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Abstract
Developing optimal flame retardant polymer compositions that meet all aspects of a given application is energy and cost-
intensive. To reduce the number of measurements, we developed an artificial neural network-based system to predict the 
flammability of polymers from small-scale test data and structural properties. The system can predict ignition time, peak and 
total heat release, and mass residue after the burning of reference and flame retarded epoxy resins. Total heat release was 
predicted most accurately, followed by the peak heat release rate. We ranked the input parameters according to their impact 
on the output parameters using a sensitivity analysis. This ranking allowed us to establish a relationship between the input 
and output parameters taking into account their physical content.

Keywords Artificial neural network · Prediction of flammability · Epoxy resin · Chemical structure

Introduction

Epoxy resins and their composites are widely used in sev-
eral industrial sectors (e.g. the aerospace and the automotive 
industry) where proper flame retardancy is crucial. Develop-
ing novel materials with excellent fire performance is often 
material and cost-intensive and requires the use of several 
material compositions and destructive tests. It would sub-
stantially simplify the development process if large-scale 
combustion test results could be predicted based on polymer 
composition and small-scale test results.

Several studies have tried to find correlations between 
numerical flammability parameters in the past. Johnson [1, 
2] suggested that the limiting oxygen index (LOI) of the 
most common polymers can be reasonably predicted from 
their specific heat of combustion (SHC) expressed in J  g−1:

This expression is valid if the C to O and the C to N ratio 
are less than 6 and the C to H ratio is larger than 1.5.

Van Krevelen [3] established a relationship between the 
LOI and pyrolysis char residue (CR) expressed in mass% at 
850 °C for the combustion of halogen-free polymers:

Since the heat of combustion and the char residue can 
be estimated from the elemental composition of the poly-
mer, Van Krevelen and Hoftyzer [2] established a direct link 
between the LOI and elemental composition:

where H/C, F/C, and Cl/C are the ratios of corresponding 
atoms in the polymer and CP is the composition param-
eter. For polymers with CP values greater than 1, the LOI is 
approximately 0.175 (17.5 volume%), while for CP values 
smaller than 1, the LOI can be calculated with the following 
equation:

Lyon et al. [4] found the following correlation between 
the LOI of polymers and their heat release capacity (the 
maximum value of the specific heat release rate measured 
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during the pyrolysis combustion flow calorimetry (PCFC) 
divided by the heating rate):

where LOI is the limiting oxygen index expressed in vol-
ume% and HRC is the heat release capacity expressed in 
kJ (gK)−1.

Early studies on predicting flammability parameters 
focused on determining the heat of combustion of individual 
atoms without considering the interactions between them. 
These attempts were followed by the group contribution 
method, where the polymer molecules are divided into char-
acteristic structural units or groups, and their contribution 
to a given flammability parameter is determined. If these 
values are weighted according to the mass fraction of each 
group in the molecule and added together, the flammability 
parameter of the molecule is obtained. The root of these 
approaches is Van Krevelen’s method [3] for the estimation 
of pyrolysis char residue from the group contributions to 
the char forming tendency  (CFT), which he defined as the 
amount of char per structural unit divided by 12 (relative 
atomic mass of carbon). This value was found to be additive, 
and so the total pyrolysis char residue could be calculated 
with the following equation:

where  CFT is the carbon-forming tendency of the group and 
M expressed in g  mol−1 is the molecular mass of the struc-
tural unit. He also found that aliphatic groups attached to 
aromatic groups have a negative char forming tendency.

Subsequently, Walters and Lyon [5] extended this method 
and determined the molar group contributions to the heat 
release capacity (HRC) for over 40 different groups, and 
Walters [6] determined the molar group contributions to the 
heat of combustion of 37 structural groups. Lyon et al. [7] 
established a molecular basis for polymer flammability by 
determining the molar contributions to char yield, the heat 
of combustion, and heat release capacity.

Sonnier et al. [8] improved and extended the method Van 
Krevelen and Lyon developed. They correctly predicted the 
heat release capacity and total heat release measured by 
pyrolysis combustion flow calorimetry using only 31 chemi-
cal groups. They also set up guidelines for selecting groups; 
nevertheless, they also emphasised that arbitrary decisions 
were made to split the molecules in many cases.

