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Abstract
Nanostructurization-driven responses in calorimetric heat-transfer phenomena are compared for glassy arsenoselenides 
at different levels of their molecular network organization, namely in high-polymerized g-As5Se95 and low-polymerized 
g-As55Se45, employing multifrequency temperature-modulated DSC-TOPEM® method complemented with Raman scatter-
ing microspectroscopy. It is shown that high-polymerized network composed of AsSe3 pyramids interlinked by Se chains 
with small number of Se8 molecular units decoupled from this network prevails in melt-quenched and nanomilling-derived 
g-As5Se95. Transition to more polymerized network due to incorporation of destroyed Se8 molecules into glass backbone 
occurs in this glass under nanostructurization. As a result, nanostructurization-driven calorimetric response in g-As5Se95 
dominates by size-induced glass-transition temperature depression. The low-polymerized structure of g-As55Se45 is built 
of As–Se network enriched with tetra-arsenic selenide molecular units decoupled from this network. Molecular-to-network 
transition owing to nanomilling-driven destruction of these cage molecules and their incorporation into newly polymerized 
glass-forming backbone occurs in g-As55Se45 resulting in strong increase in calorimetric glass-transition temperature.
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Background

Nanostructured materials are distinguished by great variety 
of size-dependent phenomena which play a pivotal role in 
the majority of their practical applications [1]. Thus, being 
transferred to a nanoscale level evolving agglomerates of 
atoms and/or atomic groups composing nanoparticles, 
these nanoscopic materials demonstrate strong propensity 

to multiphase occurrence, modifying essentially calorimet-
ric responses from conventional heat-transfer phenomena 
[1–3]. As a rule, clear reduction trend dominates in charac-
teristic interphase transition temperatures in nanostructured 
crystalline materials below some critical nanosizes, when 
one of the metastable phases becomes thermodynamically 
more favorable over others [3–7].

The similar trend is character for amorphous polymeric 
substances, which typically reveal notable depression trend 
in glass-transition temperature Tg when being prepared as 
thin and ultra-thin (having a few nm in thickness) films 
[8–12].

However, in some amorphous materials belonging to 
molecular network chalcogenide glass-formers [13, 14] such 
as melt-quenched glassy arsenoselenides g-As-Se possessing 
structural conformations with different degrees of polym-
erization [15, 16], the calorimetric response on transferring 
to nanoscale is expected to be more complicated because of 
possible effect from nanostructurization-driven molecular-
to-network transitions (as was also in the case of isotypical 
glassy arsenosulphides g-As–S [17, 18]). Stable low-polym-
erized (preferentially molecular-type) and high-polymer-
ized (preferentially network-type) atomistic structures in 
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g-As–Se subjected to nanostructurization through high-
energy mechanical milling were refined with a help of X-ray 
powder diffraction (XRPD) analysis [19]. It was shown that 
cage-like molecular entities stabilized initially in melt-
quenched g-As–Se were merely destroyed under high-energy 
mechanical milling-driven nanostructurization facilitating 
formation of more polymerized chain-like network struc-
tures, this process being referred to as re-amorphization 
[20]. The objective of the current research is to compare 
most plausible nanostructurization-driven responses in 
the glass-transition region of these arsenoselenide glasses 
revealed at principally different levels of their molecular net-
work arrangement, namely in high-polymerized g-As5Se95 
and low-polymerized g-As55Se45 specimens, employing 
the multifrequency temperature-modulated DSC-TOPEM® 
method complemented with microstructural characterization 
using the Raman scattering (RS) microspectroscopy.

