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Abstract
One of the main challenges in hyperthermia treatment is how to improve the heating performance of nanoparticles with 
high specific loss power (SLP). To tackle this challenge, magnetite nanoparticles (MNPs) and coated magnetite nanoparti-
cles with polyvinyl alcohol (PVA@MNPs) were fabricated via ultrasonic-assisted coprecipitation technique. The obtained 
nanoparticles were characterized by using FT-IR, TEM, TGA, XRD, ICP-OES, DLS, zeta potential, VSM and UV–Vis 
spectroscopy. The self-heating properties of the MNPs and PVA@MNPs were studied under alternating magnetic strength, 
frequency and induction time. MNPs and PVA@MNPs showed that the nanoparticles have a nearly spherical shape ranging 
between 12.3 ± 3.2 and 10 ± 2.5 nm, respectively. The higher value of zeta potentials of PVA@MNPs (− 11.49 mV) implies 
that the nanoparticle may show good stability in aqueous solutions. The magnetization saturation values were 41.98 and 45.08 
emu g−1 for MNPs and PVA@MNPs, respectively. The prepared nanoparticles showed small coercivity and a remanence 
magnetization due to the soft magnetic nature of the prepared nanoparticles. The highest SLP value was 163.81 W g−1 for 
PVA@MNPs, while the lowest SLP value was 4.84 W g−1 for MNPs under the same magnetic field condition. The presence 
of PVA shell improved the particle stability and the magnetization for PVA@ MNPs. This successfully caused an improve-
ment in the heating performance and magnetic hyperthermia as well. These features make the prepared PVA@MNPs in this 
study applicable as hyperthermic agents for biomedical applications.
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Introduction

Iron oxide nanoparticles (IONPs) have been applied widely 
in medical applications due to their good biocompatibility 
and hyperthermic characteristics [1–7]. In particular, one of 
the extremely advanced techniques with IONPs is magnetic 
hyperthermia. In this technique, the thermal energy is gener-
ated by using an alternating magnetic field (AMF) to destroy 
cancer cells [8]. IONPs that can elevate the temperature of 
the target tissues above 43 °C are appropriate for hyperther-
mia handling [9, 10]. The therapy with IONPs having a lower 

dose in a short time is highly desirable for safe and conveni-
ent hyperthermia applications [1]. The specific loss power 
(SLP) is the energy amount that is absorbed by IONPs mass 
under AMF [11]. Various techniques to synthesize IONPs 
have been developed, including microwave-assisted, polyol 
route and hydrothermal processes [12–19]. However, many 
of the reported techniques are expensive, time-consuming 
and in some cases require the use of organic solvents, which 
are highly reactive and toxic to the environment. The evolu-
tion of environmentally friendly and inexpensive synthetic 
techniques is still a defy target [19]. Magnetic nanoparti-
cles have large surface energy and become unstable as well 
as tend to aggregate [20]. The properties of IONPs surface 
critically influence the overall heating performance of the 
materials [20–22]. It is important to know the particle size of 
IONPs because the reductions in magnetic size can decrease 
the heating efficiency [1]. Various coating materials such 
as a surfactant, organic or polymers layer are usually car-
ried out either during or after the synthesis of nanoparticles 
[19]. Among these materials, polyvinyl alcohol (PVA) is 
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frequently used. PVA is a hydrophilic material and is applied 
in medical applications. It has a good biocompatibility, low 
tendency for protein adhesion and low toxicity [22]. For 
instance, PVA was used in the assessment of human brain 
tumors [22]. The introduction of PVA layer on IONPs sur-
face can shield the magnetic iron oxide core from oxidation 
by the harsh chemical environment or by physiological body 
fluid. Besides, this enhances the colloidal stability of nano-
particles and their compatibility in the physiological envi-
ronment. The suitability of IONPs for biomedical applica-
tions is attributed to their biocompatibility and non-toxicity 
[23]. Hence, the selection of the coating material and coating 
procedure should be done carefully to avoid any side effects 
on the biocompatibility of IONPs. Hence, this study aims at 
synthesizing IONPs with a high heating performance by an 
environmentally friendly (without surfactant or organic sol-
vent) and a facile (at room temperature with non-expensive 
materials) procedure. Therefore, the preparations of coated 
magnetite nanoparticles with polyvinyl alcohol (PVA@
MNPs) by using an ultrasonic-assisted coprecipitation pro-
cess were introduced in this work. The properties of the 
MNPs and PVA@MNPs including the particle size, surface 
charge, morphology, elemental analysis and magnetic behav-
iors were investigated. Besides, the heating performance was 
studied concerning the magnetic strength, frequency and 
time of induction.