Later on, Sonnier et al. [9] tested thermoset polymers, 
including polycyanurates, polybenzoxazines, epoxy, and 
phthalonitrile resins and determined the molar contributions 
to total heat release, heat release capacity, and char content 
of 14 new chemical groups. Their results indicate that the 
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main parameters that seem to contribute to the flammability 
of the polymer are the aromaticity, the presence of oxygen 
or nitrogen atom(s) in the structure, and the number of bonds 
between this structure and neighbouring chemical groups. 
Finally, Sonnier et al. [10] determined the molar contribu-
tions of two pendant groups containing phosphorus to flam-
mability: 9,10-dihydro-9-oxa-10-phosphaphenanthrene-
10-oxide (DOPO) and  PO3, which are common components 
of flame retardants.

Although the molar group contribution method can pre-
dict the flammability parameters of many common polymers 
well, the arbitrary assignment of chemical groups and, in 
the case of new molecules or additives, the use of chemical 
groups whose molar contribution has not yet been deter-
mined limits the applicability of the method.

The publicly available data about polymer properties and 
machine learning algorithms enable the prediction of new 
polymer properties, including fire performance, for optimi-
sation purposes [11, 12].

Parandekar et al. [13] developed genetic function algo-
rithms to predict heat release capacity, total heat release, 
and the amount of char residue. They correlated the chemi-
cal structure of the polymer to its flammability using the 
quantitative structure–property relationships methodology.

Asante-Okyere et al. [14] predicted microscale com-
bustion calorimetry results, such as total heat release, heat 
release capacity, peak heat release rate, and associated tem-
perature of polymethyl methacrylate from sample mass and 
heating rate using supervised learning algorithm-based feed-
forward back propagation neural network and generalised 
regression neural network. The sensitivity analysis indicated 
that the heating rate had the greatest effect on the output 
parameters. Similarly to Asente-Okyere, Mensah et al. [15] 
predicted the microscale combustion calorimeter results of 
extruded polystyrene from sample mass and heating rate 
using the group method of data handling and feed-forward 
back-propagation neural networks. The group method of 
data handling provided more accurate predictions.

In this study, we developed an artificial neural network 
(ANN)-based system to predict ignition time, peak and 
total heat release, and mass residue after burning reference 
and flame retarded epoxy resins in a mass loss type cone 
calorimeter using small-scale thermal and flammability test 
results and structural properties.

Materials and methods

Materials

For the validation of epoxy samples, we selected a trifunc-
tional, glycerol-based (GER; IPOX MR3012, IPOX Chemi-
cals Ltd., Budapest, Hungary; main component: triglycidyl 
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ether of glycerol, viscosity: 0.16–0.2 Pas at 25 °C, density: 
1.22 g  cm−3 at 25 °C, epoxy equivalent 140–150 g  eq−1) 
and a tetrafunctional, pentaerythritol-based epoxy (PER; 
IPOX MR 3016, Ipox Chemicals Ltd., Budapest, Hungary; 
main component tetraglycidyl ether of pentaerythritol, vis-
cosity: 0.9–1.2 Pas at 25 °C, density: 1.24 g  cm−3 at 25 °C, 
epoxy equivalent: 156–170 g  eq−1) resin. A cycloaliphatic 
amine (IPOX MH 3122, IPOX Chemicals Ltd., Budapest, 
Hungary; main component: 3,3’-dimethyl-4,4’-diaminocy-
clohexylmethane, viscosity: 80–120 mPas at 25 °C, den-
sity: 0.944 g  cm−3 at 25 °C, amine hydrogen equivalent: 
60 g  eq−1) was used as hardener.

As flame retardants, we applied ammonium polyphos-
phate (APP) (supplier: Nordmann Rassmann (Hamburg, 
Germany), trade name: NORD-MIN JLS APP, P content: 
31–32%, average particle size: 15  µm) and resorcinol 
bis(diphenyl phosphate) (RDP) (supplier: ICL Industrial 
Products (Beer Sheva, Israel), trade name: Fyrolflex RDP, 
P content: 10.7%).

