Skip to main content
Log in

Thermal transition analysis of fish scale originated hydroxyapatite: AFM and electrochemical impedance spectroscopy as complimentary techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Several studies are reported on extraction and characterization of hydroxyapatite (HAp) from biological sources by heat sintering method; however, conversing observations are reported on the optimized sintering conditions and crystalline characteristics of the extracted HAp. The present study systematically depicts the different stages of collagen elimination and crystallization of mineral phase in fish scale occurring during different conditions of heat sintering. The pre-sintering temperature as optimized by thermal analysis by TGA, DTG and DTA curves was at 450 °C. The microcrystalline and structural characteristics of extracted HAp samples were established by SEM, elemental mapping, XRD, FTIR and surface area analysis (BET). Accordingly, complete desorption of residual collagen from scale surface was evidenced at 800 °C, and that from matrix interspace at 900 °C. Stable HAp nanocrystal formation could be achieved at 1000 °C, above which the characteristic features of recrystallization and phase transformation were evident. Hence, 1000 °C was considered as the rate limiting temperature for HAp formation. This could be clearly established by atomic force microscopy (AFM) and electrochemical impedance analysis. Conclusively, the present study established AFM and electrochemical impedance analysis as complimentary techniques to the routine analytical techniques employed in the earlier reports for the confirmation of microstructural alterations and phase transformations occurring in HAp crystals during sintering process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patel PP, Buckley C, Taylor BL, Sahyoun CC, Patel SD, Mont AJ, Mai L, Patel S, Freeman JW. Mechanical and biological evaluation of a hydroxyapatite-reinforced scaffold for bone regeneration. J Biomed Mater Res Part A. 2019;107(4):732–41. https://doi.org/10.1002/jbm.a.36588.

    Article  CAS  Google Scholar 

  2. Swain SK, Sarkar D. Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Appl Surf Sci. 2013;286:99–103. https://doi.org/10.1016/j.apsusc.2013.09.027.

    Article  CAS  Google Scholar 

  3. Charmas B, Skubiszewska-Zięba J, Kucio K, Skwarek E. Influence of mechanochemical treatment on thermal and structural properties of silica–collagen and hydroxyapatite–collagen composites. Adsorption. 2019;25(3):591–9. https://doi.org/10.1007/s10450-019-00051-3.

    Article  CAS  Google Scholar 

  4. Roberts NB, Walsh HP, Klenerman L, Kelly SA, Helliwell TR. Determination of elements in human femoral bone using inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1996;11(2):133–8. https://doi.org/10.1039/JA996110187R.

    Article  CAS  Google Scholar 

  5. Pon-On W, Suntornsaratoon P, Charoenphandhu N, Thongbunchoo J, Krishnamra N, Tang IM. Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material. Mater Sci Eng C. 2016;62:183–9. https://doi.org/10.1016/j.msec.2016.01.051.

    Article  CAS  Google Scholar 

  6. Mondal S, Mondal B, Dey A, Mukhopadhyay SS. Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes. J Miner Mater Charact Eng. 2012;11(01):55. https://doi.org/10.4236/jmmce.2012.111005.

    Article  Google Scholar 

  7. Ulfyana D, Anugroho F, Sumarlan SH, Wibisono Y. Bioceramics synthesis of hydroxyapatite from red snapper fish scales biowaste using wet chemical precipitation route. In IOP Conference Series: Earth and Environmental Science 2018 Mar (Vol. 131, No. 1, p. 012038). IOP Publishing.

  8. Das MP, Vijaylakshmi JV, Sugunaw JV, Renuka M, Prasad K. Efficient Dye Decolorization of an Azo dye on Fish Scale Hydroxyapatite. Res J Pharm Technol. 2019;12(6):2917–21. https://doi.org/10.5958/0974-360X.2019.00491.8.

    Article  Google Scholar 

  9. Skwarek E. Thermal analysis of hydroxyapatite with adsorbed oxalic acid. J Therm Anal Calorim. 2015;122(1):33–45. https://doi.org/10.1007/s10973-015-4692-z.

    Article  CAS  Google Scholar 

  10. Ozawa M, Suzuki S. Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment. J Am Ceram Soc. 2002;85(5):1315–7. https://doi.org/10.1111/j.1151-2916.2002.tb00268.x.

    Article  CAS  Google Scholar 

  11. Venkatesan J, Kim SK. Effect of temperature on isolation and characterization of hydroxyapatite from tuna (Thunnus obesus) bone. Materials. 2010;3(10):4761–72. https://doi.org/10.3390/ma3104761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manalu JL, Soegijono B, Indrani DJ. Characterization of hydroxyapatite derived from bovine bone. Asian J Appl Sci. 2015;3(04).

  13. Skwarek E, Goncharuk O, Sternik D, Janusz W, Gdula K, Gun’ko VM. Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites. Nanoscale Res Lett. 2017;12(1):1–12. https://doi.org/10.1186/s11671-017-1911-5.