Materials and methods

The bulk samples of glassy g-As5S95 and g-As55S45 were 
prepared from high-purity elemental precursors (As and 
Se of 5 N purity) employing conventional melt quenching 
technological route, that is rapid cooling of the glass from 
melt-liquid state [13]. The melt-rocking operation was used 
to prepare homogeneous alloys (as was justified by Lucas 
et al. [21]), avoiding necessity of extra-long homogeniza-
tion stabilizing these glasses from very unfavorable verti-
cal position in the furnace [22]. The sealed ampoules with 
elemental precursors taken in the ratio corresponding to 
As5S95 and As55S45 compositions were heated in a rocking 
furnace up to 650 °C in 6 h and then homogenized at this 
temperature for 10 h. At the finishing stage, the ampoule was 
cooled down to 500 °C and finally quenched in a water. To 
eliminate mechanical strains appeared in bulky material after 
rapid cooling, the just-synthesized glasses were annealed at 
120 °C for 1 h. The ingots extracted from ampoules were 
amorphous, as it followed from the XRPD analysis, conch-
like fracture and IR transparency of freshly prepared cut 
sections. The room temperature densities of g-As5S95 and 
g-As55S45 samples determined by the Archimedes displace-
ment in ethanol using the Mettler Toledo balances were 
(4.310 ± 0.005) g cm−3 and (4.447 ± 0.005) g cm−3, respec-
tively, in full agreement with the known atomic densities 
of compositionally similar glassy counterparts from binary 
As-Se system [15, 16].

The melt-quenched bulk chalcogenide glasses of the 
above chemical compositions (hereafter referred to as 
unmilled samples) were subjected to nanostructurization by 
high-energy mechanical milling (nanomilling) in a dry mode 
using Pulverisette 6 mill operated at protective Ar atmos-
phere and 500 min−1 rotational speed. This procedure was 

performed for 60 min in 250 mL tungsten carbide cham-
ber loaded with 50 balls (each having 10 mm in diameter), 
using ~ 3 g of coarse-grained glass sieved under 200 μm. 
The amorphous state of the samples was not changed 
under nanomilling, as it follows from diffuse peak-halos 
in their XRPD patterns [19, 20]. The fine-grained pow-
dered substance was finally compressed in stainless steel 
die (under ~ 0.7 GPa) to produce the disc-like pellets (hav-
ing ~ 6 mm in diameter and ~ 1 mm in thickness) most suit-
able for further microstructural characterization research.

Calorimetric thermo-analytical measurements were per-
formed employing multifrequency temperature-modulated 
DSC-TOPEM® with DSC-1 calorimeter (Mettler Toledo, 
Switzerland), as described in more details elsewhere [17, 
18]. In this method, stochastic temperature modulations are 
superimposed on underlying rate of DSC scans, resulting 
in frequency dependent and independent phenomena [23]. 
This provides more information on thermodynamic stability 
of the revealed phases. The DSC-TOPEM® instrument was 
equipped with FRS5 + sensor and HT100 (Huber, Germany) 
intracooler, the STAR​e ver. 13a software being used to con-
trol experimental conditions and process the data. The calo-
rimeter was multi-point calibrated using In and Zn standard 
probes. The tested samples (ca. 10–15.0) were encapsulated 
in sealed 20 μL Al pans kept in protective N2 atmosphere, 
and scanned at the rate of 1.0 K min−1 stochastically modu-
lated in pulses between 15 and 40 s, the pulse height being 
1 K. The evaluations were adjusted using sapphire reference 
curve, the width and shift of calculation window being 60 s 
and 1 s, respectively.

The detected calorimetric events were parameterized 
using the DSC-TOPEM® profiles presenting temperature 
variations of non-reversing (HFnrev) and reversing (HFrev) 
heat flow in the heating run, each measuring protocol being 
averaged in triplicate. The reversing thermal effects, resulted 
from second-order phase transitions such as glass transition 
[24], were parameterized by heat capacity step-like jump 
(ΔCp) allowing characteristic glass-transition temperatures 
determination in onset (Tg

onset) and mid-point (Tg
mid) presenta-

tion [24, 25]. The non-reversing thermal effects, connected 
with enthalpy relaxation in the glass-transition region dur-
ing heating run, were parameterized by specific enthalpies 
difference ΔH [17, 25].

