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Abstract
As a kind of gas turbine engines, turbofan engines have powered a number of aero-vehicles in aviation sector. The necessity 
of turbofan with higher energy efficiency has been greatly drawn attention since these are operating dependent to fossil fuels. 
In this study, energy and emission metrics of fifty-one mixed flow turbofan engines (MFTE) with different bypass ratio, 
overall pressure ratio and fuel flow are modeled with multi-regression (MR) method. The obtained models are subjected 
to metaheuristic approaches involving genetic algorithm (GA) and simulated annealing (SA) so as to decrease error of the 
models. According to MR findings, rated thrust of MFTEs is estimated with 1.4877 of minimum square error (MSE) whereas 
GA and SA make it lower as 1.3404 and 1.2524, respectively. On the other hand,  NOx emission index of MFTEs is predicted 
with relatively low coefficient of determination  (R2) as 0.8620. However, its accuracy is enhanced to 0.8633 (with GA) and 
0.8655 (with SA). Finally, exergy efficiency of MFTEs is estimated the highest model correctness with GA. Namely,  R2 of 
the model is computed as 0.9280 with GA and 0.9277 with SA. Without applying these methods, its  R2 is obtained as 0.9263 
with MR. When considering these outcomes, thanks to modeling and optimization methods, prediction of performance and 
emission indexes of mixed flow turbofan engines could be performed with lower error values. It is thought that the study 
helps in prediction of environmental effect regarding turbofan engines that are utilized at busy airports.
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Introduction

As the world population as well as the welfare level in 
the economy increase attain high level, it is projected that 
energy demand is enormously to be high. The needs such 
as electrical and heat energy depending on fossil fuel have 
come upper level due to rising population in the world [1]. 
When considering depletion hazard of petroleum reserves 
at close future as well as the raised energy consumption at 
17-fold in the last century [2], aviation sector could be sub-
jected to the operational limits unless novel technologies 
are applied to the systems used in this sector. It is thought 
that as emission mitigation policies become stricter, design 
and manufacturing limits may be rechecked whether these 
comply with environmental goals determined by authori-
ties [3]. According to IATA survey in 2018, the growth 
rate of civil aviation industry will attain to 3.5% rate for 
the next two decades, despite the fact that this prediction 
could deviate due to COVID-19 impact in momentarily 
[4]. When considering 2019 year, aircraft engines world-
wide emitted 915 million tonnes of  CO2 emission [5]. 
About 2.5% rate of global  CO2 emissions originate from 
aviation, but this does not cover overall contribution since 
aircraft engine emits different harmful gaseous except  CO2 
leading to the environmental effect. For this concern, the 
related people have tried to take several measures in their 
field where there exists system based on energy consump-
tion. Also, it is well-known that to alleviate environmental 
impact is partly depending on the awareness level of the 
society against to this concern. It is important that energy 
generation from any sources is performed with minimal 
environmental impact. Namely, one of main goals is to 
determine fuel or energy source leading to the lowest 
environmental impact. To meet the need of transporta-
tion of people with airline, the number of aircraft as well 
as flight have been increased day by day. This increment 
forces to be performed the goals regarding environmental 
sustainability. Therefore, new alternatives to fossil fuel 
have been searched to deal with harmful effects of aviation 
industry. In this context, for possible solution, biofuels to 
decrease dependent of fossil fuels have been suggested to 
use in aviation engines since these are promising mitiga-
tion of  CO2 emissions as well as gas turbine efficiency. 
For instance biofuels obtained from biomass such as the 
plants reduce  CO2 emission due to decreasing biomass 
that produces  CO2 [2, 6]. In addition to adverse impacts 
of harmful emissions on local air quality, environmental 
disasters such as flooding and increased wildfire triggered 
by global warming have become widespread in the world. 
When considering burning products of kerosene used by 
the aviation industry, these consist of  CO2, nitrous oxides, 
water vapor, carbon monoxide, unburnt hydrocarbons and 

