Skip to main content
Log in

Simulation of heat transfer and fluid flow of hot oil in radiation section of an industrial furnace considering coke deposition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a steady three-dimensional simulation of the coil containing hot oil in the radiation section of the vertical cylindrical furnace of an industrial unit was investigated with and without considering oil decomposition and coke formation. Flow velocity and pressure, fluid outlet temperature, and coil wall temperature at different points of the coil were calculated using computational fluid dynamics. For model validation, the values of the simulated coil wall temperature at the end of the flow path and also the outlet fluid temperature from the coil were compared with the industrial data. For the simulation case of without deposition, the wall and outflow temperature showed 211.19% and 13.47% deviation, respectively. In order to improve the results, the simulation was repeated considering coke layer on the coil. The coke thicknesses in different passes of the coil were estimated using a trial-and-error procedure. The results indicated that the deviations for the wall temperature and the fluid temperature reduce to 14.25% and 12.48%, respectively. Results showed that the deposited coke layer reduced the temperature of the heat transfer fluid and enhanced the coil wall temperature. Then, the exact analyses of the fluid temperature, velocity, and pressure and also the wall temperature in different points of a coil’s bend were performed for the two cases of without deposition and with deposition. The minimum and maximum velocities were observed at the entrance to and exit from a bend, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A o :

Outer coil surface (m2)

C 1 :

Realizable \(k - \varepsilon\) model constant

C 2 :

Realizable \(k - \varepsilon\) model constant

C 1 ɛ :

Realizable \(k - \varepsilon\) model constant

C 3 ɛ :

Realizable \(k - \varepsilon\) model constant

C μ :

Realizable \(k - \varepsilon\) model constant

c p :

Heat capacity (J kg1 K1)

De:

Dean number

d :

Diameter, m

E :

Total energy per unit mass (J kg1)

F :

External body forces (N)

f :

Friction factor

G b :

Generation of turbulence kinetic energy due to buoyancy (J m3 s1)

G k :

Generation of turbulence kinetic energy due to the mean velocity gradients (J m3 s1)

G :

Gravitational acceleration (m s2)

h n :

Enthalpy of species n per unit mass (J kg1)

h oil :

Oil heat transfer coefficient in clean coil (W m2 K1)

\(h_{\text{oil}_\text C}\) :

Oil heat transfer coefficient in coked coil (W m2 K1)

J n :

Diffusion flux of species n (kg m2 s1)

K :

Local head loss coefficient

k :

Turbulent kinetic energy (m2 s2)

k th :

Thermal conductivity (W m1 K1)

k th c:

Coke thermal conductivity (W m1 K1)

k th w :

Wall thermal conductivity (W m1 K1)

l :

Length (m)

m :

Mass (kg)

Nu:

Nusselt number

p :

Pressure (Pa)

Pr:

Prandtl number

Q :

Total heat rate (W)

q :

Heat flux (Wm2)

Re:

Reynolds number

r :

Radius (m)

r C :

External radius of the coke layer (m)

r i :

Internal radius of the coke layer (m)

r o :

External radius of the coil wall (m)

r 1 :

Internal radius of the coil wall (m)

S :

Inverse of the mean shear timescale (s1)

S ij :

Mean strain rate tensor

S h :

Source term in the energy equation (J m3 s1)

S k :

Source term in the turbulence kinetic energy equation (J m3 s2)

S m :

Mass of dispersed phases added to continuous phase (kg)

S ɛ :

Source term in the dissipation of turbulent kinetic energy equation (J m3 s2)

T :

Temperature (K)

T in :

Inlet oil temperature (K)

T oil :

Oil temperature in clean coil (K)

T oil C :

Oil temperature in deposited coil (K)

T out :

Outlet oil temperature (K)

T 1 :

External wall temperature of clean coil (K)

T 1C :

External wall temperature of coked coil (K)

T 2 :

Internal wall temperature of clean coil (K)

T 2C :

External wall temperature of coke layer (K)

T 3C :

Internal wall temperature of coke layer (K)

t :

Time (s)

u :

Fluid velocity perpendicular to the gravitational vector (m s1)

u i , u j :

Velocity component in the ith or jth direction (m s1)

V :

Mean velocity (m s1)

v :

Fluid velocity parallel to the gravitational vector (m s1)

v :

Velocity vector (m s1)

x i , x j :

Coordinate in the ith or jth direction (m)

Y m :

Contribution of the fluctuating dilatation in compressible turbulence

z :

Vertical height (m

γ :

Specific mass (kg s2 m2)

ε :

Dissipation rate of turbulent kinetic energy (m2 s3)

η :

Turbulence to mean shear timescale ratio

μ :

Molecular viscosity (kg m1 s1)

μ t :

Turbulent viscosity (kg m1 s1)

ρ :

Density (kg m3)

σ k :

Turbulent Prandtl number in realizable \(k - \varepsilon\) model

σ ε :

Turbulent Prandtl number in realizable \(k - \varepsilon\) model

τ :

Stress tensor

i :

Direction i

j :

Direction j

n :

Species n

References

  1. Mushatet KS, Ayad AM. CFD analysis for turbulent flow and heat transfer in U-tube. J Eng Appl Sci. 2018;13(14):11122–34.

