Skip to main content
Log in

Flame-retardant effect of modified molecular sieve by ionic liquid in TPU

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane elastomer (TPU) had a wide application because of the perfect property, while it was still limited by its flammability and flame dripping. In this paper, modified molecular sieve (MMS) by 1-((ethoxycarbonyl)methyl)-3-methylimidazolium hexafluorophosphate ([EOOEMIm][PF6]) was used into TPU as a type of flame agent. The flame-retardant performance of TPU was studied by cone calorimeter (CCT), smoke density test (SDT) and thermogravimetric/infrared spectroscopy (TG-IR), respectively. CCT test indicated that MMS improved flame-retardant performance of TPU effectively by promote the formation of char layer. The peak heat release rate and total heat release declined by 48.4% and 32.5%, respectively, compared to pure TPU when 1.0 mass% MMS was added; SDT test showed that MMS improved the smoke generation performance of TPU without flame; and the TG-IR test proved that MMS improved the thermal stability of TPU even though in nitrogen. So the MMS can apply for flame-retardant TPU well in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Herrera M, Matuschek G, Kettrup A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stab. 2002;78(2):323–31.

    Article  CAS  Google Scholar 

  2. Gao X, Qu C, Zhang Q, Peng Y, Fu Q. Brittle–Ductile transition and toughening mechanism in POM/TPU/CaCO3 ternary composites. Macromol Mater Eng. 2004;66:41–8.

    Article  Google Scholar 

  3. Quan H, Zhang BQ, Zhao Q, et al. Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A Appl Sci Manuf. 2009;40(9):1513.

    Article  Google Scholar 

  4. Chi FF, Yu YL, Lv LH. The technology of manufacturing waste fiber and flame retardant TPU composites by mixed hotpressing. Adv Mater Res. 2012;518–523:3557–60.

    Article  Google Scholar 

  5. Makadia CM, Giovannitti JA. Halogen-free flame retardant TPU with very high LOI. 2018.

  6. Zhu LJ, Guo DH, Ying L, Li B, Yang YY. Halogen-free flame retardant TPU composition for wire and cable. 2014.

  7. Almeida P, Ubirajara, et al. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym Degrad Stabil. 2000.

  8. Jiao CM, Jiang HZ, Chen XL. Reutilization of abandoned molecular sieve as flame retardant and smoke suppressant for thermoplastic polyurethane elastomer. J Therm Anal Calorim. 2019;138(6):66.

    Article  Google Scholar 

  9. Jiao YH, Wang XL, Wang YZ, et al. Thermal degradation and combustion behaviors of flame-retardant polypropylene/thermoplastic polyurethane blends. J Macromol Sci B. 2009;48(5):889–909.

    Article  CAS  Google Scholar 

  10. Liu Y, Liu MF, Xie D, et al. Thermoplastic polyurethane-encapsulated melamine phosphate flame retardant polyoxymethylene. Polym-Plast Technol Eng. 2008;47(3):330–4.

    Article  CAS  Google Scholar 

  11. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 1997;97(6):2373–420.

    Article  CAS  Google Scholar 

  12. Flanigen EM, Bennett JM, Grose RW, et al. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature. 1978;271(5645):512–6.

    Article  CAS  Google Scholar 

  13. Xu X, Song C, Andresen JM, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels. 2001;16(6):1463–9.

    Article  Google Scholar 

  14. Antonelli DM, Ying JY. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew Chem Int Ed Engl. 1996;35(4):426–30.

    Article  CAS  Google Scholar 

  15. Chen X, Yuan LP, et al. Effects of the molecular sieve 5A and APP on the flame retardance and smoke suppression in wood by cone calorimeter. Chem Indus For Prod. 2014;34(2):45–50.

    Google Scholar 

  16. Ming ZW, Tao Y, Li LI, et al. Study on the synergistic effect of molecular sieves on P-N flame retardant plywood boards. For Mach Woodwork Equip. 2012.

  17. Cheng J, Li Y, Hu L, Liu J, Zhou J, Cen K. CO2 absorption and diffusion in ionic liquid modified molecular sieves SBA-15 with various pore lengths. Fuel Process Technol. 2018;172:216–24.