particulate matter [7]. It is observed that air traffic volume 
has increased about 4% per annum, which could trigger 
operating costs to higher value due to possible shortage 
in the traditional fuel [7]. One of several ways to reduce 
emission concern in aviation is to enhance the gas tur-
bine efficiency. In this way, an important effort has been 
made by the engineers so far. Due to the increased avia-
tion activities, thereby fossil fuel demand, influences of 
these improvements do not completely have been seen 
in this sector. The reason why aviation emission is scru-
tinized is due to both environmental impact and human 
health. When aircraft operate on the ground, these emis-
sions affect local air quality vicinity of airport whereas 
has impact on global climate at cruise phase [8]. Effects of 
these emissions, especially  NOx, change according to the 
altitude where aircraft operate. At low altitude,  NOx leads 
to formation of ozone that damages human health whereas 
at high altitude ozone is depleted by  NOx, hence raising 
radiation [8]. Moreover, these aviation emissions have 
started to be debated in global extent since it is observed 
that harmful gaseous lead to health concerns of people 
that especially live to vicinity of airports. To decrease fuel 
consumption, thereby harmful effects from aircraft, there 
are a number of attempts such as using renewable energy, 
applying novelties to the engine and airframe, higher effi-
ciently air traffic management and new binding deal on 
emissions such as CORSIA regulated by ICAO [9]. More 
green environment and less fuel consumption by integrat-
ing different engineering areas have been hot topics of 
aviation sector. For this aim, the attempts have focused on 
improvement of energy conversion systems used in air-
craft. Main pillars of alleviation of environmental effect 
for aircraft are to increase aerodynamic efficiency such 
as lift/drag ratio, to improve engine efficiency with novel 
technologies, to replace kerosene with alternative jet fuels 
such as biodiesel and to design aero-vehicle in concept of 
more electric aircraft [7].

Conventional emission and environmental impact 
studies regarding gas turbine engines

Kroyan et al. [10] established multiple linear regression for 
estimation of fuel consumption depending on viscosity, den-
sity, and calorific content, which results in model success of 
 R2 = 0.993. The obtained model was applied to five different 
sustainable aviation fuels (SAF), which shows that SAF is 
promising potential in terms of environmental sustainabil-
ity. Balli and Caliskan [11] dealt with environmental effect 
of different auxiliary power units located in aft of aircraft. 
Among the APUs, GTCGP36-300 has the lowest total emis-
sion index, which could be attributed that it has the low-
est power. However, its environmental impact index (mPts 
 kWh-1) is determined relatively high with 49.23 mPts  kWh-1. 
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Dinc et al. [12] elaborated flight cycle of a turboprop engine 
including five phases point of view environmental effect. 
Although take-off phase has relatively the highest fuel con-
sumption, minimum environmental parameter and thereby 
minimum  CO2 price was found to be 73.08  kgCO2  day_
cycle−1 and 8.48 €  day_cycle−1, respectively due to having 
the lowest time in mode. Moreover, Sohret et al. [13] investi-
gated a thermo-environmental aspects of turboprop engine at 
different flight phases using five novel parameters. Accord-
ing to the authors, thermo-environmental function attains 
the highest with 0.338 kW per unit mPts at climb whereas it 
decreases to 0.23563 kW/mPts at cruise phase where the air-
craft spends the most of flight time. Furthermore, Balli et al. 
[14] compared effect of using  H2 on turbofan performance 
metrics with kerosene fuelled conventional system. The  H2 
fuelled system benefits lower fuel consumption by 63.83%, 
thereby lower environmental impact sacrificing slightly 
energy efficiency and specific thrust of the engine. Lastly, 
Aygun and Caliskan [15] addressed environmental and envi-
roeconomic modeling of two different families of turbofan 
engines. The model accuracy of global warming potential 
index is obtained as 0.9956 of  R2 for family 1 engines and 
0.9664 of  R2 for family 2 engines where bypass ratio and 
overall pressure ratio are considered as model inputs.

Optimization studies of emission and performance 
regarding gas turbine engines

When considering the literature, there are a number of the 
studies dealing on aircraft engine. It is tried that novel stud-
ies are addressed by choosing the papers directly related to 
the current study. Ekrataleshian et al. [16] dealt with tur-
bojet engine in terms of energetic and exergetic optimiza-
tion. By determining three variables such as turbine inlet 
temperature, compressor pressure ratio and Mach number, 
multi objectives optimization was performed. The TIT, CPR 
and Mach points giving maximum thermal efficiency with 
65.89% and minimum exergy destruction with 12.51 GJ/h 
are 1241.72 K, 22.91 and 0.792, respectively. Patel et al. [17] 
carried out multi-objective heat transfer search (MOHTS) 
algorithm to turbojet engine to determine minimum spe-
cific fuel consumption and maximum specific thrust and 
efficiency. Initially, each objective function is considered 
alone by comparing with genetic algorithm. When consider-
ing all objectives together, the obtained specific thrust drops 
from 1.1666 to 0.9499 kNs/kg (obtained by fuzzy method). 
Similarly, SFC increases from 0.0162 to 0.0225 kg/kNs. 
Fawal and Codal [18] assessed turbojet engine using sev-
eral objective functions such as maximum power, power 
density, ecological coefficient of performance (ECOP) and 
ecological function (ECOL). The authors stated that thanks 
to ECOP and ECOL conditions, optimum compression ratio 
and maximum cycle temperature ratio as well as the burner, 