Microstructural nature of nanostructurization-driven 
transformations in the glass was identified with micro-
Raman spectroscopy using the Horiba Xplora spectrom-
eter equipped by CCD detector operated at room tempera-
ture. The CW 785 nm laser of 90 mW output power was 
employed for excitation, the 10% power option being used 
to avoid photostructural effects. Other measurement options 
applied were as follows: × 100 objective, 1800 1 mm−1 grat-
ing, 500 μm hole, and 50 μm slit. The spectral resolution was 
maintained at around 2 cm−1 and spatial resolution was near 
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2 μm. A number of scans were chosen in dependence on the 
surface of pelletized glass samples. Numerous scans on the 
entire surface were performed to be sure that RS spectra 
processed with the Horiba LabSpec software were reason-
ably identical. The milled and unmilled samples were com-
pared through normalization by matching spectral areas in 
the region of interest. The detected RS bands were identified 
using the known data for numerous glassy analogs [26, 27].

Results and discussion

Thermodynamic heat-transfer responses were detected in 
the pellets of arsenoselenide glasses by multifrequency 
DSC-TOPEM® method. The temperature-modulated DSC-
TOPEM profiles showing variation of reversing (HFrev) and 
non-reversing (HFnrev) heat flow in the bulky melt-quenched 
(unmilled) and nanostructurized (milled, viz. subjected to 
high-energy mechanical milling) g-As5Se95 and g-As55Se45 
samples are depicted on Figs. 1, 2, respectively, the calori-
metric parameters derived from these curves being gathered 
in Table 1.

Under heating run, the principal endothermic thermal 
alteration event in the studied substance represents glass 
transition. In modulated DSC-TOPEM profiles of unmilled 
g-As5Se95 sample depicted on Fig. 1a, the characteristic 
step-like jump supplemented by small peak is revealed in 
the temperature behavior of reversing (HFrev) heat flow near 
the glass-transition region with heat capacity variation ΔCp 
approaching ~ 0.14 J g−1 K−1, while distinct peak with spe-
cific enthalpies difference of ΔH ~ 3.32 J g−1 is observed 
in non-reversing (HFnrev) heat flow dependence shown 
on Fig.  1b. The similar calorimetric thermal alteration 
responses are character for other families of chalcogenide 
glasses undergoing physical aging [28, 29].

An evident depression in the glass-transition temperature 
Tg is observed in modulated DSC-TOPEM profiles of this 
g-As5Se95 sample after nanomilling, and this trend being 
accompanied by increase in the DSC-TOPEM peak ampli-
tude. As it follows from Table 1, the Tg

onset value is reduced 
in milled g-As5Se95 on 2.6 °C (from 69.3 to 66.7 °C), while 
specific enthalpies difference ΔH derived from temperature 
variation of non-reversing (HFnrev) heat flow is enriched on 
more than 16% (reaching as high as 3.86 J g−1). Noteworthy, 
the glass-transition width defined from temperature depend-
ence of reversing (HFrev) heat flow on Fig. 1a for g-As5Se95 
samples nanostructurized by high-energy mechanical mill-
ing does not change essentially.

Thus, milling-driven nanostructurization of chalcoge-
nide glasses possessing highly polymerized network (such 
as under-stoichiometeric g-As5Se95) prevails by the known 
effect of size-induced glass-transition temperature Tg depres-
sion, which has been extensively studied from the mid 1990s 

[8–12]. However, this calorimetric heat-transfer phenom-
enon is cardinally changed in case of glasses having more 
irregular molecular-like structure (such as over-stoichiomet-
ric g-As55Se45). The bulk glass of this composition derived 
by melt quenching shows similar responses (albeit more 
reduced ones in modulated DSC-TOPEM profiles) within the 
glass-transition region, particularly, the characteristic step-
like jump without accompanied peak in reversing (HFrev) 
heat flow on Fig. 2a with ΔCp ~ 0.11 J g−1 K−1 (Table 1) 
and distinct endothermic peak in non-reversing (HFnrev) heat 
flow on Fig. 2b with ΔH ~ 5.57 J g−1. The value of Tg

onset tem-
perature for this unmilled glass (g-As55Se45) defined from 
reversing curve occurs to be 134.6 °C (Table 1), and this 
value being in an excellent agreement with reduced glass-
transition temperatures in the As-rich arsenoselenide glasses 
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tion of reversing HFrev (a) and non-reversing HFnrev (b) heat flow in 
unmilled (black line) and milled (red line) g-As5Se95
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ascribed to variance of different molecular tetra-arsenic sele-
nide species (such as As4Se4, As4Se3, As4) [16].

