
 + 6 Q3

Si

11 N5S 5Na2O·SiO2 3.7828 Q0

Si

12 C2S 2CaO·SiO2 2.4449 Q0

Si

13 C3S2 3CaO·2SiO2 4.1846 2 Q1

Si

14 CS CaO·SiO2 1.7375 Q2

Si

15 C3S 3CaO·SiO2 3.1089 Q0

Si

16 CS2 CaO·2SiO2 2.7098 2Q3

Si

17 NP Na2O·P2O5 2.6907 2 Q2

P

18 N5P3 5Na2O·3P2O5 9.8017 2 Q2

P
 + 4 Q1

P

19 N2P 2Na2O·P2O5 3.5520 2 Q1

P

20 N3P 3Na2O·P2O5 4.2283 2 Q0

P

21 CP CaO·P2O5 2.6754 2 Q2

P

22 C2P 2CaO·P2O5 3.5517 2 Q1

P

23 C3P 3CaO·P2O5 4.3811 2 Q0

P

24 C2P3 2CaO·3P2O5 6.9744 2 Q3

P
 + 4 Q2

P

25 C4P 4CaO·P2O5 5.0608 2 Q0

P

26 C4P3 4CaO·3P2O5 8.8234 4 Q2

P
 + 2 Q1

P

27 CP2 CaO·2P2O5 4.3396 2 Q3

P
 + 2 Q2

P

28 PS P2O5·SiO2 2.6762 Q4

Si
 + 2 Q3

P

29 P2S3 2P2O5·3SiO2 6.3038 3 Q4

Si
 + 4 Q3

P

30 NC2S2 Na2O·2CaO·2SiO2 4.1211 Q1

Si

31 NC3S3 Na2O·3CaO·3SiO2 5.2135 3 Q2

Si

32 NC3S6 Na2O·3CaO·6SiO2 8.9239 4 Q3

Si
 + 2 Q2

Si

33 NCS5 Na2O·CaO·5SiO2 6.3490 Q4

Si
 + 4 Q3

Si

34 N2CS3 2Na2O·CaO·3SiO2 5.1228 3Q
2

Si

35 N4C3S5 4Na2O·3CaO·5SiO2 9.9194 Q2

Si
 + 4 Q1

Si

36 NC2P Na2O·2CaO·P2O5 4.3670 Q0

P

37 NCP Na2O·CaO·P2O5 3.6222 2 Q1

P

38 N2CP3 2Na2O.CaO·3P2O5 8.1580 6 Q2

P

39 NC2P3 Na2O·2CaO·3P2O5 8.1180 6 Q2

P

40 N9S6P2 9Na2O·6SiO2·2P2O5 16.6773 6 Q2

Si
 + 4 Q0

P

41 N5S4P 5Na2O·4SiO2·P2O5 9.6782 4 Q2

Si
 + 2 Q2

P

42 C5PS 5CaO·P2O5·SiO2 6.8100 Q0

Si
 + 2 Q0

P

43 C7PS2 7CaO·P2O5·2SiO2 9.2518 2 Q0

Si
 + 2 Q0

P

44 LC2S2 Li2O·2CaO·2SiO2 4.2064 2 Q1

Si

45 LC3S6 Li2O·3CaO·6SiO2 8.8554 2 Q2

Si
 + 4 Q3

Si

46 LC4S4 Li2O·4CaO·4SiO2 7.6601 4Q1

Si

Table 3  (continued)

No Abbr Formula − Gm/MJ  mol−1 Qn

47 LCS Li2O·CaO·SiO2 2.4002 Q0

Si

48 L2S 2Li2O·SiO2 2.4735 Q0

Si

49 LS2 Li2O·2SiO2 2.7122 2 Q3

Si

50 LS Li2O·SiO2 1.7483 Q2

Si

51 L3NS2 3Li2O·Na2O·2SiO2 4.8667 2 Q0

Si

52 L3P 3Li2O·P2O5 4.4911 2 Q0

P

53 L2P 2Li2O·P2O5 3.6169 2 Q1

P

54 L5P3 5Li2O·P2O5 9.8668 4 Q1

P
 + 2 Q2

P

55 LP Li2O·P2O5 2.6853 2 Q2

P
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where A, and B are constants routinely determined by the 
regression analysis, and T is thermodynamic temperature. 
The activation energy of viscous flow, Eη*, is given by the 
relation:

(2)B =
E∗
�

2.303R

Table 4  Components of SV 
TDM with not negligible 
equilibrium molar amount (for 
each glass composition the 
components are ordered with 
decreasing molar amount nox)