turbine and nozzle size reductions could be achieved for civil 
applications. However, MP and MPD functions benefit SFC 
on supersonic conditions. Farahani et al. [19] performed 
effect analysis for turbofan engine by applying optimization 
technique called as teaching–learning-based optimization 
method (TLBO). In the study, altitude and Mach of flight are 
considered as variables. According to this, maximum exergy 
efficiency is obtained as 32.64% where altitude and Mach are 
11,236 m and 1.994, respectively. Lee and Sung [20] exam-
ined performance metrics of turbofan engine called GE90 
utilizing multi-objective particle swarm optimization. The 
analysis was performed without constraint and with con-
straints such as OPR and TIT. The authors expressed that 
for optimal solution, LPC PR remains low and HPC PR 
becomes high. However, HPC PR starts to diminish after 
specific thrust exceeds 160 Ns/kg. Kaba et al. [21] estimated 
thrust of turbojet engine, which different RPM values are 
known. For this aim, three mathematical models involving 
polynomial, Fourier and power expansion series were used. 
The P4 algorithm among all linear algorithms gives the best 
solution with the highest  R2 that is 0.9993. With nonlinear 
algorithm,  R2 of thrust modeling attends to 0.9996. Oruc 
et al. [22] modeled exergetic indexes of turboprop engine 
using cuckoo search algorithm. For this aim, six inputs 
including torque, power, gas generator speed, air&fuel 
mass flows and air to fuel ratio were used. Mean square 
error for EEF and ESI metrics were found as 4.327 ×  10–9 
and 5.1839 ×  10–9, which correspond 0.9999 of  R2. Piskin 
et al. [23] performed component matching and off-design 
calculations of turbojet by proposing hybrid ant colony and 
particle swarm optimization method. Thanks to the proposed 
algorithm, air mass flow difference between test measure-
ment and the optimized calculation decreases to 1.4% by 
characteristic curve and 0.7% by turbine map. Aygun and 
Turan [24] carried out modeling of several exergetic metrics 
of turbofan engine using the least square method and its 
optimized version. The author stated that the model accuracy 
of exergy efficiency increases from 0.9974 of  R2 (by LSM) 
to 0.9999 of  R2 (by optimized GA). The other metrics expe-
rienced enhancement by the proposed method. Moreover, 
Dinc [25] conducted optimization of loiter time and specific 
power regarding turboprop engine using single objective and 
multiple objectives genetic algorithm. The author expressed 
that loiter time and specific power experience relatively less 
improvement when considering more than one objective. 
Namely, when compared baseline operation, these increase 
14.2% and 9.7%, respectively, which have higher value if 
these are considered, separately. Demir [26] estimated the 
 CO2 emission in air transport based on flight and passen-
ger statistics using GA. Zhao and Zhang [27] developed a 
solution methodology based on neural network optimization 
including Levenberg–Marquardt-GA back propagation for 
planes to complete the landing process more safely.
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According to the literature, no studies about concentrat-
ing on the modeling of performance, emission and exergetic 
metrics for mixed flow turbofan engines have appeared to 
the best of the author's knowledge. This study differs from 
previous ones in several respects, which are (i) implement-
ing two different metaheuristic methods for enhancement 
of conventional modeling, (ii) modeling both emission and 
exergy metrics related to mixed flow turbofan engines on 
real data basis (iii) considering bypass ratio, overall pres-
sure ratio and fuel flow as inputs for modeling of the engine 
performance parameters. Main motivation of this study can 
be summarized as follows:

• To apply multi-regression method to rated thrust,  NOx 
emission index, exergy efficiency and wasted exergy ratio 
of MFTE

• To optimize coefficients of the model so as to minimize 
the model error with genetic algorithm and simulated 
annealing

• To compare the findings of conventional model and the 
proposed model regarding MFTEs

System description

Gas turbine engines have been main power tool for espe-
cially aero-vehicles due to their unique features such as high 
power to mass ratio and reliability compared with piston 
engines. Using turbofan engines in commercial aircraft has 
continued for last six decades. It can be recognized that the 
early version of those is Pratt Whitney JT3D used in Boeing 
707. To clearly understand types of turbofan engines could 
be possible with Fig. 1. Being a kind of commercial turbofan 
engines, mixed flow turbofan engines have powered regional 
aircraft as well as commercial aircraft for three decades. At 
early years which turbojets were applied to aero-vehicles, 
mixed flow turbofan engines were only used at military air-
craft whereas application area of these concepts have been 

extended to commercial aircraft by increasing their bypass 
ratio. Main difference from turbofan with separate flow is 
that fan air leaves the engine by mixing with hot air incom-
ing from core section through common exhaust assembly.