Under transition to more polymerized structure of 
g-As55Se45 samples undergoing nanomilling, the bulk 
glass-transition temperature notably increases approaching 

Tg
onset ~ 170.0  °C (see Table  1), the value character for 

unmilled melt-quenched samples of stoichiometric arsenic 
triselenide glass g-As2Se3 [15, 16]. At the same time, the 
glass-transition temperature width in nanomilled g-As55Se45 
defined from reversing heat flow curve on Fig. 2a is nar-
rowed by a factor at least 2.

The principal calorimetric response originated from non-
reversing (HFnrev) heat flow variation is changed drastically 
in nanostructurized g-As55Se45 due to thermal relaxation 
of strong inner strength generated in this glass under high-
energy mechanical milling. As a result, the pronounced 
exothermic event (depicted on Fig. 2b) with specific enthal-
pies difference ΔH approaching as high as -29.70 J  g−1 
(see Table 1) prevails in this glassy sample (nanomilled 
g-As55Se45).

To shed light on the nature of nanomilling-driven micro-
structural transformations in the studied glasses, the micro-
RS spectra were collected and compared for g-As5Se95 and 
g-As55Se45 samples in both unmilled (melt-quenched) and 
milled (nanostructurized) states (Fig. 3, 4).

In the micro-RS-spectrum of melt-quenched g-As5Se95 
(Fig. 3, black curve) only a few bands are resolved, these 
being weak and relatively narrow band near ~ 107  cm−1 
and ~ 132 cm−1, weak but evidently broader band positioned 
near ~ 490 cm−1 and very strong band near ~ 248 cm−1. The 
latter is due to overlapping of bond-stretching vibrational 
modes assigned to trigonal AsSe3 pyramids at 227 cm−1 
[30], and modes at ~ 230–270 cm−1 assigned to multiatomic 
Se fragments incorporated in various local environment 
[31], in part, strongly correlated chains disposed in trigonal 
t-Se conformations at 234 cm−1, dissolved multi-Se chains at 
250 cm−1 and molecular-type Se8 species at ~ 260 cm−1. The 
band at 107 cm−1 is probably connected with Se8 rings con-
tributing through A1 mode at 112 cm−1 [32], while 132 cm−1 
band is due to Se polymeric chains having RS-active E mode 
positioned at 138 cm−1 [32]. The broad RS-active band at 
490 cm−1 is related to second-order Raman scattering from 
homonuclear Se-Se bonds [33]. Thus, the structure of 
unmilled g-As5Se95 represents highly polymerized network 
built of AsSe3 pyramids interlinked by Se chains with very 
small number of molecular units (such as Se8) decoupled 
from this network.
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Table 1   Parameterization of 
multifrequency temperature-
modulated DSC-TOPEM 
profiles for melt-quenched bulk 
(unmilled) and nanostructurized 
(milled) glasses derived from 
reversing (HFrev) and non-
reversing (HFnrev) heat flow 
variations