Li3 Li2 Li1 Li0

component nox/mol component nox/mol component nox/mol component nox/mol

NS 0.3852 NS 0.3776 NS 0.3384 NC3S6 0.3564
C3S2 0.1181 C3S2 0.1278 NC3S6 0.2010 NS 0.2550
LC2S2 0.1138 LC2S2 0.1090 CS 0.1132 CS 0.1011
C2S 0.0956 CS 0.1069 C3S2 0.1117 C3S2 0.0894
CS 0.0912 C2S 0.0876 C2S 0.0633 N9S6P2 0.0686
L3P 0.0758 LS 0.0775 NC2P 0.0340 NC2P 0.0525
LS 0.0747 L3P 0.0449 LC2S2 0.0323 C2S 0.0463
NC3S6 0.0110 NC3S6 0.0403 LS 0.0278 N5S4P 0.0114
NC2S2 0.0108 NC2S2 0.0107 L3P 0.0274 NCP 0.0104
L2S 0.0103 N9S6P2 0.0246

Table 5  Si Q-distribution and P 
Q-distribution of SV TDM

Si Q-distribution/% P Q-distribution/%

Q0 Q1 Q2 Q3 Q4 Q0 Q1 Q2 Q3

Li0 3.26 8.00 53.47 35.24 0.02 83.39 12.24 4.36 0
Li1 4.71 13.49 62.11 19.67 0.02 88.62 8.14 3.25 0
Li2 7.23 22.91 66.09 3.76 0.01 99.08 0.73 0.18 0
Li3 8.47 23.79 66.62 1.11 0.01 99.42 0.49 0.10 0

Table 6  Correlation coefficients 
between  Li2O content and 
relative amounts of Si Q-units 
and P Q-units

Li2O SiQ0 SiQ1 SiQ2 SiQ3 SiQ4 PQ0 PQ1 PQ2

Li2O 1.00 1.00 0.99 0.94  − 0.99  − 0.97 0.99  − 0.99  − 0.98
SiQ0 1.00 1.00 0.98 0.92  − 0.98  − 0.99 0.98  − 0.98  − 0.98
SiQ1 0.99 0.98 1.00 0.95  − 0.99  − 0.96 1.00  − 1.00  − 1.00
SiQ2 0.94 0.92 0.95 1.00  − 0.98  − 0.84 0.94  − 0.95  − 0.92
SiQ3  − 0.99  − 0.98  − 0.99  − 0.98 1.00 0.93  − 0.99 0.99 0.98
SiQ4  − 0.97  − 0.99  − 0.96  − 0.84 0.93 1.00  − 0.95 0.95 0.96
PQ0 0.99 0.98 1.00 0.94  − 0.99  − 0.95 1.00  − 1.00  − 1.00
PQ1  − 0.99  − 0.98  − 1.00  − 0.95 0.99 0.95  − 1.00 1.00 1.00
PQ2  − 0.98  − 0.98  − 1.00  − 0.92 0.98 0.96  − 1.00 1.00 1.00

Table 7  The correlation 
analysis between the measured 
properties an Si Q-distribution 
and P Q-distribution

SiQ0 SiQ1 SiQ2 SiQ3 SiQ4 PQ0 PQ1 PQ2

106αg [°C−1] 0.11 0.00  − 0.28 0.09  − 0.28 0.01 0.01  − 0.07
106αm [°C−1] 0.01 0.09 0.39  − 0.19 0.16 0.07  − 0.09  − 0.01
Tg [°C]  − 0.47  − 0.43  − 0.64 0.52 0.36  − 0.39 0.41 0.35
Eη* [kJ.mol−1]  − 0.77  − 0.76  − 0.90 0.82 0.67  − 0.73 0.75 0.69
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where R is the molar gas constant. The Table 2 summarizes 
the values of A and B calculated by fitting Eq. (1), and the 
values of activation energy calculated using Eq. (2). The 
linear thermal expansion coefficients of glass, αg, and meta-
stable melt, αm, were estimated from the slope of the cooling 
curve in temperature ranges of 300–350 and 450–550 °C, 
respectively. The glass transition temperatures, Tg, were 
determined from the intersection of two lines with slopes 
of αg and αm.