Figure 2 illustrates typical mixed flow turbofan engine 
with key components such as fan, low-pressure compres-
sor, high-pressure compressor, combustor, high-pressure 
turbine and low-pressure turbine. As mentioned before, in 
this study, specifications of fifty-one mixed flow turbofan 
engine, most of whose consist of series of AE3007 (Rolls-
Royce) and PW306-308, PW814-815 (Pratt&Whitney), 
BR700 (Rolls-Royce) as well as RB211 (Rolls-Royce) and 
Trend 772 (Rolls-Royce) were utilized to model their several 
parameters [29].

Figure 3 manifests design variables incorporating bypass 
ratio, overall pressure ratio and fuel flow according to fifty-
one engines, most of them have powered to regional jet air-
craft. As can be seen, bypass ratio of the engines changes 
between 4.05 and 5.7, whereas the mean BPR is 4.65. More-
over, overall pressure ratio varies between 15.8 and 36.33 
while fuel flow considered the engines is measured between 
0.301 and 3.139 kg  s-1. Mean values of OPR and FF regard-
ing MFTEs are 20.27 and 0.57 kg  s-1, respectively.

Figure 4 gives emission index of HC, CO and  NOx through-
out landing and take-off (LTO) cycle including idle, take-off, 

Fig. 1  Classification of turbofan engines according to design type (Adopted from [28])
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Fig. 3  Specifications of 
fifty-one mixed flow turbofan 
engines [29]
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climb-out and approach phases. It could be understood that 
among phases, EI  NOx is observed the greatest degree at take-
off phase whereas the biggest HC and CO emission indexes 
are measured at idle phase. Therefore, scrutinizing EI  NOx 
for take-off phase is of high importance. In this context, at 
take-off phase, EI  NOx of the MFTEs changes between 15.4 
and 35.36 g/kg fuel while EIHC and EICO vary between, 0 
and 2.27 g/kg fuel and 0 and 0.254 g/kg fuel, respectively.

Figure 5 shows how much fuel flow is consumed through-
out LTO cycle on all engine bases. As expected, take-off phase 
is the first in the highest fuel consumption. It is followed by 
climb-out phase. Idle phase has the lowest fuel usage. Namely, 
fuel flow is observed between 0.131 and 3.139 kg  s-1 at take-off, 
0.2527 and 2.53 kg  s-1 at climb-out, 0.0943 and 0.821 kg  s-1 at 
approach and 0.0377 and 0.27 kg  s-1 at idle phase.

Fig. 4  Emission indexes of 
fifty-one MFTEs at LTO phases 
[29]
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Lastly, total emission (g) including HC, CO, NOx,  CO2 
emissions and total fuel consumption (kg) of mixed flow tur-
bofan considered in the present study are addressed for LTO 
cycle in Fig. 6. As can be recognized, the highest emission 
values belong to CO emission except  CO2, which changes 
between 1695 and 10,606 g. As for  NOx emission, it varies 
between 1050 and 17,668 g according to the engine. Moreo-
ver, HC emission is the lowest, varying between 1 and 1048 g 
throughout LTO cycle. On the other hand, total fuel con-
sumption over LTO phases change between 127 and 1085 kg 
whereas total  CO2 emission varies between 401 and 3428 kg 
according to the engine types.

Solution methodology

Modeling parameters

Rated thrust

To propel aircraft for meeting the need of force at flight phases, 
especially take-off, the engine thrust is fundamental power 
source. Namely, it benefits the aero-vehicle to overcome drag 
force occurred from the air acting on its surface. For mixed 
flow turbofan engines, it can be expressed as follows [28]:

where f  is fuel to air ratio, whereas � represents bypass ratio.

NOxemission index

It can be computed with two ways, which are directly meas-
urement from engine or empirical formula [30]. In this 

(1)𝜏 = ṁ
a

[

(1 + f + 𝛼)V
e
− (1 + 𝛼)V

i

]

study, ICAO data were utilized rather than improving the 
model depending on fuel flow. EI  NOx can be written as:

where ṁf is fuel flow injected to the combustor.

Exergy efficiency

The term exergy diagnoses the limits of maximum useful 
work obtained from energy conversion system such as gas 
turbine engines [31–33]. To calculate it, second law of ther-
modynamics is implemented by considering the surround-
ings conditions in where the system operates. For turbo-
fan engines, the useful work is calculated by multiplying 
air velocity with thrust. Namely, exergy efficiency is ratio 
of useful or output power to input power imparted to the 
system.

where � and Vi denote rated thrust and inlet velocity of air, 
respectively. �f is fuel exergy grade, its value is 1.06789. 
Also, LHV represents lower heating value which is 42800 kJ  kg-1 
for kerosene.