Experimental work

Materials

Iron (III) chloride hexahydrate (FeCl3·6H2O), iron (II) chlo-
ride tetrahydrate (FeCl2·4H2O), ammonium hydroxide (26%) 
and polyvinyl alcohol (PVA, Mw 30–70 kDa) were bought 
from Sigma-Aldrich, Germany.

Fabrication of iron oxide nanoparticles

Fabrication of bare MNPs

Calculated amounts of FeCl3·6H2O (5.4 g, 0.009 mol) and 
FeCl2·4H2O (1.9 g, 0.019 mol) were solubilized in 150 mL 
distilled water (DW). The solution mixed well by a mechani-
cal stirrer for 30 min, and the temperature was increased to 
70 °C. Ammonium hydroxide (6 mL, 6.6 mol) was added, 
producing a deep black magnetite nanoparticle precipitate. 
MNPs were separated magnetically, washed with DW and 
dried till the powder is obtained.

Fabrication of PVA@MNPs

PVA (0.5 g, 0.0071 mol) was solubilized in 50 mL of DW 
and then sonicated with US bath (28 kHz) for 30 min at 
room temperature. Then, a calculated amount of freshly pre-
pared MNPs (1.5 g) was dispersed in the above solution and 
sonicated continuously in the ultrasonic bath (28 kHz) for 
further 60 min at room temperature. The prepared PVA@
MNPs were separated magnetically, washed with DW and 
dried till the powder is obtained.

Characterizations

The surface charge and the size distribution were done using 
a Zeta-potential and Particle Size Analyzer (ELSZ-2000; 
Photal Otsuka Electronics, Osaka, Japan). X-ray diffraction 
(XRD) was performed with a Pan Analytical Model X’Pert 
Prob equipped with CuKα radiation (λ = 0.1542 nm). Fou-
rier transform infrared spectroscopy (FT-IR) was performed 
using the Tensor 27 Infrared Spectrometer (Bruker, USA); 
Thermogravimetric Analysis (TGA) was measured by TA 
instruments Q500. TEM images were obtained through (Tec-
nai G2S Twin; Philips, USA) at 300 keV. The iron content in 
MNPs and PVA@MNPS was determined by using an induc-
tively coupled plasma optical emission spectroscopy (ICP-
OES; Optima 8300, PerkinElmer, Waltham, MA, USA). The 
magnetic behavior was investigated using a vibrating sample 
magnetometer (VSM; Lake Shore 7400 series; Lake Shore 
Cryotronics, USA). SLP was examined for the hyperther-
mia system by using Eq. 1. To investigate and optimize the 
heating effects, the SLP values were obtained by employing 
different five magnetic field conditions. Frequency (f) and 
magnetic field (H): (a) f = 106.6 kHz and H = 20 kA m−1, (b) 
f = 159.8 kHz and H = 13.5 kA m−1, (c) f = 269.9 kHz and 
H = 13.5 kA m−1, (d) f = 381.6 kHz and H = 12.7 kA m−1, 
and e) f = 614.4 kHz and H = 9.5 kA m−1.

where dT/dt is temperature per time. Cp is 4.184 J g−1 °C 
and m is iron mass.

Results and discussion

Properties of nanoparticles

Controlling the size and chemical compositions of MNPs 
is critical to improving their magnetic properties that 
effectively lead to enhancing their heating efficiency. The 
effect of coating MNPs with PVA using an ultrasonic-
assisted coprecipitation method on the nanoparticles prop-
erties was investigated. The morphology and nanoparticles 

(1)SLP =
(

Cp∕m
)