Glass samples HFrev HFnrev

Glass-transition tempera-
ture

Heat capacity variation Specific enthal-
pies difference

Tg
onset/°C Tg

mid/°C ΔCp/J g−1 K−1 ΔH/J g−1

g-As5Se95 Unmilled 69.3 70.7 0.14 3.32
Milled 66.7 68.0 0.15 3.86

g-As55Se45 Unmilled 134.6 151.8 0.11 5.57
Milled 170.0 174.6 0.13 − 29.70
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Only slight changes occur in the RS spectrum of this glass 
subjected to nanostructurization through milling (also shown 
on Fig. 3). The RS band at ~ 132 cm−1 ascribed to E mode of 
Se chains is increased in nanomilled g-As5Se95. Strong band 
at ~ 248 cm−1 does not change its position after nanomilling, 
while being slightly depressed, especially from the high-fre-
quency side corresponding to spectral domain of preferential 
location of intramolecular bond-stretching modes ascribed 
to Se8 molecules [31, 32]. Due to incorporation of atomic 
remainders of destroyed molecular units into glass network, 

the milled specimen becomes more polymerized, and this 
effect being associated with slight increase in the respective 
glass-transition parameters on this glass (see Table 1).

In the collected micro-RS-spectrum of melt-quenched 
g-As55Se45 depicted on Fig. 4, several low-frequency bands 
(at 109, 130, 143, 154, 168 and 190 cm−1) and high-fre-
quency bands (at 203, 218, 235, 253 and 278 cm−1) are 
resolved. The high-frequency bands are ascribed to over-
lapped (preferentially strong) bond-stretching vibrational 
modes of AsSe3 pyramidal units at 227 cm−1 [30], and some 
fingerprints of cage-like arsenoselenide molecules, such as 
As4Se4 at 248 and 190 cm−1 [34]; As4Se3 at 196, 242, 256, 
266 and 280 cm−1 [35], as well as As4 at ~ 200 cm−1 [33]. 
The low-frequency peaks (preferentially weak and medium) 
can be ascribed to bond-bending vibrational modes of these 
molecular cages, in part, As4Se3 at 140 and 166 cm−1 [26] 
and As4Se4 at 106, 136, 144, 190 and 207 cm−1 [34].

In the milled g-As55Se45 samples, all the above features 
observed in the micro-RS spectra are essentially broadened 
and depressed (see Fig. 1, red curve), testifying in favor of 
nanostructurization-driven destruction of respective tetra-
arsenic selenide molecular units and their incorporation in 
newly polymerized arsenoselenide glass-forming network. 
Thus, the structure of this nanostructurized chalcogenide 
glass becomes notably stressed (as compared with iso-com-
positional unmilled sample), being affected by a variety of 
structural defects generated under high-energy mechani-
cal milling. Atomic remainders of destroyed molecules are 
reincorporated into a glassy network, completely changing 
calorimetric response from the glass-transition event.

Conclusions

Nanostructurization-driven thermodynamic responses in 
calorimetric heat-transfer phenomena are compared for 
glassy arsenoselenides at principally different levels of their 
molecular network organization, namely in high-polymer-
ized under-stoichiometric (preferentially network-type) 
g-As5Se95 and low-polymerized over-stoichiometric (pref-
erentially molecular-type) g-As55Se45, using multifrequency 
temperature-modulated DSC-TOPEM® complemented with 
microstructure research based on Raman scattering (RS) 
microspectroscopy.

It is shown that high-polymerized network composed of 
AsSe3 pyramidal fragments interlinked by long Se chains 
with small number of Se8 molecular units (decoupled from 
this network under melt quenching) prevails in both melt-
quenched and nanomilling-derived g-As5Se95 samples. 
Transition to more polymerized network occurs in this glass 
under nanostructurization by nanomilling, being caused by 
incorporation of destroyed Se8 molecules into the glass back-
bone. As a result, nanostructurization-driven calorimetric 
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response in this glass dominates with the known effect of 
size-induced glass-transition temperature depression.

The low polymerized preferentially molecular-type 
structure of g-As55Se45 is built of arsenoselenide network 
enriched with tetra-arsenic selenide molecules decoupled 
from this network under melt quenching. Molecular-to-
network transition owing to nanomilling-driven destruc-
tion of the above molecular units and their incorporation 
into newly polymerized glass-forming backbone occurs in 
this glass undergoing nanostructurization, thus resulting in 
strong increase in calorimetric glass-transition temperature.
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