Wasted exergy ratio

It can be calculated from ratio between wasted exergy and 
input exergy. It could be expressed as [31–33]

(2)EINOx =
NOx

ṁf

(3)𝜂ex =
Ėxout

Ėxin
=

𝜏 ∗ Vi

ṁf ∗ LHV ∗ 𝛾f

Fig. 6  Total emission and total 
fuel consumption of fifty-one 
MFTEs at LTO phases [29]
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Table 1 shows minimum and maximum value of input 
data and the modeling parameters throughout fifty-one 
mixed flow turbofan engines.

The multiple linear regression model

Multiple linear regression model (MLRM, hereafter is called 
MR) is a statistical estimation tool that provides explanation 
of a dependent variable with more than one independent 

(4)

WExR =
∑

Ėxeng
waste

/

∑

Ėxeng
in

=
(

∑

Ėxeng
in

−
∑

Ėx
eng

useful
−
∑

Ėx
eng

dest

)

∕
(

ṁ
f
∗ LHV ∗ 𝛾

f

)

variable. In the literature, there are many studies on the 
application of the MLRM method on aviation problems 
[34]. Thanks to the model, the parameters to be used in the 
estimation are determined and the effect of the independ-
ent variables on the dependent variable is found. The least 
squares method is used to compute the coefficients in the 
MR method. In this way, it is aimed to minimize the dif-
ference between estimated values and actual values [35]. A 
classical multiple regression model is expressed in Eq. 5.

In Eq. 1, “ �
0
 ” refers the regression coefficient, “ �i ” repre-

sents the prediction coefficient of i. independent variable and 
“ε” also states the error term. One of the most important out-
puts in multiple regression analysis is the coefficient of deter-
mination ( R2 ). This value shows the ratio of the independent 
variables explaining the dependent variables and takes values 
between 0 and 1. The fact that the coefficient of determination 
is close to “0” indicates that the independent variables can-
not adequately explain the dependent variables. Furthermore, 

(5)Yi = �0 + �1 ∗ X1 + �2 ∗ X2 +⋯ + �n ∗ Xn + �

Table 1  Ranges of input data and modeling parameters

Input-data Minimum Maximum

Bypass ratio 4.05 5.7
Overall pressure ratio 15.8 36.33
Fuel flow ( ṁf)/kg  s-1) 0.301 3.139
Modeling parameters Minimum Maximum
Rated thrust/kN 26.87 320.3
EI  NOx/g  kg-1 fuel 15.4 35.56
Exergy efficiency/% 25.78 32.05
Wasted exergy ratio/% 67.94 74.21

Fig. 8  Initial population deter-
mination mechanism

Fig. 7  Solution representation used in Genetic Algorithm
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this coefficient is close to “1” indicates that the model is quite 
good in explaining the dependent variable [35]. The following 
formula is used to determine the R2 value.

Genetic algorithm

Genetic Algorithm is a metaheuristic solution method devel-
oped by John Holland in 1975, inspired by the evolutionary 
process in nature [36]. In the algorithm, an initial population 
is formed based on different solutions and the algorithm pro-
gresses with iterative steps. In each step, the initial solution is 
improved by using certain solution mechanisms and the opti-
mal solution is tried to be reached. In Genetic Algorithm, there 
are many parameters that make up the solution mechanism and 
affect the solution quality. The representation of the solution, 

(6)
R2 =

�
1
∗
�

∑

Y
i
∗ X

i
−

∑

X
i
∗
∑

Y
i

n

�

+ �
2
∗
�

∑

Y
2
∗ X

2
−

∑

X
2
∗
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Y
2

n

�

+⋯ + �
n
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∑
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∑
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�
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�2

the selection of new individuals, the crossover and mutation 
operators are the parameters that must be determined in the 

Fig. 9  The tournament selection mechanism used in the algorithm

algorithm [37]. Information on the determination of these 
parameters is given in the following sections.

Solution representation

The structure of chromosomes and genes in the population 
may vary depending on the type of problem. Binary, integer, 
float and permutation are some of the solution representa-
tions used in the algorithm [37]. Float solution represen-
tation is used in this article and the related chromosome 
structure is shown in Fig. 7 is also shown.
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The chromosome in Fig. 7 consists of five genes and each 
gene corresponds to the coefficients in the prediction model.