    CAS  Google Scholar 

  2. Mushatet KS, Ayad AM. 3D numerical simulation of turbulent flow and heat transfer in a U-tube of different configurations. Int J Eng Technol. 2018;7(4):3902–8.

    CAS  Google Scholar 

  3. Biranjeet H, Abhishek S. Review on heat transfer and fluid flow within U-pipe and bend pipe. IJRTER. 2017;3(4):319–25.

    Article  Google Scholar 

  4. Barik AK, Satapathy PK, Sahoo SS. CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nanofluid. Sadhana. 2016;41:795–804.

    Article  CAS  Google Scholar 

  5. Herce C, González-Spinosa A, Gil A, Cortés C, González-Rebordinos J, Guégués T, Gil M, Ferré L, Brunet F, Arias A. Combustion monitoring in an industrial cracking furnace based on combined CFD and optical techniques. Fuel. 2020. https://doi.org/10.1016/j.fuel.2020.118502.

    Article  Google Scholar 

  6. Labo WE, Evans JE. Heat transfer in the radiant section of petroleum heaters. Chem Engrs. 1939;35:748–78.

    Google Scholar 

  7. Osuwan S, Steward FR. A mathematical simulation of radiant heat transfer in a cylindrical furnace. Can J Chem Eng. 1972;50(4):441–560.

    Article  Google Scholar 

  8. Saegher JJ, Detemmerman T, Froment GF. Three-dimensional simulation of high-severity internally finned cracking coils for olefins production. Oil Gas Sci Technol. 1996;51(2):245–60.

    Google Scholar 

  9. Detemmerman T, Froment GF. Three-dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons. Oil Gas Sci Technol. 1998;53(2):181–94.

    CAS  Google Scholar 

  10. Heynderickx GJ, Oprins AJM, Marin GB, Dickh E. Three-dimensional flow patterns in cracking furnaces with long flame burners. AIChE. 2001;47(2):388–400.

    Article  CAS  Google Scholar 

  11. Oprins AJM, Heynderickx GJ, Marin GB. Three-dimensional asymmetric flow and temperature fields in cracking furnaces. Ind Eng Chem Res. 2001;40(23):5087–94.

    Article  CAS  Google Scholar 

  12. Oprins AJM, Heynderickx GJ. Calculation of three-dimensional flow and pressure fields in cracking furnaces. Chem Eng Sci. 2003;58(21):4883–93.

    Article  CAS  Google Scholar 

  13. Sowers G, Reed C. Dynamic optimization of ethylene furnaces cracking propane. In: Proceedings of the13th ethylene producers conference. Houston. 2001; 366–405.

  14. Zhang N, Qiu T, Chen B. CFD Simulation of propane cracking tube using detailed radical kinetic mechanism. Chin Chem Eng. 2013;21(12):1319–31.

    Article  CAS  Google Scholar 

  15. Zhou F, Qiu T, Zhou W. Coupled simulation of recirculation zonal firebox model and detailed kinetic reactor model in an industrial ethylene cracking furnace. Chinese Chem Eng. 2017;25(8):1091–100.

    Article  Google Scholar 

  16. Fahiminezhad A, Peyghambarzadeh SM, Rezaeimanesh M. Mathematical modelling and industrial verification of EDC cracking furnace. JChPE. 2020;54(2):165–85.

    CAS  Google Scholar 

  17. Ramana MV, Plehiers PM, Froment GF. The coupled simulation of heat transfer and reaction in a pyrolysis furnace. Chem Eng Sci. 1988;43(6):1223–9.

    Article  Google Scholar 

  18. Plehiers PM, Froment GF. Firebox simulation of olefins units. Ind Eng Commun. 1989;80:81–99.

    CAS  Google Scholar 

  19. Plehiers PM, Reyniers GC, Froment GF. Simulation of the run length of an ethane cracking furnace. Ind Eng Chem Res. 1990;29(4):636–41.

    Article  CAS  Google Scholar 

  20. Hu G, Schietekat CM, Zhang Y, Qian F, Heynderickx GJ, Van Geem KM, Marin GB. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors. Ind Eng Chem Res. 2015;54(9):2453–65.

