Skip to main content
Log in

NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Utilizing metal nitrate salts and sodium hydroxide as a precipitating agent, nanosized nickel-zinc ferrite (NiZnF) particles were successfully synthesized using a co-precipitation route. The effect of a 1% NiZnF additive on the thermal decomposition of AP and the burn rate of AP-based composite solid propellants was investigated. Five isoconversional methods were utilized to determine the activation energy of the AP in the presence of the catalyst using DSC data. An ignition delay study of AP and propellant with and without NiZnF catalyst was carried out using a tube furnace. DSC results suggested that NiZnF exhibits good catalytic activity on the thermal decomposition of AP by decreasing thermal decomposition temperature (90.68 °C) and activation of AP to a great extent.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sharapa DI, Doronkin DE, Studt F, Grunwaldt JD, Behrens S. Moving frontiers in transition metal catalysis: synthesis. Charact Model Adv Mater. 2019;31:1807381.

    Google Scholar 

  2. Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today. 2010;5:412–34.

    Article  CAS  Google Scholar 

  3. Kharisov BI, Dias HVR, Kharissova OV. Mini-review: ferrite nanoparticles in the catalysis. Arab J Chem. 2019;12:1234–46.

    Article  CAS  Google Scholar 

  4. Kaur G, Devi P, Thakur S, Kumar A, Chandel R, Banerjee B. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect. 2019;4:2181–99.

    Article  CAS  Google Scholar 

  5. Cheng T, Zhang D, Li H, Liu G. Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium. Green Chem. 2014;16:3401–27.

    Article  CAS  Google Scholar 

  6. Amiri M, Eskandari K, Salavati-Niasari M. Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci. 2019;271:101982.

    Article  CAS  PubMed  Google Scholar 

  7. Mohallem NDS, Silva JB, Nascimento GLT, Guimarães VL. Study of multifunctional nanocomposites formed by cobalt ferrite dispersed in a silica matrix prepared by sol-gel process. In: Ebrahimi F, editor. Nanocomposites: new trends and developments. London: IntechOpen; 2012. p. 457–81.

    Google Scholar 

  8. Vara JA, Dave PN, Chaturvedi S. Investigating catalytic properties of nanoferrites for both AP and nano-AP based composite solid propellant. Combust Sci Technol. 2021;193:2290–4.

    Article  CAS  Google Scholar 

  9. Tsay CY, Chiu YC, Tseng YK. Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles. Phys B. 2019;570:29–34.

    Article  CAS  Google Scholar 

  10. Bakhshi H, Vahdati N, Sedghi A, Mozharivskyj Y. Comparison of the effect of nickel and cobalt cations addition on the structural and magnetic properties of manganese-zinc ferrite nanoparticles. J Magn Magn Mater. 2019;474:56–62.

    Article  CAS  Google Scholar 

  11. Yousuf MA, Baig MM, Waseem M, Haider S, Shakir I, Ud-Din Khan S, Warsi MF. Low cost micro-emulsion route synthesis of Cr-substituted MnFe2O4 nanoparticles. Ceram Int. 2019;45:22316–23.

    Article  CAS  Google Scholar 

  12. Almessiere MA, Slimani Y, Guner S, Sertkol M, Demir Korkmaz A, Shirsath SE, Baykal A. Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason Sonochem. 2019;58:104654.

    Article  CAS  PubMed  Google Scholar 

  13. Naik MM, Naik HSB, Nagaraju G, Vinuth M, Naika HR, Vinu K. Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchem J. 2019;146:1227–35.

    Article  CAS  Google Scholar 

  14. Singh G, Kapoor IPS, Dubey S, Siril PF, Yi JH, Zhao FQ, Hu FQ. Effect of mixed ternary transition metal ferrite nanocrystallites on thermal decomposition of ammmonium perchlorate. Thermochim Acta. 2008;477:42–7.

    Article  CAS  Google Scholar 

  15. Singh S, Srivastava P, Singh G. Nanorods, nanospheres, nanocubes: synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89. Mater Res Bull. 2013;739–6.

  16. Srivastava P, Kapoor IPS, Singh G. Nanoferrites: preparation, characterization and catalytic activity. J Alloys Compd. 2009;485:88–92.

    Article  CAS  Google Scholar 

  17. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  CAS  Google Scholar 

  18. Rabi B, Ounacer M, Boudad L, Essoumhi A, Sajieddine M, Taibi M, Liba A, Razouk A. Structural, optical and dielectric properties of nickel zinc spinel ferrites synthesized by co-precipitation method. J Mater Sci Mater Electron. 2021;32:932–43.

    Article  CAS  Google Scholar 

  19. Singh M, Goyal M, Devlal K. Size and shape effects on the band gap of semiconductor compound nanomaterials. J Taibah Univ Sci. 2018;12:470–5.

    Article  Google Scholar 

  20. Joshi GP, Saxena NS, Mangal R, Mishra A, Sharma TP. Band gap determination of Ni-Zn ferrites. Bull Mater Sci. 2003;26:387–9.

    Article  CAS  Google Scholar 

  21. Chakrabarty S, Pal M, Dutta A. Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals. Mater Chem Phys. 2015;153:221–8.