Generating the initial population

The initial population is an important parameter for the 
performance of the algorithm. Thanks to a good initial 
solution, the solution quality of the algorithm increases 
and it can reach the optimal in a shorter time. In the arti-
cle, the estimation model obtained as a result of Multiple 
Regression Analysis was taken into account while deter-
mining the initial population. Starting from the coeffi-
cients in the estimation model, the initial population was 
determined by using the following Eq. 7.

where ‘ranint’ denotes random integer.
The starting population generated from the above for-

mulation is shown in Fig. 8.

New population selection mechanism

In Genetic Algorithm, the new heap selection mechanism 
is used to transfer the strong individuals in the population 
to the next generations. Proportionate reproduction, rank-
ing, tournament, and steady state or genitor are some of 
the selection mechanisms used in the GA.

(7)P�i,j = �j + �
ranint
j

∗ Rnd

The tournament selection mechanism is used in the algo-
rithm developed in this article, since it prevents untimely 
convergence and is effective in minimization problems [37]. 
The solution steps of the algorithm are shown in Fig. 9.

In the figure, three different individuals from the old 
generation were randomly selected for each individual in 
the new generation and the chromosome with the mini-
mum fitness value was transferred to the next generation.

Crossover

Different chromosome families are produced by using the 
crossover operator in the genetic algorithm in order to scan 
the solution space more broadly and to avoid the local opti-
mum. In this article, the PMX (Partially Mapping Crossover) 
operator is used for the crossover operation [37]. The PMX 
crossover mechanism is shown in Fig. 10.

Mutation

The mutation process is employed in the genetic algorithm 
to provide diversity and increase the quality of the solution. 
Thanks to the mutation process, while obtaining new solu-
tions, the copying of previous solutions is prevented. Thus, 
unexplored new solutions are found and better quality and 
even optimal solutions are reached faster. The mutation is 
carried out according to a certain acceptance probability in 
the genetic algorithm [38]. In order to concentrate on quality 

Fig. 10  The crossover mechanism used in the algorithm
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Fig. 11  Simulated Annealing Algorithm
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solutions, changing the genes in the chromosome according 
to a certain acceptance probability is called mutation in the 
genetic algorithm. Different mutation operators can be used 
according to the problem type and solution representation. In 
this article, the mutation process is performed by changing the 
value of the randomly selected gene in the chromosome [37].

Fitness function

The fitness function is used to determine whether the solu-
tions in the chromosomes meet the problem constraints and 
how close they are to the determined objective [37]. In this 
article, the error due to estimation is tried to be minimized. 
The fitness function used in the article is shown in Eq. 8.

where ‘atae’ means average total absolute error. Moreover, 
Yi and Y ′

i
 represent actual and estimated values of ith depend-

ent variable.

Simulated annealing

The Simulated Annealing algorithm is a metaheuristic algo-
rithm developed by Kirkpatrick et al., in 1938 [39]. The 
development of the algorithm was inspired by the physi-
cal annealing process of solids. The algorithm, which has a 

(8)min {atae} → atae =

∑n

i = 1

�

�

�

Y
�

i
− Yi

�

�

�

n

Fig. 12  Real and prediction of 
rated thrust and the differences 
between them
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stochastic search method, acts iteratively and various solu-
tion mechanisms are used to improve the solution quality in 
each iteration. Quality solutions are carried over to the next 
iteration to improve the solution. Bad solutions, on the other 
hand, are accepted according to certain acceptance prob-
ability and transferred to the next iteration in order not to 
get stuck in the local optimum. Boltzmann probability factor 
P = e(−Δ∕T) is used to determine this acceptance probability.

The Simulated Annealing algorithm is frequently utilized 
in optimization problems because it can use the information 
and scan the solution space well. In this article, the esti-
mation equation obtained by multiple regression analysis is 
employed in the initial solution of the Simulated Annealing 

algorithm, as in the genetic algorithm [37]. The Simulated 
Annealing algorithm developed for the problem is shown in 
Fig. 11 [40].

Results and discussion

This section includes real and prediction values of perfor-
mance and energy indicators of fifty-one mixed flow turbo-
fan engines (MFTEs) with three different approaches such as 
multi-regression, genetic algorithm and simulated annealing. 
In this study, the engines except three ones, have moderate 
thrust ranges answered the needs of regional aircraft. To 

Fig. 13  Real and prediction of 
 NOx emission index and the 
differences between them
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establish model of the engine parameters, bypass ratio, over-
all pressure ratio and fuel flow are selected as independent 
variable that are mentioned above.

