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Abstract
Actin monomers (G-actin) and filaments (F-actin) have dynamical rearrangement thus manage cellular motility, division 
and transport processes. The gelsolin (GSN) regulates the remodeling of cytoskeleton. After the activation of GSN by 
calcium ions, it can sever actin filaments then capped at its barbed end. In the cytoplasm, GSN manages the cellular motions 
and morphology. Phosphatidylinositol 4,5-bisphosphate (PIP2) is involved in signal transduction and the regulation of the 
actin cytoskeleton by regulation of actin-binding proteins. GSN can bind to PIP2 and thus can be localized in the near of 
the plasma membrane and released from the end of F-actin. We test here with isoperibol calorimetry the enthalpy change, 
within the interplay between GSN and F-actin under nano-, micro- and millimolar calcium concentrations and express the 
importance of PIP2 binding for the inactivation of GSN. As we have demonstrated here that PIP2 binding stabilizes the 
structure of gelsolin and reduces its actin monomer binding activity under nanomolar calcium as the typical cytoplasmic 
calcium concentration of resting cells. The gelsolin shows partial activity under micromolar and total activity with strong 
responses under millimolar calcium. If gelsolin-capped filaments point at the plasma membrane helps the binding between 
gelsolin and PIP2, and hence, filament uncapping in case of resting cells. We presume that the low free calcium concentration 
keeps on the structure of gelsolin which is able to bind actin within the cooperativity of actin bound calcium. Gelsolin can 
help to manage monomer pool far from the membrane and it can be linked to a basic sensory mechanism which drives the 
direction of filament growth in the near of the membrane.
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Introduction

The actin is an essential unit of the eukaryotic cytoskeleton 
and muscle sarcomeres with highly conservative sequences 
[1]. The specialized intracellular functions driven to low 
variety of proteins in their phylogenetic development [2–4]. 
Actin monomers (G-actin) and filaments (F-actin) have 
dynamical rearrangement thus manage cellular motility, 
division and transport processes [5–11]. The remodeling 
of actin filaments highly regulated by divalent cations 
(Ca2+ or Mg2+) [12] and nucleotides (ATP, ADP) [13–20]. 
The stability of G-actin depends on the bound cations and 
nucleotides but the majority in cytoplasm is in the ATP-G-
actin form [21, 22] then subsequently hydrolyses to ADP and 
Pi with their polymerization [13–20]. The gelsolin regulates 

the rearrangement of cytoskeleton [21]. After the activation 
of gelsolin (GSN) by calcium ions, it can sever actin 
filaments then capped at its barbed end. In the cytoplasm 
nearby of the plasma membrane, GSN manages the 
cellular motions and morphology by capping, severing and 
uncapping of F-actin [22–24]. The process of uncapping is a 
crucial step to help the actin polymerization with an indirect 
influence on the membrane remodeling. Phosphatidylinositol 
4,5-bisphosphate (PIP2) is involved in signal transduction 
and the regulation of the actin cytoskeleton by regulation 
of actin-binding proteins [25–42]. GSN can bind to PIP2 
[43] and thus can be localized in the near of the plasma 
membrane when it is released from the end of F-actin [29, 
44–49]. The PIP2-binding sites on gelsolin overlaps with 
the ATP binding site [47, 50–52]. The structural change of 
gelsolin with the mechanism of uncapping is not well known 
but in the absence of calcium the PIP2 competes with actin 
for binding to GSN [46, 49, 52–54]. However, we interpreted 
earlier that calcium activated GSN cannot bind PIP2 [49].
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As previously shown the free calcium concentration in 
resting cells changing on the nanomolar level [55, 56], and 
in non-resting state can reach the micromolar levels [57, 
58]. Cytoplasmic free magnesium levels are regulated in 
the nanomolar range but it does not have effect on GSN 
activity [49, 59, 60]. Interestingly, the reduction of calcium 
levels cannot cause directly the GSN release from actin, 
but a single calcium ion is still trapped in the complex 
[61]. The main concern with GSN inactivation is that it 
still depolymerizing actin filaments in the presence of 
millimolar EGTA provided nanomolar free calcium level 
[62, 63]. Possibly, only the PIP2 binding can fully inhibit 
any activity of GSN [49]. Structural rearrangement of 
F-actin and its binding molecules can be studied by DSC 
[64–66]. We probe here the isothermal enthalpy change 
within the interplay between GSN and F-actin under nano-, 
micro- and millimolar calcium concentrations and express 
the importance of PIP2 binding for the total inactivation 
of GSN. We can postulate that GSN shows remarkable 
thermal response to actin, addition under nanomolar calcium 
concentration which can be reduced by PIP2 binding.