× (dT∕dt)
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size were studied using TEM (Fig. 1). MNPs and PVA@
MNPs showed that the nanoparticles have a nearly spher-
ical shape ranging between 12.3 ± 3.2 and 10 ± 2.5 nm, 
respectively. Some nanoparticles created clusters; a com-
parable behavior was detected by Kurchania [22]. The 
observed aggregation of MNPs is due to the presence of 
rising surface energy and magnetic dipole–dipole influence 
[6]. Without protective shell and aerobic condition within 
the preparation had promoted the hydrophobic interaction. 
The particles become aggregated to great clusters, result-
ing in growing size. This detrimental aggregation can be 
reduced by the introduction of a shell layer of surfactant, 
organic or polymer layer. The layer serves as a shielding 
agent to stabilize and control the size [18]. PVA@MNPs 
exhibited less agglomeration behavior than MNPs. The 
incorporation of a thin PVA layer in the structure of NP 
leads to enhance the mono-disperse behaviors. PVA coat-
ing provides the benefit of boost the repulsion energy to 
balance the magnetic and van der Waals interaction [6]. 
The enhanced particle dispersion for PVA@MNPs is pre-
dicted to influence the nanoparticle's heating performance. 
The elemental analysis and chemical characterization for 
PVA@MNPs were studied by an energy-dispersive spec-
troscopy (TEM-EDAX) (the inset in Fig. 1b). It showed 
the characteristic peaks at 0.6, 6.5 and 7 keV correspond 

to Fe atom, which confirms the formation of IONPs. Also, 
the presence of PVA was confirmed by the energy peak 
for C and O atoms at 0.2 and 0.5 keV, respectively. TEM-
EDAX confirmed the presence of PVA and Fe in the pre-
pared nanostructure of PVA@MNPs. The iron content in 
the fabricated nanoparticles was measured using ICP-OES. 
It was observed that the mass percentages of Fe in MNPs 
and PVA@MNPs nanoparticles were 50.8% and 66.6%, 
respectively, which is expected to influence their heating 
efficiency properties.

The mean size and the size distribution of the particles 
were investigated using DLS. The results of DLS analy-
ses for MNPs and PVA@MNPs are shown in Fig. 2. The 
observed mean hydrodynamic sizes for MNPs and PVA@
MNPs were 237 nm and 222.4 nm, respectively. MNPs show 
a wider size distribution than PVA@MNPs. DLS shows sta-
tistical values about the hydrodynamic size of nanoparti-
cles. The performance of DLS analysis depends on many 
factors as the particle size, sample shape, concentration of 
the sample, polydispersity and surface properties. Scattering 
may not be sufficient to have a suitable detection for diluted 
samples. Otherwise, multiple scattering can occur for con-
centrated samples. The existence of the larger particles will 
take over the light scattering indicative and face the exist-
ence of the smaller one [24, 25].

Fig. 1   TEM images and EDAX 
for a MNPs and b PVA@MNPs
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A zeta potential (ζ) of the fabricated nanoparticles 
was studied, which is predictive of the colloidal stability 
and aggregation of nanoparticles (Fig. 3). Nanoparticles’ 
stability is very important for biomedical applications to 
achieve expectable and consistent outcomes [26]. The low 
value of zeta potential of MNPs (− 2.29 mV) implies that 
the nanoparticle may show poor stability in aqueous solu-
tions. Low zeta potential values (0 to ± 5 mV) will improve 
Van der Waals interparticle attractions and causes rapid 
coagulation and flocculation of nanoparticles [22]. On the 
other hand, the higher value of zeta potentials of PVA@
MNPs (− 11.49 mV) implies that the nanoparticle may 
show good stability in aqueous solutions. There is a spe-
cific zeta potential value (≈ ± 30 mV) that determines the 
stability of nanoparticles. At this value, high electrostatic 
repulsive forces between the nanoparticles occur [26]. 
Zeta potential with negative value was detected on PVA-
magnetic nanoparticles surface by Demerlis et al. It shows 
that the sample reveal reveals sensible colloidal constancy 
regarding the electrostatic repulsion [27]. PVA@MNPs 
samples obtained in this work exhibit more negative values 
than those reported by others. For instance, a zeta potential 
value of − 10.9 ± 3.5 mV was reported for PVA shelled 
Fe3O4 by Vilos et al. [28].

The type of magnetic phase and the estimated average 
grain size were studied using XRD. The peaks along (440), 
(511), (422), (400), (311) and (220) lattice planes correspond 
to the standard pattern (reference code: 98-015-8742) for the 
dominant magnetite nanoparticles phase (Fe3O4). However, 
the peaks along (104), (113), (116) and (024) planes cor-
respond to α- Fe2O3 (Fig. 4) [29]. Magnetite phase easily 
oxidizes at an atmospheric condition in the lack of an encap-
sulating oxygen block. The peaks for PVA@MNPs were 
weak and to some extent broad, probable due to disorder 
and small crystallite effects. The broadening of peaks relies 
on various parameters such as the instrumental effect, strain 
effect and finite crystallite size. The size of nanoparticles 
was estimated from the Debye–Scherrer equation (Eq. 2).

