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Abstract
A series of Zr-based glasses has been obtained by rapid melt quenching and their thermal characteristics (Tg, Tx, Tl) were 
determined by DSC/DTA. Some of the most recognized glass forming ability (GFA) criteria were applied to predict the 
glass forming ability of the alloys and to study its dependence on the alloy composition. As a result, the best glass forming 
compositions among the studied alloys could be selected. It was found that as a general trend an increase of the Zr content 
results in Tx and ΔTx (= Tx − Tg) decrease. The determined liquidus temperatures of chosen compositions with substantially 
different ΔTx were found to vary relatively little. Therefore, it was concluded that the variation in the GFA of the studied 
alloys is mainly due to difficulties in the crystallization process, rather than to different stability of the melts.
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Introduction

Zr-based alloys are among the intensively studied multicom-
ponent metallic glasses [1–3]. The reasons for this interest 
are their good mechanical properties included high tensile 
strength, high bending strength, high fracture toughness, 
high hardness and fatigue strength, high impact fracture 
energy, good castability and cutting machinability [3–5] as 
well as high corrosion stability [6–8]. They are also known 
as easy glass formers and appropriate alloys to be prepared 
in a bulk amorphous form [9]. Thus, having the size in the 
centimeter-scale, bulk metallic glasses (BMG) allow being 
developed as good structural and functional materials [3, 
10–13].

The first Pd-based BMG, which belongs to such a group, 
was prepared at the beginning of 1980s by Turnbull. Later 
large number of BMG on the base of La, Mg, and Zr were 
developed at the end of the decade by the group of Inoue 
[14–16] and Johnson [2]. Zr-Al-TM system was also studied, 

showing a large supercooled liquid region. The multicompo-
nent alloys offer significantly larger glass forming ability due 
to their relatively lower critical cooling rate and bigger criti-
cal glass formation size in comparison to the binary systems 
investigated. The additional elements improve both, stabilize 
the liquid phase and prevent the crystallization process. The 
improvement of GFA in Zr-Al-Ni alloys could be related to 
an optimum atomic configuration achieved with the dissolu-
tion of Al and increased short-range packing density of the 
amorphous phase [17–19].

The glass forming ability is usually expressed by the max-
imum obtainable diameter of a fully amorphous ingot, called 
critical diameter [20]. However, the methods for the critical 
diameter determination are time and materials exhausting. 
Therefore, many papers were devoted to attempts to cor-
relate the GFA with the thermal characteristics of the alloys 
and already accepted criteria, such as temperature interval 
of supercooled liquid region ΔTx = Tx − Tg [1], reduced 
glass transition temperature Trg = Tg/Tl [21], α = Tx/Tl [22], 
γm = (2Tx − Tg)/Tl [23], γ = Tx/(Tl + Tg]) [24], K = (Tx − Tg)/
(Tl − Tx) [25], δ = Tx/(Tl − Tg) [26], and ω = (Tg/Tx − 2Tg)/
(Tg + Tl) [27]. Some of these criteria take into account the 
difficulties in the crystallization process of the glasses and 
others the stability (thermodynamic and rheological proper-
ties) of their melts [28–33].

Some of the amorphous alloys included in the present 
work have already been the subject of our previous stud-
ies, which mainly traced their crystallization behavior, 
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crystalline products (quasicrystalline and equilibrium crys-
talline phases) at different annealing conditions [34]. For 
the purpose of the present work a large series of similar in 
composition Zr-based amorphous alloys has been selected, 
all obtained under well-controlled and uniform quenching 
conditions, and on the base of determined thermal charac-
teristics Tg, Tx, Tl using known criteria their GFA has been 
predicted. Dependence of GFA on the composition of the 
glasses was sought, as well as the specific heat change ΔCp 
at glass transition temperature was determined for the whole 
series of zirconium glasses studied.

Experimental part

The alloy ingots were prepared by arc-melting the mixture 
of Zr (99.5%), Cu (99.9%), Ni (99.9%), Al (99.99%) and 
Ag (99.95%) in a pure argon atmosphere approx. 1.2 bar 
on a water-cooled copper substrate. Homogeneous alloys 
composition was achieved by 3 times remelting the master 
alloys. The alloys were then rapidly solidified by melt spin-
ning in a He atmosphere of 300 mbar to obtain ribbons with 
a thickness of 40 µm and width of 3 mm. The temperature 
of the melt was between 1100 and 1200 °C. Since oxygen 
contamination significantly affects the thermal stability [34], 
special care was taken to ensure comparable conditions for 
all ribbons produced.

The microstructure of the as-cast samples was character-
ized by X-ray diffraction (XRD) with Cu-Kα radiation (dif-
fractometer Siemens D 500, at a step of 0.05Θ and counting 
time 2 s/step). Thermal analysis was carried out by differ-
ential scanning calorimetry (Perkin-Elmer DSC7) and dif-
ferential thermal analysis (Perkin-Elmer DTA). Scanning 
rate of 10 K.min−1, sample mass of 15–20 mg and purified 
nitrogen purging gas were used for all thermal experiments.