Figure 12 presents rated thrust of mixed flow turbofan 
engines at take-off phase. As can be seen in, with all three 
methods, the converge to real thrust values exists with high 
accuracy shown in Fig. 12a. Real rated thrust of the MFTE 
changes between 26.87 and 320.3 kN whereas the predicted 
thrust is computed to change between 25.93 and 319.89 kN 
by the MR technique. Being one of metaheuristic method, 
GA estimates thrust values to vary between 26.16 and 320.3 

kN while thanks to SA, it is found between 26.32 and 320.4 
kN.

When comparison is made between these methods, the 
mean difference between real and prediction thrust occurs 
the lowest at SA approach with 0.7471 kN. It is followed by 
GA with 0.8045 kN. As for multi-regression method, it gives 
the biggest difference with 0.8998 kN. When considering 
optimization enhancement, thanks to metaheuristic methods, 
the model error could be minimized.

Figure 13 shows another important parameter that is 
 NOx emission index (EI  NOx) at take-off phase. Aircraft 

Fig. 14  Real and prediction of 
exergy efficiency and the differ-
ences between them
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 NOx emission consists of NO and  NO2, related to engine 
power. The higher the power, the higher the  NOx, whereas 
it holds for vice versa for CO and HC emissions. Therefore, 

modeling  NOx emission index at high power such as take-
off and cruise is the one of main motivations of the study. 
According to Fig. 13, real EI  NOx of MFTE changes between 

Fig. 15  Real and prediction of 
wasted exergy ratio and the dif-
ferences between them
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Table 2  The errors and 
correlation of coefficient 
regarding rated thrust and EI 
 NOx

Rated thrust EI  NOx

MR GA SA MR GA SA

MSE 1.4877 1.34041 1.2524 2.9766 2.9497 2.9025
MAE 0.8998 0.80455 0.7471 1.4642 1.4530 1.4383
nMSE 0.000605 0.000544 0.000508 0.00749 0.00746 0.00736
R2 0.99957 0.99961 0.99964 0.8620 0.8633 0.8655
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15.4 and 35.6 g/kg fuel while prediction values obtained 
by MR method remain between 17.88 and 33.28 g/kg fuel. 
Moreover, GA estimates EI  NOx of the engines between 
17.77 and 33.17 g/kg fuel whereas with SA approach, it is 
found between 17.78 and 33.20 g/kg fuel. To clarify the 
differences between real and predicted EI  NOx, Fig. 13b is 
plotted the EI  NOx difference according to each engine. In 
this context, the mean difference changes with respect to the 
method. The lowest mean difference belongs to SA tech-
nique with 1.4383 g/kg fuel whereas GA slightly obtains 
higher difference with 1.4530 g/kg fuel. As expected, the 
highest difference is obtained with 1.4642 g/kg fuel by MR 
method.

Figure 14 illustrates modeling of exergetic parameters 
regarding fifty-one MFTEs. Initially, real exergy efficiency 
of the engines is observed to change between 25.78% and 
32.05%. However, the predicted ExEFF of the engines 
throughout the MR method varies between 26.16% and 32% 
whereas the GA method predicts ExEFF varying between 26 
and 32.05% whereas with SA, it is found to remain between 
25.95% and 32.04%. To look the results closer, Fig. 14b 
gives the difference real and predicted ExEFF on the engine 
basis. Contrast to the previous analyses, GA method pro-
vides the lowest the mean difference with 0.3259% whereas 
it is followed by SA approach with 0.3264%. At the same 
way, the highest difference happens with MR method with 
0.3619%. It could be inferred that metaheuristic methods 
could change superiority according to each other; however, 
these benefits to improve conventional modeling methods.

Lastly, wasted exergy ratio of the MFTEs is given in 
Fig. 15. It is recognized that real WExR changes between 
67.94% and 74.21% while the estimated WExR vary 
between 67.99% and 73.83% by MR method. The pre-
dicted values of WExR are found between 67.94% and 
73.99% when implementing GA technique whereas it is 
seen that these change between 67.81% and 74.04% by 
SA approach. On the other hand, there is relatively low 
difference between the real and predicted WExR shown in 
Fig. 15b. Namely, it is calculated that the mean difference 
becomes 0.3619% by MR, 0.3258% by GA and 0.3404% 
by SA.

To delicately evaluate the several findings of model, 
some error values as well as coefficient of determination 
 (R2) are computed for modeling of the engine parameters. 