Methods

Sample preparation

During the preparation of the validation specimens, the mass 
ratio of the epoxy (EP) component and hardener was 100:40, 
both in the case of GER and PER. GER- and PER-based EP 
samples of 4 mass% P content from the inclusion of APP or 
RDP were prepared. In addition to these samples contain-
ing only one flame retardant (FR), mixed formulations with 
2% P content from APP and 2% P content from RDP were 
also prepared. The P content of the samples in mass% was 
related to the total mass of the matrix (epoxy resin + hard-
ener + flame retardant). First, the FRs (APP, RDP, or both) 
were added to the EP component. Then the hardener was 
added, and the components were mixed in a crystallising 
dish at room temperature until the mixture became homoge-
nous. The specimens were crosslinked in appropriately-sized 
(100 × 100 × 4 mm) silicon moulds. The curing cycle, deter-
mined based on differential scanning calorimetry (DSC), 
involved two isothermal heat steps: 1 h at 80 °C, followed 
by 1 h at 100 °C.

Characterisation of fire behaviour

Mass loss type cone calorimetry (MLC) tests were per-
formed with an instrument made by FTT Inc. (East 
Grinstead, UK) according to the ISO 13927 standard. 
100 × 100 × 4 mm specimens were exposed to a constant 
heat flux of 50 kW  m−2 and ignited. Heat release values and 
mass reduction were recorded during burning.

Artificial neural network

Artificial neural networks (ANNs) can be used to solve 
complex problems that can be divided into two tasks: 
classification (i.e. separation) and function approximation 
(i.e. regression). Classification often arises, for example, 
in image processing, where the ANN classifies images 
into different groups so that the content of the image can 
be determined with high accuracy. The solution to the 
regression problem is a predicted function or a specific 
value [16]. Artificial neural networks are usually used to 
solve problems that are either difficult to algorithms, or 
where the available data are incomplete or imprecise, or 
where the relationship between the studied parameters is 
not linear.

Machine learning is basically a set of many simple alge-
braic operations. To fully understand the construction and 
the structure of the artificial neural network, we would 
like to illustrate the machine learning process through the 
problem used as the topic of this study.

At the beginning of the development of neural net-
works, so-called perceptron networks were developed, 
which are single-layer networks. The input and the output 
of a perceptron can only be 0 and 1. The binary value of 
the output is determined by whether the weighted sum of 
the inputs exceeds a certain threshold. A simple perceptron 
network is illustrated in Fig. 1.

Let us suppose that we have a perceptron network with 
structural and flammability properties of reference and 
flame retarded thermoset polymers as input. These inputs 
are the type of the matrix, the hardener, the type of the 
flame retardant, the ratio of carbon, hydrogen, oxygen 
atoms, etc. We want the network to find the optimal value 
of masses and biases so that we can get a good estimation 
of the most important flammability properties: peak heat 
release rate (pHRR), the time to ignition (TTI), total heat 
release (THR), or mass residue.

During the learning process, the perceptron network 
compares the test set values with the results of the learn-
ing set and then changes the masses and biases based on 
this comparison. We need to introduce so-called sigmoid 
neurons instead of using perceptrons to ensure that the new 
values of masses and biases do not cause large changes 
in the output. Like perceptrons, sigmoid neurons have 
inputs, but their output can be any number between 0 and 
1 instead of the two fixed positions, as in the case of per-
ceptrons. The definition of the sigmoid function:

where z =
∑

n wnxn − b . Thus the output of the sigmoid neu-
ron is:

(7)�(z) =
1

1 + e−z
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where xn denotes the inputs, wn denotes the masses, and b 
is the bias. The sigmoid function is one of the most com-
mon examples of an activation function. The choice of the 
optimal activation function is part of optimising the hyper-
parameters of the neural network, which is one of the stages 
of the development of the neural network.

The transfer of activity from one layer to another can 
be described as follows. Consider the relationship between 
the input layer and the first neuron of the first hidden layer 
(Fig. 2). This can be mathematically described as follows:

where a0(1) : is the first neuron of the first hidden layer, an(0) : 
neurons of the input layer; σ: sigmoid function (Eq. 8), w0,n : 
masses associated with the first neuron of the first hidden 
layer, b0 : the bias related to the first hidden layer. By anal-
ogy, we can obtain the total activity of the first hidden layer:

The notations are analogous to those used for the first 
neuron, except that in this case, each input is assigned to 
a mass so that a given row of the mass matrix belongs to a 
given neuron. This means that each neuron is a function with 
each neuron in the previous layer as a variable and the result 
of this function is a number between 0 and 1.