Results and discussion

X-ray diffraction analysis reveals the amorphous character 
of all studied Zr-based alloys. The diffraction patterns of the 
amorphous alloys, shown in Fig. 1, are ordered according 
to their composition. Figure 1c shows XRD patterns of Zr 
alloys containing Ag and Au in their composition. For all 
studied alloys two clearly observed diffraction halloes with 
little difference in the position of their maximums could be 
detected. The differences in the positions of the diffraction 
maxima are minor due to the small differences in the overall 
glasses’ composition. Therefore, it can be concluded that the 
most frequently observed interatomic distances in the stud-
ied glasses are comparable (2.45 ± 0.04 Å). Nevertheless, 
some minor differences in the interatomic distance could 
be detected, e.g., Zr70Cu12Ni10.5Al7.5 glass is character-
ized with the smallest mean interatomic distance (2.41 Å), 
whereas Zr63.5Cu16Ni13Al7.5 with the largest one (2.48 Å). 
The observed minor variations can be explained with the 
difference in the alloy compositions and with the atomic 
radii of the metals constituting the alloys.

The DSC scans of the Zr-based amorphous alloys are 
presented in Fig. 2, as the glasses were again grouped in 
the same order as in Fig. 1. It is noteworthy that despite 
the relatively similar compositions of the glasses, there are 
significant differences in their thermal behavior. However, 
on all thermal curves, the glass transition is clearly detected, 
as well as the temperature range of the supercooled liquid 
(Tx ÷ Tg) is well determined. The last observation allowed 
relatively accurate definition of the region of supercooled 
liquid, as well as of the specific heat difference due to the 
glass transition, ΔCp. The enthalpies of crystallization were 
also reliably determined. All the above thermal characteris-
tics of the glasses are presented in Table 1.

Comparing the thermal characteristics of the studied 
Zr-based glasses and applying the simplest GFA criterion 
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Fig. 1   XRD patterns of Zr-based glasses, obtained by melt-spinning
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(ΔTx = Tx − Tg) [1, 35, 36] some important conclusions 
could be formulated.

In the first place, the general trend shows crystallization 
temperature, Tx, increase with the decrease in the Zr content 
of the glasses (with all the conditionality that the concentra-
tion of other metals also slightly changes), Fig. 3. Depending 
on the alloy composition the glass transition temperature, 
Tg, varies within a range of only about 30 °C (360–390 °C), 
while Tx differs significantly more (from 390 to 465 °C). 
Therefore, the different temperature range of the supercooled 

liquid (ΔTx = Tx − Tg) of the glasses is mainly due to their 
different crystallization temperatures, and to lesser extend to 
variations in their glass transition temperatures.

Another notable compositional dependence is related 
to the Zr glasses containing silver/gold. These amorphous 
alloys generally show higher Tg and lower Tx, i.e., smaller 
ΔTx, compared to the glasses without noble metal, Table 1. 
Figure 4 reveals the dependence of Tg and Tx on the Ag/Au 
content of the studied glasses. While Tg does not vary with 
the Ag concentration, the crystallization temperature of the 
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Fig. 2   DSC curves of the Zr-based glasses studied

Table 1   Glass transition (Tg) and crystallization (Tx) temperatures, liquidus temperatures (Tl) and specific heat change (ΔCp) at the glass transi-
tion, determined by DSC/DTA

Composition Tg, °C Tx, °C onset Tl,°C (liquidus) ΔCp 
J g−1 °C−1

Tx − Tg (Tx − Tg)/Tl (2.Tx − Tg)/Tl Tx/(Tg + Tl) Tg/Tl

Zr74.5Cu10Ni8Al7.5 358 389 – 0.380 31 – –
Zr72.5Cu11Ni9Al7.5 370 420 – 0.315 50 – –
Zr72Cu11.5Ni9Al7.5 365 441 – 0.42 76 – –
Zr71.5Cu11Ni10Al7.5 365 425 – 0.444 60 – –
Zr71Cu11.5Ni10Al7.5 355.6 420.5 – 0.395 64.9 – –
Zr70.5Cu11.5Ni10.5Al7.5 369 440 – 0.352 71 – –
Zr70Cu12Ni10.5Al7.5 371 446 – 0.367 75 – –
Zr69Cu12.5Ni11Al7.5 367.7 443 – 0.401 75.3 – –
Zr65.5Cu15Ni12Al7.5 391.6 440 – 0.38 48.4 – –
Zr63.5Cu16Ni13Al7.5 394 464 – 0.59 70 – –
Zr67.5Cu11Ni9Al12.5 386.5 458 – 0.567 71.5 – –
Zr70Cu11Ni9Al10 377 450 – 0.51 73 – –
Zr68Cu14Ni13Al5 369 421 – 0.35 52 – –
Zr67.5Cu6Ag6Ni11Al7.5 375 401 – 0.28 26 – –
Zr69Cu12Ag0.5Ni14Al7.5 367 440 – 0.385 73 – –
Zr68.5Cu12Ag1Ni11Al7.5 367 439 965.2 0.353 72 0.0582 0.633 0.379 0.517
Zr69.5Cu8Ag4Ni11Al7.5 370 395 995.8 0.22 25 0.0197 0.546 0.349 0.507
Zr68.5Cu11Ag2Ni11Al7.5 