(2)Dp =
K�

�cos�

Fig. 3   Zeta potential for a 
MNPs and b PVA@MNPs
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where Dp is the grain size, β is the FWHM, λ is the 1.5406 Å, 
K is the Scherrer constant, and θ is the Bragg angle.

The observed grain sizes for MNPs and PVA@MNPs 
were 11.7 nm and 9.8 nm, respectively.

The optical absorbance spectra of MNPs and PVA@
MNPs were studied using UV–Vis spectroscopy (Fig. 5). 
The absorption peak for iron-oxides NPs is generally at 
the range of 300–600 nm. MNPs exhibited thermally pro-
mote electronic transitions regard to intervalence charge 
carriage. They showed absorption within the visible 
and near‐IR region [29]. Our nanoparticles exhibited a 
broad absorption range from 300 to 600 nm in the range 
of visible wavelength. The MNPs peak was found to be 
at 490 nm. However, PVA@MNPs showed a shift in the 
absorption peak and appeared at 494 nm matched to the 
d-d transition for Fe3+ [30]. The optical absorbance spectra 
of the magnetite phase in the prepared nanoparticle were 
detected.

The FT-IR was used to detect the existing functional 
groups on the MNPs surface as shown in Fig.  6. The 

absorption band observed near 580 cm–1 confirmed that the 
Fe–O bond is present in the synthesized MNPs and PVA@
MNPs. The absorption band at 3388 cm–1 corresponded to 
the stretching vibrations of –OH groups in the PVA@MNPs 
[22]. The additional bands close to 2860 and 1090 cm−1 
were attributed to C–H stretching vibrations and the –O–C 
stretching vibrations, respectively. Therefore, the FT-IR 
results confirmed that the PVA polymer layer existed on the 
surfaces of the synthesized MNPs.

The thermal stability of the MNPs and PVA@MNPs was 
evaluated using TGA. The TG-DTG curves are presented in 
Fig. 7a, b. The first stage of mass loss, observed at the range 
of 100–200 °C, was attributed to the loss of water. The mass 
loss at 200 °C is about 22.12%. A second mass loss, noted 
in the temperature range of 200–400 °C, was attributed to 
the decomposition of the polymer. Above 200 °C, the PVA 
shell material decomposes. According to the results, PVA@
MNPs exhibited the onset of decomposition at a tempera-
ture lower than that observed for the uncoated MNPs. The 
decomposition was attributed to the dehydration reaction 
of –OH groups in PVA chains and subsequent degrada-
tion of PVA-releasing CO2 gas. The mass loss at 400 °C 
is about 41.2%. This was followed by a final stage, at the 
temperature range of 400–800 °C. The thermal stability 
of the synthesized nanoparticles became almost unwaver-
ing above 400 °C. The uncoated iron oxide nanoparticles 
(MNPs) exhibited the highest thermal stability. The mass 
of the final residue was 60.9% and 56.6% for the MNPs and 
PVA@MNPs, respectively. This is because of the existence 
of the inorganic element that is expected to affect the heating 
efficiency behavior of the nanoparticles.

Magnetic properties for MNPs and PVA@MNPs were 
performed using VSM at room temperature (Fig. 8). The 
magnetic behavior of uncoated and PVA-coated MNP 
showed soft magnetic property with small coercivity 
(Hc) 7.8 G and remanence (Mr) 4.2 emu g−1. If the MNP 
size is preserved beneath a critical size, the MNPs head 
to promote as a single magnetic domain frame. At the 
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smallest size, MNPs display superparamagnetic attitudes 
under standard conditions. The magnetization saturation 
(Ms) values were 41.98 and 45.08 emu g−1 for MNPs and 
PVA@MNPs, respectively (Fig. 8). The slight increase in 
the Ms value of PVA@MNPs is likely to refer to the con-
tact potential prompt at the Fe3O4-PVA interface [31]. The 
increase in magnetic saturation values of polymer-coated 
samples was probably attributed to the contact potential 
induced at the iron-polymer interface [31]. Fe3O4 and γ 
Fe2O3 (20 to 30 nm) were coated with polyaniline. Poly-
aniline coating exhibited an increase in saturation mag-
netization by 2 emu g−1. This enhanced magnetization is 
found to be an interfacial phenomenon resulting from a 
contact potential. Recently, Mol et al. confirm a similar 
observation that the Ms of uncoated Fe3O4 is less than for 
polymer-coated Fe3O4. Ms of PANI-coated and polypyr-
role-coated Fe3O4 nanoparticles was 55 and 52 emu g−1, 
respectively. However, Ms was 51 emu g−1 for Fe3O4, 
which is less than for polymer-coated Fe3O4 due to sur-
face/interfacial magnetism [32]. These observed behaviors 
were in agreement with those reported in the literature and 
thereby confirmed an increase in saturation magnetiza-
tion value PVA@MNPs [31, 32]. There have been sev-
eral reports on the decrease in Ms values of composites 
as magnetite nanoparticles are incorporated into a non-
magnetic polymer matrix [22, 29, 33, 34]. The saturation 
magnetization value for Fe3O4-PVA is 0.52 emu g−1 [33]. 
The hysteresis loop shows that Fe3O4-PVA was superpara-
magnetic with no coercivity at room temperature. The Ms 
value 30 emu g−1 for PVA-magnetite nanoparticles was 
measured by Kayal et al. [34]. The particles are super-
paramagnetic at room temperature which is useful in drug 
delivery as they do not retain magnetization before and 

