Skip to main content
Log in

Study on coupling of expanded graphite and modified calcium chloride hexahydrate phase change cold storage material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As an excellent adsorption material, Expanded graphite (EG) has large surface area and pore volume in micro morphology. Therefore, it is often used as the shape-stabilized material for liquid PCM. In the previous studies, the influence of the density and size of EG on the PCM was less studied. In this paper, the EG with different density and size is selected as the shape-stabilized material of PCM. In the experiment, modified calcium chloride hexahydrate composite PCM and EG with different sizes and densities were used for coupling. The experimental results show that the EG with density of 200 kg m−2 and the size of 50 mesh can better adsorb the PCM. The experiment uses a physical mixing method, and the operation steps are simple and easy to use in practice. The shape-stabilized PCM (ss-PCM) prepared with 50 mesh EG has higher latent heat value (104.21 J g−1) and lower undercooling (1.75 °C). At the end of this paper, the ss-PCM was tested by micro morphology, pore size and infrared spectroscopy. The experimental results showed that the EG and c-PCM were evenly coupled together. ss-PCM still show good stability after 30 thermal cycles and can be used in practical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EG:

Expand graphite

PCM:

Phase change material

ss-PCM:

Shape-stabilized phase change material

c-PCM:

Composite phase change material

DSC:

Differential scanning calorimetry

SEM:

Scanning electron microscope

References

  1. Li G. Comprehensive investigation of transport refrigeration life cycle climate performance. Sustain Energy Technol Assess. 2017;21:33–49.

    Google Scholar 

  2. Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy. 2019;140:513–38.

    Article  CAS  Google Scholar 

  3. Li G, Hwang Y, Radermacher R. Review of cold storage materials for air conditioning application. Int J Refrig. 2012;35(8):2053–77.

    Article  CAS  Google Scholar 

  4. Li G, Liu D, Xie Y. Study on thermal properties of TBAB–THF hydrate mixture for cold storage by DSC. J Therm Anal Calorim. 2010;102(2):819–26.

    Article  CAS  Google Scholar 

  5. Sheng N, Rao Z, Zhu C, Habazaki H. Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage. Appl Therm Eng. 2020;164: 114493.

    Article  CAS  Google Scholar 

  6. Li G, Hwang Y, Radermacher R, Chun HH. Review of cold storage materials for subzero applications. Energy. 2013;51:1–17.

    Article  Google Scholar 

  7. Chen X, Tang Z, Chang Y, Gao H, Cheng P, Tao Z, Lv J. Toward tailoring chemistry of silica-based phase change materials for thermal energy storage. Iscience. 2020;23(10): 101606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qian T, Li J, Min X, Fan B. Integration of pore confinement and hydrogen-bond influence on the crystallization behavior of C18 PCMs in mesoporous silica for form-stable phase change materials. ACS Sustain Chem Eng. 2018;6(1):897–908.

    Article  CAS  Google Scholar 

  9. Lu X, Luo X, Cao S, Zou C. Analysis on the improvement of thermal performance of phase change material Ba (OH)2·8H2O. Energies. 2021;14(22):7761.

    Article  CAS  Google Scholar 

  10. Feng T, Ji J, Zhang X. Research progress of phase change cold energy storage materials used in cold chain logistics of aquatic products. J Energy Storage. 2023;60: 106568.

    Article  Google Scholar 

  11. Sundaram P, Kalaisselvane A, Sathishkumar A, GaneshKumar P, Kim SC, Prabakaran R. Synthesis, stability, and heat transfer behavior of water and graphene nanoplatelet-based nanofluid for cool thermal storage applications. J Energy Storage. 2023;64: 107219.

    Article  Google Scholar 

  12. Sundaram P, Kalaisselvane A. Effect of different additives on freezing characteristics and stability of GnP-aqueous-based PCM for cold thermal storage. J Thermal Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-11056-y.

    Article  Google Scholar 

  13. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J. 2019;356:641–61.

    Article  CAS  Google Scholar 

  14. Li M, Mu B. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review. Appl Energy. 2019;242:695–715.

    Article  CAS  Google Scholar 

  15. Hayat MA, Chen Y, Bevilacqua M, Li L, Yang Y. Characteristics and potential applications of nano-enhanced phase change materials: a critical review on recent developments. Sustain Energy Technol Assess. 2022;2022(50): 101799.