    Article  CAS  Google Scholar 

  22. Nanda KK, Kruis FE, Fissan H, Acet M. Band-gap tuning of PbS nanoparticles by in-flight sintering of size classified aerosols. J Appl Phys. 2002;91:2315–21.

    Article  CAS  Google Scholar 

  23. Chai H, Li G, Xiang X, Hu X. Simple preparation of ZnO superstructures self-assembled by hexagonal prisms and their superb catalytic activity in the pyrolysis of ammonium perchlorate. Chem Phys Lett. 2019;730:460–5.

    Article  CAS  Google Scholar 

  24. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 1985;57:603–19.

    Article  CAS  Google Scholar 

  25. Lazarević ZŽ, Milutinović AN, Jovalekić ČD, Ivanovski VN, Daneu N, Mađarević I, Romčević NŽ. Spectroscopy investigation of nanostructured nickel–zinc ferrite obtained by mechanochemical synthesis. Mater Res Bull. 2015;63:239–47.

    Article  CAS  Google Scholar 

  26. Samavati A, Ismail AF. Antibacterial properties of copper-substituted cobalt ferrite nanoparticles synthesized by co-precipitation method. Particuology. 2017;30:158–63.

    Article  CAS  Google Scholar 

  27. Kang L, Li S, Wang B, Li X, Zeng Q. Exploration of the energetic material ammonium perchlorate at high pressures: combined Raman spectroscopy and X-ray diffraction study. J Phys Chem C. 2018;122:15937–44.

    Article  CAS  Google Scholar 

  28. Zhang M, Zhao F, Yang Y, An T, Qu W, Li H, Zhang J, Li N. Catalytic activity of ferrates (NiFe2O4, ZnFe2O4 and CoFe2O4) on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2020;45:463–71.

    Article  CAS  Google Scholar 

  29. Singh G, Kapoor IPS, Dubey S. Bimetallic nanoalloys: preparation, characterization and their catalytic activity. J Alloys Compd. 2009;480:270–4.

    Article  CAS  Google Scholar 

  30. Vyazovkin S. Some basics en route to isoconversionalal methodology. In: Vyazovkin S, editor. Isoconversionalal kinetics of thermally stimulated processes. Cham: Springer International Publishing; 2015. p. 1–25.

    Google Scholar 

  31. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  32. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part C Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  33. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  34. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  35. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  36. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–6.

    Article  CAS  Google Scholar 

  37. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.

    Article  CAS  Google Scholar 

  38. Quraishi KS, Bustam MA, Krishnan S, Khan MI, Wilfred CD, Lévêque JM. Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. J Therm Anal Calorim. 2017;129:261.

    Article  CAS  Google Scholar 

  39. Gao Z, Nakada M, Amasaki I. A consideration of errors and accuracy in the isoconversionalal methods. Thermochim Acta. 2001;369:137–42.

    Article  CAS  Google Scholar 

  40. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversionalal method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128:335–48.

    Article  CAS  Google Scholar 

  41. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;551–1.

  42. Ramdani Y, Liu Q, Huiquan G, Liu P, Wang J. Synthesis, characterization and kinetic computations of fullerene (C60)–CuO on the mechanism decomposition of ammonium perchlorate. Mater Today Chem. 2018;10:19–30.

    Article  CAS  Google Scholar 

  43. Singh G, Kapoor IPS, Dubey S, Siril PF. Kinetics of thermal decomposition of ammonium perchlorate with nanocrystals of binary transition metal ferrites. Propellants Explos Pyrotech. 2009;34:78–83.

    Article  CAS  Google Scholar 

  44. Chen T, Du P, Jiang W, Liu J, Hao G, Gao H, Xiao L, Ke X, Zhao F, Xuan C. A facile one-pot solvothermal synthesis of CoFe2O4/RGO and its excellent catalytic activity on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;87:83838–47.

    Article  CAS  Google Scholar 

  45. Zhao S, Ma D. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate. J Nanomater. 2010;2010:28–32.

    Google Scholar 

  46. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S. Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv. 2015;5:1950.

    Article  CAS  Google Scholar 

  47. Han A, Liao J, Ye M, Li Y, Peng X. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng. 2011;19:1047–51.

    Article  CAS  Google Scholar 

  48. Wang W, Zhang D. Facile preparation of rGO/MFe2O4 (M = Cu Co, Ni) nanohybrids and its catalytic performance during the thermal decomposition of ammonium perchlorate. RSC Adv. 2018;8:32221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song M, Chen M, Zhang Z. Effect of Zn powders on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2008;33:261–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Chemistry, Sardar Patel University for providing research facility, the Department of Physics, Sardar Patel University for providing Raman facility, and Savitribai Phule Pune University for providing BET, DSC, and TGA facilities. RS and RT are also thankful to DST project no SR/NM/NT-1014/2016 (G) for Junior Research Fellowship and Research Associate fellowship, respectively.

Funding

This study was funded by the Department of Science & Technology (Project No SR/NM/NT-1014/2016 (G)), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh N. Dave.

Ethics declarations

Conflict of interest

The authors declare no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P.N., Sirach, R. NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants. J Therm Anal Calorim 147, 10999–11011 (2022). https://doi.org/10.1007/s10973-022-11305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11305-8

Keywords

Navigation