The 55 components of SV TDM were considered 
(Table 3), among them 12 lithium containing compounds. 
The significant (not negligible) abundance of system compo-
nents was defined by the equilibrium molar amount reaching 
at least 0.01 mol of oxides, i.e. nox,i ≥ 0.01 mol. When the 
stoichiometry of the ith component (Xi) is expressed by the 
reaction:

then nox,i is defined by:

where ni is the equilibrium molar amount of the ith compo-
nent. Different number of components with not negligible 
equilibrium molar amount was found for different glass com-
positions (9 or 10), see Table 4. In all glass compositions 
containing nonzero amount of  Li2O, the four lithium com-
pounds with not negligible equilibrium amount were iden-
tified, i.e.  Li2O·SiO2,  3Li2O·P2O5,  Li2O·2CaO·2SiO2, and 
 2Li2O·SiO2. In the 45S5 glass composition four phosphate 
compounds with not negligible abundance were identified: 
 9Na2O·6SiO2·2P2O5,  Na2O·2CaO·P2O5,  5Na2O·4SiO2·P2O5, 
and  Na2O·CaO·P2O5. In all other glasses the  3Li2O·P2O5 was 
found with not negligible abundance. Moreover, in the glass 
with 4.1 mol%  Li2O the  Na2O·2CaO·P2O5 and  3Li2O·P2O5 
compounds were found with not negligible abundance.

Due to volatility of glass components during glass melt-
ing the analyzed glass composition strongly differs from the 
prescribed one. Due to this fact no straightforward depend-
ence of measured quantities on the molar content of lithium 
oxide was found. On the other hand, some relationships 
were found by the  Li2O influence on the Si Q-distribution 
and P Q-distribution (Table 5). First the mutual relation-
ships between Si Q-units and between P Q-units were found. 
Increase of Li content increases  SiQ0,  SiQ1, and  SiQ2, and 
simultaneously decreases the amount of  SiQ3, and  SiQ4. 
Similarly, Li content increases  PQ0 and decreases  PQ1 and 
 PQ2.

It was found that  SiQ0,  SiQ1, and  SiQ2 are strongly posi-
tively correlated (Table 6). Similarly,  SiQ3, and  SiQ4 are 
strongly positively correlated. The strong positive correla-
tion means that correlated quantities are changed proportion-
ally in the same direction. Thus, decreasing of the content 

(3)
Xi = �i ∗ Li2O + vi ∗ Na2O + �i ∗ CaO + �i ∗ SiO2 + �i ∗ P2O5

(4)nox,i = ni ∗ (�i + vi + �i + �i + �i)

of  SiQ3, and  SiQ4 (caused by decreasing of the degree of 
networking) leads to increase of  SiQ0,  SiQ1, and  SiQ2. Simi-
larly, it is with phosphate Q-units. It was found that  PQ1 and 
 PQ2 are strongly positively correlated, and  PQ0 is strongly 
negatively correlated with  PQ1 and  PQ2. Thus, decreasing 
of the content of  PQ1, and  PQ2 (caused by decreasing of the 
degree of networking) leads to increase of  PQ0.

In the next step the correlation analysis between the meas-
ured properties an Si Q-distribution and P Q-distribution 
was analyzed (Table 7). As can be expected for the viscous 
flow activation energy and the glass transition temperature 
the strong negative correlation was found with  SiQ0,  SiQ1, 
 SiQ2, and  PQ0. Simultaneously the strong positive correla-
tion was identified for  SiQ3,  SiQ4,  PQ1, and  PQ2. It con-
firmed that decreasing the degree of networking decreases 
the values of Eη*, and Tg. On the other hand, the correla-
tion analysis of the thermal expansion coefficients does not 
show strongly significant correlations. But in principle (i.e., 
according to the signs of correlation coefficients) it confirms 
that decreasing the degree of networking increases the ther-
mal expansion coefficients.

Conclusions

According to the presented results of SV TDM the 45S5 
Bioglass® doped  Li2O bioactive glass can be considered 
as a homogeneous mixture of 9, or 10 components were 
present in significant equilibrium molar amount for each 
studied glass composition. In all glass compositions con-
taining nonzero amount of  Li2O, the four lithium com-
pounds with not negligible equilibrium amount were iden-
tified, i.e.  Li2O·SiO2,  3Li2O·P2O5,  Li2O·2CaO·2SiO2, and 
 2Li2O·SiO2. In the 45S5 glass composition four phosphate 
compounds with not negligible abundance were identified: 
 9Na2O·6SiO2·2P2O5,  Na2O·2CaO·P2O5,  5Na2O·4SiO2·P2O5, 
and  Na2O·CaO·P2O5. In all other glasses the  3Li2O.P2O5 was 
found with not negligible abundance. Moreover, in the glass 
with 4.1 mol%  Li2O the  Na2O·2CaO·P2O5 and  3Li2O·P2O5 
compounds were found with not negligible abundance. 
The viscous flow activation energy and the glass transi-
tion temperature the strong negative correlation was found 
with  SiQ0,  SiQ1,  SiQ2, and  PQ0. Simultaneously the strong 
positive correlation was identified for  SiQ3,  SiQ4,  PQ1, and 
 PQ2. It confirmed that decreasing the degree of networking 
decreases the values of Eη*, and Tg.
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