Regarding the neural network structure, the leftmost layer 
is called the input layer, and the neurons in this layer are 
called input neurons. The rightmost layer is the output layer, 
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and the neurons are output neurons. The middle layers are 
called hidden layers. Figure 3 shows a neural network with 
15 input neurons, 2 hidden layers, and one output layer. This 
figure is an illustration of the neural network we used. The 
lines connecting the neurons symbolise the masses, with red 
representing a positive and blue a negative mass. The abso-
lute magnitude of the masses is illustrated by the transpar-
ency of the line: Fainter lines represent smaller values. The 
design of the input and output layers of the network is usu-
ally self-evident once the existing problem and the desired 
outcome are identified. However, the identification of the 
hidden layers and the number of neurons associated with 
them is often determined with the use of heuristic meth-
ods. Determining the neural network structure—the optimal 
number of layers and neurons—is also a part of the neural 
network design. Neural networks can be classified into two 
main groups based on the interconnection scheme between 
the individual neurons: feed-forward networks (FNN) and 
recurrent networks (RNN). In the latter case, the graph 
representing the network contains a loop. We used a feed-
forward neural network.

The dataset consists of two parts: a training dataset and 
a validation dataset. During the teaching process, the train-
ing dataset is further divided into two parts: a teaching set 
and a test set. In the learning process of the neural network, 
our aim is to create an algorithm that allows us to find the 
masses and biases that best approximate the output (teach-
ing set) to the expected output (test set). To quantify the 
extent to which we have achieved this goal, we can define a 
so-called loss function:

where n is the number of inputs used in the training, a is the 
vector of network outputs, and y(x) is the y outputs associ-
ated with the x inputs. The value of the loss function also 
depends on the total masses and biases of the network. The 
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Fig. 1  How the perceptron 
network works. xn: input values, 
wn: the value of masses associ-
ated with each neuron, b: the 
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choice of the loss function is based on iterative methods; in 
this example, it is the mean squared deviation, but in our 
network development, we used the mean absolute deviation. 
The aim is to find the masses and biases that make the loss 
function values as small as possible. The algorithm that usu-
ally performs this process is called gradient descent. The 
gradient of the loss function determines the direction and 
magnitude in which masses and biases should be changed to 
most effectively reduce the loss function. The extent of this 
gradient determines how ‘sensitive’ the loss function is to 
a given mass or bias. The loss function is back-propagated, 

so it readjusts the masses and biases. This method is called 
back-propagation for multilayer feed-forward meshes. Error 
back-propagation is an algorithm that computes these gra-
dients [17].

The steps required to create a neural network capable 
of prediction are illustrated in Fig. 4. The main stages are 
explained in the following section and subsections.

Development of the neural network

Creating a database

We used TensorFlow to develop the neural network, an 
open-source Python library developed by Google. It is 
specifically designed for numerical computation, making 
machine learning easier and faster. The database consisted 
of measured data collected from our previous publications 
[18, 19]. The complete database contained 39 elements, 
15 input parameters, and 4 output parameters. The first 15 
columns are a matrix of input parameters, while the last 
column is a matrix of the output parameter to be predicted. 
The input parameters were: type of matrix, hardener, flame 
retardants; mass% of C, H, O, N and P atoms, mass% of 
aliphatic, cycloaliphatic, and aromatic structures, LOI and 
UL-94 test results and heat flux used during the mass loss 
type cone calorimetry tests. The output parameters were: 
peak heat release rate (pHRR), time to ignition (TTI), total 
heat release (THR), and char residue. Table 1 illustrates the 
initial structure of the dataset for pHRR prediction with the 
use of different epoxy matrix, hardener, and flame retardant 
combinations.