    Article  CAS  Google Scholar 

  14. Rey C, Freche M, Heughebaert M, Heughebaert JC, Lacout JL, Lebugle A, Szilagyi J, Vignoles M. Apatite chemistry in biomaterial preparation, shaping and biological behaviour. Bioceramics. 1991. https://doi.org/10.1016/B978-0-7506-0269-3.50012-8.

    Article  Google Scholar 

  15. Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure on in vitro behaviour. I. Dissolution. J Biomed Mater Res. 1993;27(1):25–34. https://doi.org/10.1002/jbm.820270106.

    Article  CAS  PubMed  Google Scholar 

  16. Rincón-López J, Hermann-Muñoz J, Giraldo-Betancur A, Vizcaya-Ruiz D, Alvarado-Orozco J, Muñoz-Saldaña J. Synthesis, characterization and in vitro study of synthetic and bovine-derived hydroxyapatite ceramics: A comparison. Materials. 2018; 25;11(3):333. https://doi.org/https://doi.org/10.3390/ma11030333

  17. Meskinfam M, Sadjadi M, Jazdarreh H. Synthesis and characterization of surface functionalized nanobiocomposite by nano hydroxyapatite. Int J Chem Biol Eng. 2012;6:192–5. https://doi.org/10.5281/zenodo.1070607.

    Article  CAS  Google Scholar 

  18. da Rocha NC, Mavropoulos E, Prado da Silva MH, de Campos RC, Rossi AM. Studies on cadmium uptake by hydroxyapatite. In Key Engineering Materials 2007 (Vol. 330, pp. 123–126). Trans Tech Publications. https://doi.org/https://doi.org/10.4028/www.scientific.net/KEM.330-332.123

  19. Varma HK, Babu SS. Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram Int. 2005;31(1):109–14. https://doi.org/10.1016/j.ceramint.2004.03.041.

    Article  CAS  Google Scholar 

  20. Chakraborty R, Bepari S, Banerjee A. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Biores Technol. 2011;102(3):3610–8. https://doi.org/10.1016/j.biortech.2010.10.123.

    Article  CAS  Google Scholar 

  21. Gibson IR, Rehman I, Best SM, Bonfield W. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. J Mater Sci: Mat Med. 2000;11(9):533–9. https://doi.org/10.1023/A:1008905613182.

    Article  CAS  Google Scholar 

  22. Li Y, Klein CP, Zhang X, De Groot K. Relationship between the colour change of hydroxyapatite and the trace element manganese. Biomaterials. 1993;14(13):969–72.

    Article  CAS  Google Scholar 

  23. Binsi PK, Nayak N, Sarkar PC, Jeyakumari A, Ashraf PM, Ninan G, Ravishankar CN. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: characterization and release kinetics. Food Chem. 2017;219:158–68. https://doi.org/10.1016/j.foodchem.2016.09.126.

    Article  CAS  PubMed  Google Scholar 

  24. Binsi PK, Natasha N, Sarkar PC, Ashraf PM, George N, Ravishankar CN. Structural, functional and in vitro digestion characteristics of spray dried fish roe powder stabilised with gum Arabic. Food Chem. 2017;221:1698–708. https://doi.org/10.1016/j.foodchem.2016.10.116.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar BR, Rao TS. AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest J Nanomater Biostruct. 2012;7(4):1881–9.

    Google Scholar 

  26. Huang YC, Hsiao PC, Chai HJ. Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceram Int. 2011;37(6):1825–31. https://doi.org/10.1016/j.ceramint.2011.01.018.

    Article  CAS  Google Scholar 

  27. Horiuchi N, Nakamura M, Nagai A, Katayama K, Yamashita K. Proton conduction related electrical dipole and space charge polarization in hydroxyapatite. J Appl Phys. 2012;112(7):074901. https://doi.org/10.1063/1.4754298.

    Article  CAS  Google Scholar 

  28. Gandhi AA, Wojtas M, Lang SB, Kholkin AL, Tofail SA. Piezoelectricity in poled hydroxyapatite ceramics. J Am Ceram Soc. 2014;97(9):2867–72. https://doi.org/10.1111/jace.13045.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Indian Council for Agricultural Research, ICAR, India for the financial assistance provided to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Binsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary figures S1

EDAX spectra of HAp samples extracted at various sintering temperatures for 3 h. A 600-3; B 700-3; C 800-3; D 900-3; E 1000-3; F 1100-3 (PDF 363 KB)

Supplementary file2

Cyclic voltammogram of high and low frequency domain intersection at different temperatures depicting transformation of hydroxyapatite.A 600-3; B 700-3; C 800-3; D 900-3; E 1000-3; F 1100-3 (PDF 229 KB)

Supplementary file3

Electrochemical impedance spectra of HAp samples extracted at various sintering temperatures for 3 h (PDF 134 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binsi, P.K., Ashraf, P.M., Thomas, N.G. et al. Thermal transition analysis of fish scale originated hydroxyapatite: AFM and electrochemical impedance spectroscopy as complimentary techniques. J Therm Anal Calorim 147, 4027–4045 (2022). https://doi.org/10.1007/s10973-021-10842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10842-y

Keywords

Navigation