after exposure to an external magnetic field. The Ms value 
56.41 emu g−1 for PVA-magnetite nanoparticles was meas-
ured by Kurchania et al. [22]. It shows that the sample 
reveals superparamagnetic behavior with no remanence 
and coercivity. A magnetite/PVA nanocomposite film 
shows a typical superparamagnetic behavior at room tem-
perature without any hysteresis loop since the remanence 
and coercivity are negligible. The saturation magnetization 
Ms at room temperature was 8.1 emu g−1 [29].

Hyperthermia performance

Under an alternative magnetic field, magnetic IONPs were 
able to generate localized heat energy as a thermal source 
(Fig. 9) [35–42]. For effective hyperthermia application, 
IONPs should satisfy a small particle size and a high Ms. 
This increase in temperature is the basis in cancer therapy 
applications by magnetic induction heating behavior [5–7].

In this study, the heating efficiency and SLP values were 
studied by employing five different magnetic field con-
ditions to optimize the heating effects (Figs. 10, 11). As 
shown in Figs. 10, 11, the temperature elevated with time 
nearly in a linear way (a quasi-adiabatic regime). After that, 
the increase in temperature slowed down progressively till 
reaching a saturation region. At this region, the temperature 
did not increase any longer and reached thermal equilibrium 
[33]. The samples became heated faster and the heating rate 
rose by increasing frequency as demonstrated in Fig. 10. 
Magnetic nanoparticles have the feature of supplying high 
heating performance with a lower dose by faster hyperther-
mia treatment. When comparing the heating efficiency of 
MNPs to PVA@MNPs, PVA@MNPs were found to show 
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the highest efficiency. The enhanced stability, uniform parti-
cle dispersion and high magnetization saturation for PVA@
MNPs improved the heating performance effectively.

The heating efficiency of the MNPs and PVA@MNPs 
was investigated under a magnetic field strength (13.5 kA 
m−1) with different frequencies in the range from 159.8 
to 269.9 kHz, as shown in Fig. 10b–c. For PVA@MNPs 
nanoparticles, the heating rate increased and the temper-
ature elevations were 7.1 °C and 9.5 °C after 200 s with 
159.8 kHz and 269.9 kHz, respectively. As a result, the heat-
ing efficiency increased as the frequency increased under a 
constant magnetic field strength. For effective hyperthermia 
treatment, the temperature of cancer cells should be elevated 
6–8 °C to reach (43–45 °C).

The heating performance is quantified by the parameter 
SLP, which is equal to the dissipated power divided by the 
magnetic material density. SLP varies linearly with the prod-
uct of frequency, f, and the square of the magnetic field (H2). 