Results

Figure 1 shows isothermal heatflow kinetics as well as the 
denaturation of mixing GSN with F-actin under different 
Ca2+ conditions, or in the presence of PIP2. All isotherm 
assays were taken 16 h but we focused on the first relevant 
180 min after the relapse of the heatflow subsequently after 
the mixing effect, between the minimum (ΔQinitial) and 
the maximum points (ΔQtop) (Fig. 1A). The heatflow was 
dropped down (2.4 µW) (Table 1) if 12.8 µM GSN (1 mg 
mL−1) was added to nanomolar Ca2+ containing buffer then 
increased slowly (1.7 ± 0.3 × 10–4 µW s−1) in the first 3 h 
(Fig. 1B). In case of 46 µM F-actin (2 mg mL−1) bound GSN 
in a ratio of 1: 3.6; under nanomolar Ca2+ concentration, 
there were two remarkable exothermic peaks. The first peak 
was increased quickly 9.1 ± 2.5 W in the first 15 min by 
the rate of 82 ± 1.2 × 10–4 µW s−1, after a minor reduction 
it was followed by a second peak in 63 min. If GSN was 
formed complexes with 1.6 µM PIP2 [49] in the presence 
of nanomolar Ca2+ and F-actin, the heatflow was increased 
quickly with multiple rates (totally 4.6 ± 0.7 µW with an 
average rate of 17 ± 2.5 × 10–4 µW s−1) in 65 min. Just after 
the isothermal processes we performed denaturation with 
heating rate of 0.3 K min–1 (Fig. 1C). GSN in the presence 
of nanomolar Ca2+ shows a main transition at 39.5  °C 
(Table 2). GSN and F-actin in the presence of nanomolar 
Ca2+ shows four transitions at 33, 40, 54 and 60 °C and 
the GSN-PIP2 complex with F-actin show three transitions 
at 36, 56 and 60.5 °C. PIP2 binding shifted the main peak 
from 33 to 36 °C, however in case of free GSN the biggest 

transition was observable at 39.5  °C. Figure  1D shows 
that the isothermal heatflow of F-actin was dropped down 
(endothermic 3.6 µW)(Table 1) by mixing with millimolar 
Ca2+ containing buffer then it was increased by 3.23 µW 
first in a quick step 100 ± 0.8 × 10–4 µW s–1 then slowly 
6 ± 1.5 × 10–4  µWs−1 in the first hour. The previously 
described two exothermic peaks of GSN and F-actin under 
nanomolar Ca2+ were turned to be reduced in the presence 
of micromolar Ca2+. Interestingly, we observed a minor 
drop (endothermic 1.36 µW) of the heatflow then it was 
followed by an exothermic change 3.84 ± 1.2 µW with the 
rate of 37 ± 0.8 × 10–4 µW s−1. If GSN was added to F-actin 
in the presence of millimolar Ca2+, the heatflow showed 
a big drop 9.7 µW at the beginning of the process then it 
was increased by 7.7 ± 2.8 µW with a relatively quick rate 
17 ± 1.2 × 10–4 µW s−1 in the first two hours. Figure 1E 
shows that the shape of thermal denaturation curves in each 
cases from panel C seems to be Ca2+ dependent. F-actin 
in the presence of milimolar Ca2+ shows a main transition 
at 60 °C (Table 2). As we described above, the GSN and 
F-actin in the presence of nanomolar Ca2+ shows four 
transitions. However, in the presence of micromolar Ca2+, 
there were multiple peaks at 45.5; 49; 53.5 and 60 °C. Under 
millimolar Ca2+, there was only one main transition at 58 °C 
in case of GSN and F-actin.

Discussion and conclusions

The aim of our present work is to show thermodynamical 
changes due to the activation and inactivation of gelsolin. 
Heat flow follows the structural entropy change as increases 
with structural stabilization.