    Article  CAS  Google Scholar 

  21. Zheng S, Zhang X, Qi C, Zhou H. Modeling of heat transfer and pyrolysis reactions in ethylene cracking furnace based on 3-D combustion monitoring. Int J Therm Sci. 2015;94:28–36.

    Article  CAS  Google Scholar 

  22. Taweerojkulsri Ch, Panjapornpon Ch. Temperature control of EDC thermal cracking furnace with a coupled ODE and 2D-PDEs model. Chem Eng Sci. 2014;31:516–27.

    Google Scholar 

  23. Han YL, Xiao R, Zhang MY. Combustion and pyrolysis reactions in a naphtha cracking furnace. Chem Eng Technol. 2007;30(1):112–20.

    Article  Google Scholar 

  24. Gang LX, Zhanga LH, Zhanga R, Suna Y, Jianga B, Fang M. CFD modeling of phase change and coke formation in petroleum refining heaters. Fuel Process Technol. 2015;134:18–25.

    Article  Google Scholar 

  25. Ennis T. Safety in design of thermal fluid heat transfer systems. IChemE. 2009;155:162–9.

    CAS  Google Scholar 

  26. Maksimovskii VV, Raud EA, Sokolov OA, Korsak IV, Chepovskii MA. Thermal conductivity of coke deposited in quenching-evaporative equipment of pyrolysis units. Chem Technol Fuels Oil. 1990;26:584–7.

    Article  Google Scholar 

  27. Aberoumand S, Jafarimoghaddam A, Moravej M, Aberoumand H, Javaherdeh K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl Therm Eng. 2016;101:362–72.

    Article  CAS  Google Scholar 

  28. Asadi A, Aberoumand S, Moradikazerouni A, Pourfattah F, Żyła G, Estellé P, Mahian O, Wongwises S, Nguyen HM, Arabkoohsar A. Recent advances in preparation methods and thermophysical properties of oil-based nanofluids. Powder Technol. 2019;325:209–26.

    Article  Google Scholar 

  29. Tu J, Yeoh GH, Lio C. Computational fluid dynamics. 3rd ed. Amsterdam: Elsevier; 2018.

    Google Scholar 

  30. Niaei A, Towfighi J, Sadrameli SM, Karimzadeh R. The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces. Appl Therm Eng. 2004;24(14–15):2251–65.

    Article  CAS  Google Scholar 

  31. Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. 2nd ed. New York: Wiley; 2002.

    Google Scholar 

  32. Abdesalam SI, Sohail M. Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms. Pramana. 2020. https://doi.org/10.1007/s12043-020-1933-x.

    Article  Google Scholar 

  33. Karimi Y, Nazar ARS, Motevasel M. CFD simulation of nanofluid heat transfer considering the aggregation of nanoparticles in population balance model. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09218-0.

    Article  Google Scholar 

  34. Dutta P, Kumar S, Nandi N, Pal N. Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modeling. Eng Sci Technol Int J. 2016;19(2):904–10.

    Google Scholar 

  35. Safayet HMD, Ishtiaque HMD. Computational investigation of turbulent flow development in 180° channel with circular cross section. EJERS. 2018;3(12):98–105.

    Google Scholar 

  36. Ghazali MF, Rahim MFA. CFD prediction of heat and fluid flow through U-bends using high Reynolds-number EVM and DSM models. Procedia Eng. 2013;53:600–6.

    Article  Google Scholar 

  37. Bott TR. Fouling of heat exchangers. Amsterdam: Elsevier Books; 1995.

    Google Scholar 

  38. Zhang Y, Li Q, Zhou H. Theory and calculation of heat transfer in furnaces. Amsterdam: Elsevier; 2016.

    Google Scholar 

  39. Holman JP. Heat transfer. 3rd ed. NewYork: McGraw-Hill; 1990.

    Google Scholar 

  40. Singh S, Kharkwal H, Gautam A, Pandey A. CFD analysis for thermo-hydraulic properties in a tubular heat exchanger using curved circular rings. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-020-09670-3.

    Article  Google Scholar 

  41. Ghobadi M. Experimental measurement and modelling of heat transfer in spiral and curved Channels. PhD Thesis. Memorial university of newfoundland.2014.

  42. Streeter VL, Wylie EB. Fluid mechanics. 3rd ed. NewYork: McGraw-Hill; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Peyghambarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, E., Peyghambarzadeh, S.M., Zarrinabadi, S. et al. Simulation of heat transfer and fluid flow of hot oil in radiation section of an industrial furnace considering coke deposition. J Therm Anal Calorim 147, 4821–4835 (2022). https://doi.org/10.1007/s10973-021-10847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10847-7

Keyword

Navigation