Skip to main content
Log in

Peculiarities of xonotlite synthesis from the raw materials with different SiO2 activities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the peculiarities of xonotlite hydrothermal synthesis at 200 °C from lime and SiO2 materials with different pozzolanic activities (AP) were investigated: calcinated opoka (Ap = 170.1 mgCaO kg−1), granite sawing waste (Ap = 52.2 mgCaO g−1) and reagent SiO2·nH2O (Ap = 336.8 mgCaO kg−1). By XRD, DSC, TG, SEM, FT-IR methods have been shown that the formation of crystalline calcium silicate hydrates and the sequence of the intermediate phases existence are influenced not only by SiO2 component activity, but by other factors too. The use of the most active raw meal with SiO2·nH2O results in a very rapid formation of z-phase, C–S–H(I) and gyrolite, which hardly recrystallize into thermodynamically stable mineral—xonotlite. The impurities in the starting materials may promote the formation of some other compounds and retard the synthesis of stoichiometric ones: high content of Al-containing minerals in granite sawing waste (15.41% of Al2O3) predetermines that 1.13 nm tobermorite even after 72 h of hydrothermal curing did not recrystallize into xonotlite. Regardless of its average activity, calcinated opoka is an excellent material for the synthesis of crystalline calcium silicate hydrates. Amorphous SiO2 from opoka begins to react first, followed by tridymite and cristobalite. 1.13 nm tobermorite and xonotlite are formed at the beginning of the hydrothermal synthesis (4 h), and this greatly reduces the probability of the existence of amorphous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baltakys K, Siauciunas R. The influence of γ-Al2O3 and Na2O on the formation of calcium silicate hydrates in the CaO–quartz–H2O system. Mater Sci. 2007;25:185–98.

    CAS  Google Scholar 

  2. Ríos CA, Williams CD, Fullen MA. Hydrothermal synthesis of hydrogarnet and tobermorite at 175 C from kaolinite and metakaolinite in the CaO–Al2O3–SiO2–H2O system: a comparative study. Appl Clay Sci. 2009;43:228–37.

    Article  Google Scholar 

  3. Taylor HFW. Cement chemistry. London: Thomas Telford; 1997.

    Book  Google Scholar 

  4. Low NMP, Beaudoin JJ. Mechanical properties and microstructure of cement binders reinforced with synthesized xonotlite micro-fibres. Cem Concr Res. 1993;23:1016–28.

    Article  CAS  Google Scholar 

  5. Liu F, Zeng LK, Cao JX, Zhu B, Yuan A. Hydrothermal synthesis of xonotlite fibers and investigation on their thermal property. In: Advanced materials research. Trans Tech Publ; 2010. p. 841–3.

  6. Dent LS, Taylor HFW. The dehydration of xonotlite. Acta Crystallogr. 1956;9:1002–4.

    Article  CAS  Google Scholar 

  7. Zou J, Guo C, Jiang Y, Wei C, Li F. Structure, morphology and mechanism research on synthesizing xonotlite fiber from acid-extracting residues of coal fly ash and carbide slag. Mater Chem Phys. 2016;172:121–8.

    Article  CAS  Google Scholar 

  8. Churakov SV, Mandaliev P. Structure of the hydrogen bonds and silica defects in the tetrahedral double chain of xonotlite. Cem Concr Res. 2008;38:300–11.

    Article  CAS  Google Scholar 

  9. Black L, Garbev K, Stumm A. Structure, bonding and morphology of hydrothermally synthesised xonotlite. Adv Appl Ceram. 2009;108:137–44.

    Article  CAS  Google Scholar 

  10. Bernstein S, Thomas Fehr K, Hochleitner R. Crystal chemistry of Xonotlite Ca6Si6O17(OH)2. Part I: determination of polytypes using X-ray powder diffraction (XRPD). Neues Jahrb für Miner J Miner Geochem. 2009;186:153–62.