Under nanomolar Ca2+ concentration, GSN responded 
with a minor isothermal change to the mixing of sample. 
GSN addition to F-actin resulted a strong exothermic change 
linked to the reduction of their structural entropy. Possibly, 
free actin monomers were depleted by GSN binding [62, 
63] which mechanism can be described as the Type I. Ca2+ 
binding sites [67] are partially saturated, and thus initialized 
a structural change of GSN for a cooperative binding to actin 
monomer. Here we found that the actin binding leads to a 
lower thermodynamical stability of GSN. The PIP2 binding 
was stabilized the structure of GSN similar to the free form 
with slow and weak response to the actin addition (Fig. 2). In 
good agreement with our previous results, since the intrinsic 
tryptophan of GSN responds with increased emission to 
PIP2 addition, the response was a less flexible structural 
dynamics of GSN [49]. At the end of the isotherm assays, 
the majority of actin was denatured around 60 °C, it can be 
interpreted by the hydrolyzation of ATP due to the long term 
processes [68].
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Fig. 1   Isothermal severing and capping of F-actin by GSN. A 
Schematic curve of isothermal heat flow change by the time with 
the mixing effect and the investigated parameters. B Time dependent 
change of isothermal heat flow in case of GSN with (light brown line 
/GF) or without (blue line /G) F-actin in the presence of nanomolar 
Ca2+. The response of GSN-PIP2 complex in the presence of F-actin 
(green line /GFP). C All cases from panel B were terminated with 

thermal denaturation DSC scans. D Isothermal heat flow kinetics 
of F-actin in the absence (cyan line /F) or in the presence of GSN 
under different Ca2+ concentrations, nanomolar (light brown line), 
micromolar (magenta line) or millimolar (dark brown line). E Heat 
denaturation curves of processes from panel D. The scans are the 
average of three measurements, and endotherm effect is deflected 
downwards which is valid with all panels
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Under micromolar Ca2+ concentration, the Ca2+ binding 
to Type II. binding sites [67] were initialized structural 
change of GSN and the mixing of sample can make 
fragments of long actin filaments and all newly exposed 
barbed end can be quickly capped by the partially active 
GSN. However, a slow structural transition in all capped 
actin filaments was observable.

Under millimolar Ca2+ concentration, the fully active 
GSN can do very fast severing within the mixing of the 
sample and induced a relatively big endotherm drop 
of the heat flow at the beginning of the process. Then 
subsequently, there was a relatively slow exotherm 
change which can be explained by the capping and within 
caused slow structural rearrangement of short filaments. 
However, if we mixed F-actin with buffer only it shows a 
very fast then a very slow isothermal process, possibly it 
was a recovery after certain fragmentations. As Nag et al. 

Table 1   Isothermal kinetic data 
achieved by exponential fit to 
the heat flow change between 
the minimum and maximum 
value of the curves. The 
values are the average of three 
measurements

Isothermal kinetic parameters

k (× 10–4 μW s−1) ΔQinitial /µW ΔQtop /µW

nM
 GSN 1.7 ± 0.3 − 2.4 2.2 ± 0.5
 GSN + F-actin 82 ± 1.2 − 2.2 9.1 ± 2.5
 GSN + F-actin + PIP2 17 ± 2.5 − 1.2 4.6 ± 0.7

µM
 GSN + F-actin 37 ± 0.8 − 1.36 3.84 ± 1.2

mM
 GSN + F-actin 17 ± 1.2 − 9.7 7.7 ± 2.8
 F-actin 100 ± 0.8; 6 ± 1.5 − 3.6 3.23 ± 0.9

Table 2   Heat denaturation parameters were collected after the end of 
the isothermal processes

Denaturation parameters

Tm/°C ΔHcal/J g−1

nM
 GSN 39.5 0.058 ± 0.0006
 GSN + F-actin 33; 40; 54; 60 0.045 ± 0.003
 GSN + F-actin + PIP2 36; 56; 60.5 0.04 ± 0.0032

µM
 GSN + F-actin 45.5; 49; 53.5; 60 0.054 ± 0.0065

mM
 GSN + F-actin 58 0.04 ± 0.0036
  F-actin 60 0.038 ± 0.0019

Fig. 2   Schematic model of 
calcium induced GSN activation 
in the near of the plasma 
membrane
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published in 2009 [69] the transition temperature of GSN 
domains was increased from 35 to 60 °C with the change 
of nanomolar to millimolar Ca2+ concentration. Here we 
found that the heat denaturation of actin-GSN shows two 
main components nearby 30 °C and 60 °C in the presence 
of nanomolar, multiple peaks between 30 and 60 °C in the 
presence of micromolar and one main component nearby 
60 °C in the presence of millimolar Ca2+. What we can 
interpret as the GSN domains were turned to be more 
compact by the calcium binding which were connected 
together by flexible linkers seems like beads on string.

Here we have demonstrated that PIP2 binding stabilized 
the whole structure of gelsolin and possibly reduced its actin 
monomer binding activity under nanomolar calcium as the 
typical cytoplasmic calcium concentration of resting cells. 
If gelsolin-capped filaments point at the plasma membrane, 
the local concentration of gelsolin increases by forming 
PIP2 clusters [70]. All the conditions which help the binding 
between gelsolin and PIP2, and hence, filament uncapping 
in case of resting cells. The total inactivation of gelsolin is 
required PIP2.