    Article  CAS  Google Scholar 

  18. Earle MJ, Seddon KR. Ionic liquids Green solvents for the future. Pure Appl Chem. 2000;72(7):1391–8.

    Article  CAS  Google Scholar 

  19. Yang X, Ge N, Hu L, Gui H, Wang Z, Ding Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym Adv Technol. 2013;24(6):568–75.

    Article  CAS  Google Scholar 

  20. Yan W, Wang G, Technology. The application research on high thermal stability of ionic liquid in rigid polyurethane foam flame retardant. Fire Sci Technol. 2012.

  21. Jiao CM, Wang HZ, Chen XL. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane. J Therm Anal Calorim. 2018;10:1–10.

    Google Scholar 

  22. Guo K. Application of ionic liquid modified ZSM-5 in MTG industry. Beijing Jiaotong University. 2014.

  23. Romanovsky BV, Tyablikov IA, Knyazeva EE, Yatsenko AV. Catalytic properties of Pd-containing systems based on SBA-15 molecular sieve modified with imidazolium ionic liquid. Kinet Catal. 2013;54(3):353–7.

    Article  CAS  Google Scholar 

  24. Jiao CM, Jiang HZ, Chen XL. Properties of fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid in thermoplastic polyurethane elastomer. Polym Adv Technol. 2019.

  25. Huang J, Jiang T, Gao H, et al. Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angewandte Chemie German Ed. 2004;116(11):1421–3.

    Article  Google Scholar 

  26. Morgan AB, Bundy M. Cone calorimeter analysis of UL-94 V-rated plasticsz. Fire Mater. 2007;31(4):257–83.

    Article  CAS  Google Scholar 

  27. Jiao CM, Wang HZ, Chen XL. Fire safety of thermoplastic polyurethane based on pyromellitic dianhydride. Fire Mater. 2018;42(1):66.

    Google Scholar 

  28. Lin M. Applications of TG-IR on thermal degradation and thermal oxidation degradation of medicine. Guang Zhou Chem Ind Technol. 2002;102(7):073713–6.

    Google Scholar 

  29. Kannan M, Thomas S, Joseph K. Flame-retardant properties of nanoclay-filled thermoplastic polyurethane/polypropylene nanocomposites. J Vinyl Addit Technol. 2015;23(S1):66.

    Google Scholar 

  30. Hashimoto M, Kawata S. Multichannel Fourier-transform infrared spectrometer. Appl Opt. 1992;31(28):6096–101.

    Article  CAS  Google Scholar 

  31. Canillas A, Pascual E, Dre VB. Phase-modulated ellipsometer using a fourier transform infrared spectrometer for real time applications. Rev Sci Instrum. 1993;64(8):2153.

    Article  CAS  Google Scholar 

  32. Chen XL, Jiang YF, Jiao CM. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117(2):857–66.

    Article  CAS  Google Scholar 

  33. Chen XL, Wang WD, Jiao CM. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J Hazard Mater. 2017;331:257–64.

    Article  CAS  Google Scholar 

  34. Shao J, Lu W, Yue F, et al. Photoreflectance spectroscopy with a step-scan Fourier-transform infrared spectrometer: technique and applications. Rev Sci Instrum. 2007;78(1):013111.

    Article  Google Scholar 

  35. Ferrieu F. Infrared spectroscopic ellipsometry using a Fourier transform infrared spectrometer: some applications in thin-film characterization. Rev Sci Instrum. 1989;60(10):3212.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51776101, 51206084), the Natural Science Foundation of Shandong Province (ZR2017MB016) and the Project of the State Administration of Work Safety (shandong-0039-2017AQ). The contributors of mining college of Guizhou university are also be acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huazhen Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Jiao, C., Chen, X. et al. Flame-retardant effect of modified molecular sieve by ionic liquid in TPU. J Therm Anal Calorim 147, 4141–4150 (2022). https://doi.org/10.1007/s10973-021-10840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10840-0

Keywords

Navigation