(Tm = 1000 °C)
369 422 1004.8 0.414 53 0.0415 0.585 0.362 0.502

Zr68.5Cu11Ag2Ni11Al7.5 
(Tm = 1100 °C)

377 437 1004.8 0.465 60 0.0470 0.602 0.368 0.509

Zr68.5Cu11Ag2Ni11Al7.5 361.6 408 – 0.36 46.4 – –
Zr69.5Cu6Au6Ni11Al7.5 394 410 – 0.150 16 – –
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glasses decreases visibly with increasing the silver content. 
The last leads to the conclusion that the GFA of the studied 
Zr-based glasses deteriorates when the silver concentration 
is increased. The only glass with Au in its composition also 
reveals lower ΔTx, compared to the Zr glasses that do not 
contain precious metals. Thus, it can be summarized that 
the presence of precious metals in the Zr–Cu–Ni–Al glasses 
results in a GFA decrease. The comparison between the two 
glasses with the same composition (Zr68.5Cu11Ag2Ni11Al7.5) 
but vitrified by different melt temperatures (1000 and 
1100 °C) is also interesting. The melt, cooled from a higher 
temperature, leads to a glass with higher Tg and Tx compared 
to that vitrified from a lower temperature, the difference in 
Tx being greater. This reasonably results in a larger ΔTx 

for the glass obtained from the melt annealed at 1100 °C, 
which result can be explained by a better homogenization of 
the melt at the higher temperature and hence to a impeded 
nucleation of the crystalline phase(s).

Other dependence that can also be established form the 
thermal behavior of the studied Zr glasses (without Ag/Au) 
is related to alloys with the same or very similar Zr and Al 
content, but with varying Ni and Cu content. These glasses 
showed similar Tg and Tx values, and therefore comparable 
ΔTx value, Table 1.

Although the glass transition is a kinetic phenomenon 
strongly dependent on the heating rate, and ΔCp is a value 
at a particular temperature (Tg) it is worth noting the obser-
vation that glasses with large ΔTx are generally charac-
terized with larger ΔCp (> 0.35–0.50 J g−1 K−1) and the 
opposite, glasses with smaller ΔTx show also reduced ΔCp 
(< 0.3 J g−1 K−1). To confirm and clarify this fact, a separate 
systematic measurement of the absolute value of the specific 
heat at different temperatures, both in the alloys’ glassy state 
and as supercooled liquid, is necessary.

DTA analysis to higher temperatures of Zr-based amor-
phous alloys, showing very different ΔTx, was also carried 
out, Fig. 5. Besides, two glasses with the same composi-
tion (Zr68.5Cu11Ag2Ni11Al7.5) but solidified from different 
temperature of the melt were also analyzed. This study 
revealed the liquidus temperature of the alloys, Tl (Table 1), 
and thus allowed the GFA criteria ΔTx/Tl or (2Tx − Tg)/Tl, 
Tg/Tl, Tx/(Tg + Tl) related to the overall liquid phase stabil-
ity (both at undercooled state and at the equilibrium), to 
be also applied [23, 37]. There is an agreement between 
the result of the applied GFA criteria: glasses with a larger 
ΔTx follow a larger ΔTx/Tl, (2Tx − Tg)/Tl and Tx/(Tg + Tl), 
as well (Table 1). Some exception is observed only when 
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we apply the Tg/Tl criterion for glasses with similar Tg 
and Tl, but with a significant difference in Tx. Thus, 
Zr69.5Cu8Ag4Ni11Al7.5 alloy shows a better GFA compared 
to Zr68.5Cu11Ag2Ni11Al7.5 (Tm = 1000 °C), although ΔTx is 
significantly larger for the latter alloy.

Based on the thermal characteristics of the studied Zr-
based glasses, it can be concluded that the evaluated higher 
GFA of certain alloy compositions should be attributed 
mainly to their higher crystallization temperatures Tx, 
reflecting the crystallization resistance of the glass, than to 
the increased liquid phase stability.

Conclusions

The thermal characteristics (Tg, Tx, Tl) of a series of Zr-
based amorphous alloys, obtained by rapid quenching (melt 
spinning), were determined. The specific heat change at 
glass transition ΔCp was also determined. The alloys were 
obtained under the same well-controlled conditions of 
quenching (temperature of the melt, quenching disk size 
and velocity, He atmosphere), which fact allowed to search 
for a relationship between the compositional variations and 
thermal behavior of the glasses. From the obtained thermal 
parameters and using well accepted glass forming ability 
(GFA) criteria the compositions with the higher GFA were 
determined. An answer was also given to the question of 
what determines the high GFA for these glasses: the difficul-
ties in crystallization or the stability of the melt.
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