According to Table 2, the model errors of rated thrust and EI 
 NOx by multi-regression are improved at the highest degree 
by applying simulated annealing. Namely, minimum square 
error decreases from 1.4877 (obtained by MR) to 1.2524 
(obtained by SA) whereas  R2 of the thrust modeling attains 
from 0.99957 to 0.99964. Furthermore, EI  NOx modeling is 
obtained relatively lower accuracy. This situation shows that 
EI  NOx depends more variables than rated thrust, namely 
this factor could be type of combustor. In this regard, MSE 
of the EI  NOx modeling diminishes from 2.9766 to 2.9025 
while its  R2 changes from 0.8620 to 0.8655 due to imple-
mentation of SA technique.

Table 3 presents the model errors pertinent to exergy effi-
ciency and wasted exergy ratio of the MFTEs. In these models, 
genetic algorithm improves findings of multi-regression more 
when compared with SA method. Model of exergy efficiency 
has 0.2044 of MSE by MR method whereas thanks to GA it 
poses the lower MSE with 0.1998. Namely,  R2 of the exergy 
efficiency modeling increases from 0.9263 to 0.9280. Lastly, 
MSE of model of wasted exergy ratio regarding the MFTE 
diminishes from 0.2041 to 0.2008 owing to implementation of 
GA. Moreover,  R2 of the WExR varies from 0.9265 to 0.9276 
thanks to genetic algorithm method.

Conclusions

Modeling of aircraft engine parameters showing energy 
efficiency and environmental impact has been drawn atten-
tion for scientists since alleviating aircraft emissions has 
become a hot topic for across the world. In this study, multi-
regression is performed regarding performance, emission 
and exergy metrics of fifty-one mixed flow turbofan engines 
while considering their bypass ratio, overall pressure ratio 
and fuel flow as independent variables. Moreover, the mod-
els obtained by MR method are exposed to metaheuristic 
techniques such as genetic algorithm and simulated anneal-
ing. After that, the model findings regarding the engine 
parameter are compared with each other. For mixed flow 
turbofan engines, modeling of energy, emission and exergy 
parameters are performed at take-off condition where fuel 
flow and  NOx emission index emerge relatively higher. Main 
findings of the present study could be ranked as follows:

Table 3  The errors and 
correlation of coefficient 
regarding exergy efficiency and 
wasted exergy ratio

Exergy efficiency Wasted exergy ratio

MR GA SA MR GA SA

MSE 0.2044 0.1998 0.2012 0.2041 0.2008 0.2015
MAE 0.3619 0.3259 0.3264 0.3615 0.3258 0.3601
nMSE 0.000256 0.000252 0.000253 3.968 ×  10–5 3.891 ×  10–5 3.935 ×  10–5

R2 0.9263 0.9280 0.9277 0.9265 0.9276 0.9270
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• With knowing of bypass ratio, overall pressure ratio and 
fuel flow of mixed flow turbofan engines, rated thrust, 
exergy efficiency and wasted exergy ratio of MFTEs 
could be estimated higher fidelity than  NOx emission 
index regarding MFTEs. It could be partly attributed that 
EI  NOx is affected from environmental condition, type of 
combustor and the engine age.

• It is observed that to apply metaheuristic methods to 
improve conventional regression method benefits to the 
model accuracy. Namely, thanks to GA and SA meth-
ods, the model error decreases when compared with 
multi-regression method for each parameter.

• Among the MFTE metrics,  R2 of rated thrust is mod-
eled at the highest accuracy, which is more than 0.999 
by each techniques.

• Normalized minimum square error of rated thrust of 
MFTEs experiences decrement from 0.000605 (by 
MR) to 0.000508 (by SA). Similarly, nMSE of EI  NOx 
diminishes from 0.00749 to 0.00736 thanks to imple-
mentation of metaheuristic method.

• It is comprehended that exergy efficiency and wasted 
exergy ratio considerably depend on the determined vari-
ables. Namely,  R2 of ExEFF and WExR is computed as 
0.9280 and 0.9276, respectively.

• For  NOx emission index, if type of combustor type as a 
variable could be added to modeling of EI  NOx, its  R2 
could be enhanced.

When considering the outcomes obtained from the cur-
rent analyses, environmental effect and the engine efficiency 
for mixed flow turbofan engines that are utilized most of 
regional jet aircrafts could be estimated by knowing their 
three specifications with multi-regression methods. Thanks 
to several metaheuristic techniques, the model error of these 
engine metrics could be minimized. As a next study, aircraft 
emissions of mixed flow turbofan engines for all LTO phases 
could be predicted by machine learning approach. Also, the 
applied methods in this study could be implemented to other 
types of gas turbine engines so as to estimate emissions val-
ues. Lastly, HC and CO emissions regarding MFTEs can 
be estimated several phases such as taxiing, approach and 
landing where these emissions are more dominant compared 
with take-off phase.
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