First, we scanned the database and then deleted any rows 
with missing items. During the learning process, the pro-
gramme cannot handle any rows with missing items and 
categorical properties, only numbers. Thus, we also quanti-
fied the categorical properties (type of the matrix, the type of 
the hardener, and the type of the flame retardant) so that they 
could be processed by the training functions. We quantified 
the UL-94 classifications manually, as there is a correlation 
between flammability and UL-94 classification, so it was 
appropriate to assign values representing this. As a result, 
the HB rating was assigned a value of 1, while the V-0 rating 
was assigned a value of 4. We split the entire database into 
two parts: a training dataset and a validation dataset. The 
validation dataset was the last eight elements of the dataset 
(No. 31–38). The training dataset was subsequently split into 
two further parts in the ratio of 0.8:0.2, as a teaching set 
and a test set. Since the different properties and data have 
different magnitudes, these values had to be normalised so 
that the algorithm would treat the input parameter data with 
equal mass. Normalisation was performed by proportionally 
transforming the input data into values between 0 and 1.
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Fig. 2  Activity transfer from the input to the first neuron of the first 
hidden layer
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Optimisation of hyperparameters

In machine learning, the optimisation or tuning of hyper-
parameters plays an important role. A hyperparameter is a 
parameter used to control the learning process. Hyperpa-
rameters are usually optimised manually, while the algo-
rithm itself determines the values of other parameters. For 
different datasets, different hyperparameters are suitable, 
and consequently, for each predicted property (pHRR, 
THR, TTI, char residue), a new optimisation had to be 
performed. Different techniques have been developed to 
choose these parameters since, for complex datasets, it is 
a tedious and time-consuming task to set the appropriate 
values. Hyperparameter optimisation is still an intensively 
researched area.

Table 2 shows the most important hyperparameters and 
the type of intervals we used. The learning rate or learning 
factor essentially determines the rate of convergence, the 
size of the steps towards the minimum location. For exam-
ple, the activation function is the sigmoid function men-
tioned earlier (Eq. 8). In addition to the sigmoid function, 
there are other common types of functions, such as the ELU 
(Exponential Linear Unit). As for the optimiser, a typical 
example is the gradient descent algorithm already presented. 
Nowadays, more advanced versions of this algorithm are 
more commonly used for this task, such as the adaptive 
momentum estimation (Adam) method. By specifying the 
batch size, the training dataset can be divided into smaller 
units, which seeds up the learning process. This hyperpa-
rameter is extremely important for large databases. The 

Fig. 3  Feed-forward neural 
network (FNN) with two hidden 
layers
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Creating the
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Fig. 4  Steps in the development of a neural network
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number of iterations (epoch) determines the number of times 
the algorithm runs through the training dataset. In simple 
terms, how many times it ‘sees’ the elements of the training 
set before it determines the predicted values.

The biggest challenge in the optimisation process is the 
vast size of the search field. The hyperparameter space 
usually has 2–7 dimensions. The number of dimensions 
depends on which hyperparameters the designer considers 
specific. An experimental design can be made to reduce the 
optimisation time, but it has been shown that random trials 
are more efficient since not all hyperparameters have equal 
importance. In the case of experimental designs, sometimes 
too much computational time is consumed by testing for 
insignificant hyperparameters [19]. Consequently, we first 
searched for the most important hyperparameters by varying 
them one by one and then looked for their optimal values. 
The most important hyperparameters were the number of 
hidden layers and the number of neurons in each case, so 
first, we determined the structure of the neural network and 
then chose the learning rate, the activation function, and the 
optimisation algorithms were chosen.

The problem of under- and overfitting had to be kept in 
mind when we created an algorithm capable of prediction. In 
the case of underfitting, the model predicts with a significant 
error in both testing and validation. In contrast, in the case 
of overfitting, the model produces accurate results in testing 
but becomes inaccurate when new data is added. Hence, the 
validation error is much higher. To avoid these problems, 
we plotted the errors obtained at the end of both training 
and validation in each case, and the relative positions of the 
curves allowed us to infer the presence of underfitting or 
overfitting. For example, during the training and validation 
of pHRR, we found that a small degree of overfitting could 
be observed, but it was still within an acceptable range. 
By expanding the dataset, both underfitting and overfitting 
errors can be reduced. Furthermore, from the convergence 
of the errors, the optimal value of the learning rate can be 
determined. If the learning rate is too high, the error curve 
will reach its minimum value early but may also diverge. If 
the set value is too low, the curve will not reach its minimum Ta
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Table 2  Types and ranges of the applied hyperparameters