Fig. 10   Heating efficiency for 
MNPs and PVA@MNPs at the 
conditions: a f = 106.6 kHz and 
H = 20 kA m−1, b f = 159.8 kHz 
and H = 13.5 kA m−1, c 
f = 269.9 kHz and H = 13.5 
kA m−1, d f = 381.6 kHz 
and H = 12.7 kA m−1 and e 
f = 614.4 kHz and H = 9.5 kA 
m−1
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The heating performance curves show temperature eleva-
tion with time [35]. For human exposure and biosafety, the 
product of strength and frequency of the AMF must be main-
tained below a threshold safety value (5 × 109 A m−1 s−1). 
The heating efficiency of the fabricated particles in this 
study could be enhanced with f = 614.4 kHz and H = 9.5 kA 
m−1. A comparison of SLP of MNPs and PVA@MNPs nan-
oparticles is shown in Fig. 11. Under the same magnetic field 
condition, PVA@MNPs showed the highest SLP with better 
hyperthermic response. It was found that the highest SLP 
value was 163.81 W g−1 for PVA@MNPs under magnetic 
conditions of frequency = 614.4 kHz and magnetic field = 9.5 
kA m−1. However, the lowest SLP value was 4.84 W g−1 for 
MNPs under magnetic conditions of frequency = 159.8 kHz 
and magnetic field = 13.5 kA m−1. SLP is affected by the 
saturation magnetization, as shown by Eq. 3 for SLP. Modu-
lation of the shape and size of IONPs can tune their mag-
netic properties, induce saturation magnetization and further 
enhance magnetic hyperthermia properties.

where f is the frequency, H is the field strength, ρMNPs is the 
density of nanoparticles, ϕ is the volume fraction, µ0 is the 
permeability, and χ’’ is the susceptibility. Ms is the satura-
tion magnetization, V is the volume of the MNPs, ω = 2πf is 
the sweep rate of AMF, τR is the time of relaxation, and kB 
is Boltzmann’s constant.

The heating efficiency is affected by various factors, such 
as the magnetic field condition, size of the nanoparticles, 
magnetic behaviors and coated layer. Hence, the magnetic 
nanoparticles should be prepared with a proper method to 
reach the target temperature [36, 37].

The single-domain size from 20 to 70 nm along with a 
narrow size distribution is reported to improve the loss of 
power value [38]. The reported values for SLP in the lit-
erature are 10–100 W g−1 for magnetic field conditions of 
H = 10 kA m−1 and f ≈ 400 kHz [39]. Nigam et al. have 
reported magnetite nanoparticles coated with citrate that 
showed a high SLP to reach the target temperature (43 °C) 
in a short time with increases of the magnetic field [40]. 
High SLP (150 W g−1) was reached under magnetic field 
condition of H = 20 mT and f = 205 kHz [41]. The SLP 
value shifted from almost zero for 4.1 and 6.7 nm MNPs 
to ~ 76 W  g−1 for 35 nm rhamnose-coated Fe3O4 MNPs 
[43]. Magnetite nanoparticles @ chitosan (15 nm) showed 
(SLP = 119 W g−1) higher than uncoated magnetite nano-
particles. The enhancement in the particle dispersion is 
because of the presence of the hydrophilic shell layer [42]. 
The heat dissipation has resulted fundamentally from the 
magnetic moment's relaxation termed as Neel relaxation and 

(3)

SLP =
� ⋅ �0 ⋅ �

��(f ) ⋅ H2
⋅ f

�MNPs ⋅ �
, � ��(f ) =

�0M
2
s
V

3kBT

��R
(

1 + �2�2
R

)

Brownian relaxation [35–42]. In Neel relaxation, there is 
opposition by the particle’s crystalline structure, resulting in 
heat generation. In Brownian relaxation, the heat is created 
from the physical rotation of particles within the medium. 
It results in SLP value reduction. These relaxations also 
rely upon magnetic particles size. In general, Neel relaxa-
tion dominates when nanoparticles are less than 20 nm [44]. 
The diversity in the heating performance of polymer-coated 
MNPs is related to individual NPs relaxation into the poly-
mer shell which results in a growing in heating performance 
than uncoated MNPs [32]. PVA@MNPs (10 ± 2.5 nm) pre-
pared via ultrasonic-assisted coprecipitation process, in the 
current study, exhibited a high SLP value (163.81 W g−1). 
This suggests that these PVA@MNPs could be used for 
hyperthermia treatments.

Conclusions

Magnetite nanoparticles coated with polyvinyl alcohol were 
fabricated successfully through an ultrasonic-assisted copre-
cipitation technique. The dispersion of MNPs and the 
magnetization value (45.08 emu g−1) were enhanced after 
coating with PVA shell. The presence of PVA beneficially 
improves the heating efficiency and hyperthermia properties 
as well. Under high frequency, the maximum SLP could 
be obtained with PVA@MNPs. PVA@MNPs showed the 
highest SLP value (163.81 W g−1), while MNPs showed 
the lowest one (4.84 W g−1). Accordingly, the self-heating 
properties of the prepared PVA@MNPs show promise in 
hyperthermia applications.
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