We can presume that the low free calcium concentration 
keeps on the structure of gelsolin which is able to bind actin 
within the cooperativity of actin bound calcium (Fig. 2). 
Gelsolin can help to manage monomer pool far from the 
membrane and it can be linked to a basic sensory mechanism 
which influences the direction of filament growth in the near 
of the membrane.

Materials and methods

Proteins

His-tagged human wild-type gelsolin was expressed in 
E. coli strain Rosetta2 (DE3) pLysS cells from a pSY5 
plasmid [71]. The protein was subjected to Ni-NTA affinity 
chromatography, HRV 3C protease cleavage, followed by 
gel filtration (Superdex 200, GE Healthcare) in 10 mM 
MOPS, 150  mM NaCl, pH 8. Traces of calcium were 
removed by dialysis (4 mM MOPS, 1 mM EGTA, pH 7.4, 
overnight). Rabbit skeletal muscle actin was prepared from 
acetone powder by a modified protocol from Spudich and 
Watt [72]. Actin was stored in buffer A (4 mM MOPS, 
0.2 mM ATP (ATP disodium trihydrate, Sigma-Aldrich), 
0.1 mM CaCl2, pH 7.4). We applied 2 mM EGTA then 
2 mM MgCl2. Actin polymerization process was initialized 
by addition of 100 mM KCl following the same protocol as 
in our previous study [64]. 12.8 μM gelsolin was incubated 
under physiological salt conditions (100 μM CaCl2, 100 mM 
KCl, 1 mM MgCl2, 0.2 mM ATP, 4 mM MOPS, pH 7.4) 
supplemented with EGTA or CaCl2 to vary the free calcium 

levels (calculated with Maxchelator Stanford); for nM: 
2 mM EGTA; for µM: 100 μM EGTA; for mM: 1 mM CaCl2. 
We used 1.6 µM PIP2 (PtdIns-(3,5)-P2(1,2-Dihexanoyl), 
Cayman Chemicals) which is below the CMC of PIP2 
[73–75], incubated with F-actin in the presence of 2 mM 
EGTA.

DSC measurements

The actin samples were freshly prepared before all 
measurements. The isotherm kinetics analysis was made 
by a SETARAM Micro-DSCII calorimeter on room 
temperature, 22  °C for 16  h. After the third hour of 
measurements, we observed the continuous dropping of 
heat flow which can be described by the decay of ATP 
and actin filaments. We used Hastelloy designed pair 
of “mixing batch” vessels for isotherm measurements 
(Vlower = 500 µL, Vupper = 200 µL) in the reference vessel 
the GSN was mixed with buffer only and in the sample one 
with F-actin in the presence of nanomolar, micromolar or 
millimolar free Ca2+ (calculated by MaxChelator, https://​
somapp.​ucdmc.​ucdav​is.​edu) and after it subsequently 
undergone for denaturation measurements. Kinetics 
measurements were carried out with an isotherm program 
then finally denatured by heating up them with 0.3 K/
min up to 80 °C. MOPS buffer was used as a reference. 
The reference and sample vessels were equilibrated 
with a precision of ± 0.1 mg; this way we did not need 
to do any correction between vessels’ heat capacity. 
The first point of our analysis was the minimum of the 
heat flow change (ΔQinitial) after a single sharp peak 
which shows the mixing effect, and thus the curve was 
increased slowly to the maximum point (ΔQtop) (Fig. 1A). 
The exponential fitting resulted the time rate (k) of the 
peaks, the measurements were started in 5  min after 
reaching the thermal equilibrium between the vessels, 
but we used for the analysis the part of the curve after 
the mixing effect. Actin and gelsolin based molecular 
events were happened only in the first three hours then 
all curves decreased slowly possibly by the decay of ATP 
thus the most reasonable time duration of kinetics was 
analyzed in the first 10,800 s. All kinetic processes were 
terminated with heat denaturation assays. With the help 
of a two-point SETARAM peak integration setting, the 
denaturation calorimetric enthalpy was calculated from the 
area under the heat absorption curve, and then, the results 
[denaturation or melting temperature (Tm) and calorimetric 
enthalpy (ΔHcal) data of samples] were compared. This 
method is identical with the protocol as we applied in our 
previous study [64].

https://somapp.ucdmc.ucdavis.edu
https://somapp.ucdmc.ucdavis.edu
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