Hyperparameters Commonly used 
intervals, types

Number of hidden layers 2–3
Number of neurons 18–4161
Learning rate 0–0.01
Activation function ELU, SELU, linear
Optimiser Adamax, RMSprop
Batch size 50
Number of iterations (epoch) 100–440
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in a given number of iterations. In addition to observing the 
variation in the error values, we tried to get a more general 
idea of the accuracy of the prediction by choosing validation 
data that covered several ranges.

Evaluation of the results

For validation, we used two epoxy matrices with different 
functionality: the glycerol-based epoxy resin (GER) is a 
trifunctional, while the pentaerythritol-based epoxy resin 
(PER) is a tetrafunctional resin. Besides the reference resins, 
the flammability of flame retarded compositions was also 
predicted and validated. As the same flame retardants were 
used in the same proportions, the effectiveness of each type 
of flame retardant in a given case and their effects on each 
other can be compared. The experimentally measured data, 

i.e. the validation results, are compared to the predicted data 
in Tables 3 and 4. 

We described the error of prediction with the average of 
the absolute deviations for each composition and the average 
of the deviations for each composition given in percentages. 
For the char residue, no average absolute percentage devia-
tion could be calculated due to division by zero. (The char 
residue of the reference GER and PER epoxy resins was 0% 
because they burnt completely during the mass loss type 
cone calorimetry tests.) The results of Tables 3 and 4 are 
also illustrated in Figs. 5 and 6.

Validation was based on actual measurement data derived 
from mass loss type cone calorimetry (MLC) tests. Due to 
the complex combustion mechanism, the typical standard 
deviations of the parameters determined by this test method 
range from 5 to 10%.

Table 3  Comparison of 
validation and prediction values 
for pHRR and TTI

We wanted to highlight the average absolute deviation and the average percentage deviation between the 
validated and predicted data in each case in both tables simply to catch the attention of the person reading 
the article

pHRR/kW  m−2 TTI/s

Validation Prediction Validation Prediction

GER 1101.0 1020.9 26.0 21.8
GER APP 4% 627.0 598.8 29.0 24.9
GER RDP 4% 600.0 596.7 25.0 22.1
GER APP 2% RDP 2% 408.0 598.4 28.0 22.9
PER 706.0 802.8 13.0 19.7
PER APP 4% 358.0 369.6 23.0 22.3
PER RDP 4% 346.0 365.3 19.0 20.4
PER APP 2% RDP 2% 445.0 367.5 20.0 21.5
Average absolute deviation/- 63.39 3.31
Average percentage deviation/% 12.3 16.1

Table 4  Comparison of 
validation and prediction values 
for THR and char residue

We wanted to highlight the average absolute deviation and the average percentage deviation between the 
validated and predicted data in each case in both tables simply to catch the attention of the person reading 
the article

THR/kJ  g−1 Char residue/%

Validation Prediction Validation Prediction

GER 18.9 18.9 0 1.1
GER APP 4% 13.1 13.2 12 11.0
GER RDP 4% 15.7 15.6 14 9.3
GER APP 2% RDP 2% 12.6 14.3 10 10.2
PER 21.6 18.4 0 3.1
PER APP 4% 16.0 12.0 18 13.9
PER RDP 4% 14.5 14.3 10 9.7
PER APP 2% RDP 2% 12.6 13.1 4 10.2
Average absolute deviation/- 1.23 2.58
Average percentage deviation/% 7.5 N/A



252 Á. Pomázi, A. Toldy 

1 3

Fig. 5  Differences between 
the validation and prediction 
of flammability parameters (a 
pHRR, b TTI, c THR, d char 
residue)
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For pHRR, the model predicted PER matrix samples with 
high accuracy as 36% of the training dataset was made up of 
PER matrix samples, while no GER matrix was included. In 
the case of TTI, the largest error occurred in the case of the 
PER reference sample since two values from this composi-
tion were included in the training dataset with TTI values 
of 30 and 37 s. This caused an overestimation. The slightest 
difference occurred in the estimation of THR: 7.5%. Overall, 
it can be seen that the magnitude of the average error values 
is often increased by one or two outliers, which might be 
measurement errors. In 65% of the cases, the average abso-
lute deviation was below 10%, promising for later applica-
tions, though the model needs further development and a 
more extensive training dataset.