    Google Scholar 

  16. Yang Y, Pang Y, Liu Y, Guo H. Preparation and thermal properties of polyethylene glycol/EG as novel form-stable phase change material for indoor energy saving. Mater Lett. 2018;216:220–3.

    Article  CAS  Google Scholar 

  17. Xie N, Luo J, Li Z, Huang Z, Gao X, Fang Y, Zhang Z. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage. Sol Energy Mater Sol Cells. 2019;189:33–42.

    Article  CAS  Google Scholar 

  18. Li G, Li W. Synthesis and characterization of microencapsulated n-octadecane with hybrid shells containing 3-(trimethoxysilyl) propyl methacrylate and methyl methacrylate. J Therm Anal Calorim. 2017;129:915–24.

    Article  CAS  Google Scholar 

  19. Wei H, Xie X, Li X, Lin X. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl Energy. 2016;178:616–23.

    Article  CAS  Google Scholar 

  20. Wen R, Zhang X, Huang Z, Fang M, Liu Y, Wu X, Huang S. Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2018;178:273–9.

    Article  CAS  Google Scholar 

  21. Kang Z, Huang S, Liu X, Zhang Y, He M. A novel high temperature eutectic salt and its composite with enhanced high conductivity. J Energy Storage. 2023;2023(59): 106409.

    Article  Google Scholar 

  22. Li Y, Fu Z, Xue M, Shao Z, Li Y, Zhu Q. Experimental study on preparation and thermal storage properties of expanded graphite/paraffin wax as a shape-stabilized phase change material. Energy Rep. 2022;2022(8):324–31.

    Article  Google Scholar 

  23. Akula R, Balaji C. Thermal management of 18650 Li-ion battery using novel fins-PCM-EG composite heat sinks. Appl Energy. 2022;2022(316): 119048.

    Article  Google Scholar 

  24. Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int J heat Mass Transfer. 2001;44(14):2727–37.

    Article  CAS  Google Scholar 

  25. Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z. Thermal conductivity of an organic phase change material/EG composite across the phase change temperature range and a novel thermal conductivity model. Energy Convers Manage. 2015;2015(102):202–8.

    Article  Google Scholar 

  26. Xie N, Li Z, Gao X, Fang Y, Zhang Z. Preparation and performance of modified EG/eutectic salt composite phase change cold storage material. Int J Refrig. 2020;110:178–86.

    Article  CAS  Google Scholar 

  27. Ren Y, Xu C, Yuan M, Ye F, Ju X, Du X. Ca(NO3)2-NaNO3/EG composite as a novel shape-stable phase change material for mid-to high-temperature thermal energy storage. Energy Convers Manage. 2018;163:50–8.

    Article  CAS  Google Scholar 

  28. Zhao M, Ye Y, Yang R. Absorption-polymerization method for synthesizing phase change composites with high enthalpy and thermal conductivity for efficient thermal energy storage. Sol Energy Mater Sol Cells. 2022;248: 112027.

    Article  CAS  Google Scholar 

  29. Liu S, Zhang X, Zhu X, Xin S. A low-temperature phase change material based on capric-stearic acid/expanded graphite for thermal energy storage. ACS Omega. 2021;6(28):17988–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niu D, Tan Y, Zhang T, Zhang X, Zhang W. Thermal properties and application of a novel CaCl2·6H2O/expanded graphite shape-stabilized composite phase change material for electric radiant heating. J Energy Storage. 2022;55: 105458.

    Article  Google Scholar 

  31. Cao S, Luo X, Han X, Lu X, Zou C. Development of a new modified CaCl2·6H2O composite phase change material. Energies. 2022;15(3):824.

    Article  CAS  Google Scholar 

  32. Cao S, Luo X, Han X, Zou C, Lan G. Study in preparation and properties of novel organic-inorganic composite phase change cold storage materials. New Chem Mater. 2023;51(05):68–72.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the General project of Guangxi Natural Science Foundation (2018GXNSFAA138157).

Funding

Guangxi Natural Science Foundation (2018GXNSFAA138157)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxue Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Cao, S., Hu, J. et al. Study on coupling of expanded graphite and modified calcium chloride hexahydrate phase change cold storage material. J Therm Anal Calorim 148, 10001–10009 (2023). https://doi.org/10.1007/s10973-023-12442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12442-4

Keywords

Navigation