Sensitivity analysis of output parameters

Artificial intelligence is often compared to a ‘black box’. 
The name might be misleading, implying that we do not 

know how it works. Instead, the term means that there is no 
physical link between the input and the output parameters. 
Basically, the neural network finds the connections by the 
computations detailed earlier. The relationship between the 
input and the output variables can be determined, for exam-
ple, by sensitivity analysis. Consequently, we wanted to use 
this method to get information on the effect of each input 
parameter and thus reduce the number of these.

There are several types of sensitivity analysis meth-
ods (e.g. ‘Partial Derivatives (PaD)’ method, ‘Weights’ 
method, ‘Perturb’ method, ‘Profile’ method, ‘Classical 
stepwise’ method, and ‘Improved stepwise’ method [20]). 
We performed the sensitivity analysis by removing the var-
iables one by one (‘Classical stepwise’ method). The idea 
is to generate as many models as there are input param-
eters. We remove each variable one by one and record the 
error value generated in the output as a result. The variable 
that generated the slightest error is the least significant 
in the system so it can be removed. After removing this 
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variable, we repeat this method on the neural network, this 
time with a reduced number of input parameters. Again, 
the least significant parameter is removed. This is contin-
ued until one variable remains at the end. The last remain-
ing input parameter is considered the most significant on 
the given output parameter [20]. Figure 6 shows an exam-
ple of a case where a better prediction is obtained after 
removing the least significant input parameter.

To quantify whether removing a given input variable 
gives a better or worse prediction, we introduced an error 
factor (R/-; Eq. 12). The R factor expresses the ratio of 
the error after removing a given parameter to the error 
obtained using all input variables. If the value of R is 
large, then the input parameter, which has been removed, 
has a significant effect on the output variable. If R is below 
1, removing that input parameter gives a better prediction.

In Eq.  12, errors are the mean absolute deviations. 
 Errori is the error after removing the ith parameter, while 
Error means the error obtained using all parameters. If 
 Errori is smaller than Error, than R will decrease. This 
indicates that after removing the ith parameter the predic-
tion became better. If R slightly increases, that means that 
 Errori is higher than Error, meaning that the prediction 
became less precise.

For better understanding, we present the sensitivity 
analysis for pHRR. First, we removed the input param-
eters one by one using all fifteen parameters. The most 

(12)R =
Errori

Error

significant error occurred when the type of hardener 
was removed, while the slightest error was in the case of 
removing the ratio of carbon atoms. As a consequence, the 
latter was removed from the system. The order of param-
eters obtained in this step is illustrated in Fig. 7. After that, 
we repeated the removal of the remaining 14 parameters 
one by one. In the second case, the aliphatic ratio seemed 
to be the least significant parameter. Continuing this anal-
ogy, we found that in the end, the ratio of phosphorus 
atoms was the most significant parameter, which is not 
surprising if we consider that the flame retarded resins 
contained phosphorus-based flame retardants. The higher 
the ratio of P atoms, the more flame retardant additive 
there is in the resin system; thus the pHRR decreases.

The input matrix used to predict pHRR in the sensitivity 
study gave the best results with the following four param-
eters: matrix type, number of hydrogen atoms, phosphorus 
atoms, and aromatic ratio. The method presented was also 
performed to predict TTI, THR, and char residue. In the 
case of these three flammability parameters, we could not 
reduce the number of input parameters based on the sensi-
tivity analysis results. Regardless, we were able to order the 
input parameters according to their effect on the given output 
parameter. The order of the effect of the input parameters on 
the output parameters is presented in Table 5.

The most significant parameter affecting the pHRR and 
char residue was the ratio of phosphorus atoms, so basically, 
the amount of flame retardant in the resin system, which is in 
good agreement with reality. In the case of the char residue, 
the ratio of carbon atoms also plays an important role. The 
type of hardener seemed to be the most significant parameter 
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Fig. 7  R factor values in the sensitivity analysis for pHRR prediction using all input parameters
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affecting the time to ignition, which may be caused by the 
different decomposition temperatures of the crosslinks in the 
thermoset resin. On the other hand, some of the hardeners 
(e.g. TEDAP [18]) function as both a hardener and a flame 
retardant, so in the order of the input parameters, TEDAP 
could be evaluated as a hardener by the neural network, 
not as a flame retardant. Furthermore, those compositions 
containing TEDAP as a flame retardant showed the high-
est increase in TTI among the flame retarded resins in the 
database. In the case of THR, we got the heat flux used in 
the MLC test as the parameter with the most influence. It is 
certainly a significant parameter but not the most decisive 
in reality.

Overall, it can be concluded that the most important fac-
tors determining the pHRR, the TTI, and the char residue 
can be linked to actual physical parameters. Also, the input 
parameters of the neural network are often functions of each 
other; thus, removing them one by one can produce changes 
in the effect of other parameters. In addition, the flammabil-
ity parameters (LOI, UL-94 classification) did not signifi-
cantly influence the results according to the sensitivity anal-
ysis, so their inclusion in the database should be considered 
in the future. This foreshadows the possibility of creating 
an extensive database containing only structural properties.

Conclusions

In this study, we dealt with developing an artificial neu-
ral network (ANN) model, which can accurately predict 
the most important flammability parameters (peak of heat 
release, time to ignition, total heat release, and char resi-
due) using structural properties (ratio of different atoms 

and aliphatic, cycloaliphatic, and aromatic structures in 
the polymer) and small-scale flammability results (limit-
ing oxygen index, UL-94 test). We developed an algo-
rithm using the Tensorflow Python library and used mass 
loss type cone calorimetry results of reference and flame 
retarded epoxy resins to validate the created system. The 
prediction accuracy of the ANN-based model varied in 
the following order: total heat release > peak heat release 
rate > time to ignition > char residue. The relatively larger 
error in predicting time to ignition and mass residue is 
due to the inherently larger standard deviation of the test 
methods. Data outliers in the input database often cause 
a significant difference between predicted and validated 
data, but in 65% of cases, the average absolute deviation 
is below 10%. We used the sensitivity analysis of the out-
put parameters to rank the input parameters according to 
their impact on the output parameters. The resulting rank-
ing was helpful in establishing a relationship between the 
input and output parameters based on their physical con-
tent. We principally consider this work as a proof of con-
cept that it is possible to predict large-scale flammability 
test results from structural parameters and small-scale test 
results using ANN models. With the development of the 
algorithms used and extending the dataset, the accuracy of 
the prediction can be significantly improved in the future. 
We also intend to extend this method to predict the flam-
mability of fibre reinforced composites.
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Table 5  The order of the 
effect of the input parameters 
according to their effect on the 
output parameters based on 
sensitivity analysis (1 indicates 
the most significant, while 15 
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Effect on 
output

pHRR/kW  m−2 TTI/s THR/kJ  g−1 Char residue/%

1 P atom ratio Hardener Heat flux P atom ratio
2 Matrix N atom ratio O atom ratio Flame retardant1
3 H atom ratio Heat flux Cycloaliphatic ratio C atom ratio
4 Aromatic ratio Matrix H atom ratio Cycloaliphatic ratio
5 Flame retardant1 Flame retardant1 C atom ratio Aliphatic ratio
6 Hardener C atom ratio Matrix H atom ratio
7 LOI H atom ratio Flame retardant2 N atom ratio
8 Flame retardant2 Aliphatic ratio Flame retardant1 Matrix
9 UL-94 class O atom ratio UL-94 class Aromatic ratio
10 N atom ratio P atom ratio Hardener LOI
11 Heat flux LOI Aromatic ratio UL-94 class
12 Cycloaliphatic ratio UL-94 class P atom ratio O atom ratio
13 O atom ratio Flame retardant2 LOI Flame retardant2
14 Aliphatic ratio Aromatic ratio N atom ratio Hardener
15 C atom ratio Cycloaliphatic ratio Aliphatic ratio Heat flux
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