    CAS  Google Scholar 

  11. Luke K, Taylor HFW, Kalousek GL. Some factors affecting formation of truscottite and xonotlite at 300–350 °C. Cem Concr Res. 1981;11:197–203.

    Article  CAS  Google Scholar 

  12. Tashiro C, Kawaguchi K. Effects of the CaO/SiO2 ratio and Cr2O3 on the hydrothermal synthesis of xonotlite. Cem Concr Res. 1977;7:69–76.

    Article  CAS  Google Scholar 

  13. Hartmann A, Schulenberg D, Buhl J-C. Synthesis and structural characterization of CSH-phases in the range of C/S = 0.41–1.66 at temperatures of the tobermorite xonotlite crossover. J Mater Sci Chem Eng. 2015;3:39–55.

    CAS  Google Scholar 

  14. Liu F, Chen S, Lin Q, Wang XD, Cao JX. Study on hydrothermal synthesis dynamics of nanoscale xonotlite fibers. In: IOP conference series: materials science and engineering. IOP Publishing; 2018. p. 12021.

  15. Luke K, Quercia G. Formation of tobermorite and xonotlite fiber matrices in well cementing and impact on mechanical properties. J Sustain Cem Mater. 2016;5:91–105.

    CAS  Google Scholar 

  16. Isu N, Ishida H, Mitsuda T. Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation. Cem Concr Res. 1995;25:243–8.

    Article  CAS  Google Scholar 

  17. Hong S-Y, Glasser FP. Phase relations in the CaO–SiO2–H2O system to 200 °C at saturated steam pressure. Cem Concr Res. 2004;34:1529–34.

    Article  CAS  Google Scholar 

  18. Nocuń-Wczelik W. Effect of Na and Al on the phase composition and morphology of autoclaved calcium silicate hydrates. Cem Concr Res. 1999;29:1759–67.

    Article  Google Scholar 

  19. Pei LZ, Yang LJ, Yang Y, Fan CG, Yin WY, Chen J, et al. A green and facile route to synthesize calcium silicate nanowires. Mater Charact. 2010;61:1281–5.

    Article  CAS  Google Scholar 

  20. Al-Wakeel EI, El-Korashy SA, El-Hemaly SA, Rizk MA. Divalent ion uptake of heavy metal cations by (aluminum + alkali metals)–substituted synthetic 1.1 nm-tobermorites. J Mater Sci. 2001;36:2405–15.

    Article  CAS  Google Scholar 

  21. Geng G, Myers RJ, Li J, Maboudian R, Carraro C, Shapiro DA, et al. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Sci Rep. 2017;7:44032.

    Article  Google Scholar 

  22. Wang Z, Ma S, Zheng S, Wang X. Incorporation of Al and Na in hydrothermally synthesized tobermorite. J Am Ceram Soc. 2017;100:792–9.

    Article  CAS  Google Scholar 

  23. Mitsuda T, Taylor HFW. Influence of aluminium on the conversion of calcium silicate hydrate gels into 11 Å tobermorite at 90 °C and 120 °C. Cem Concr Res. 1975;5:203–9.

    Article  CAS  Google Scholar 

  24. Shaw S, Clark SM, Henderson CMB. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study. Chem Geol. 2000;167:129–40.

    Article  CAS  Google Scholar 

  25. Wang S, Peng X, Tang L, Zeng L, Lan C. Influence of inorganic admixtures on the 11 Å-tobermorite formation prepared from steel slags: XRD and FTIR analysis. Constr Build Mater. 2014;60:42–7.

    Article  Google Scholar 

  26. Liu F, Wang X, Cao J. Effect of Na+ on xonotlite crystals in hydrothermal synthesis. Int J Miner Metall Mater. 2013;20:88–93.

    Article  CAS  Google Scholar 

  27. Melichar J, Černý V, Fleischhacker J, Drochytka R. Content of aluminium hydroxide in lime–silica composite and its influence on tobermorite formation. In: Mater science forum. Trans Tech Publ; 2018. p. 195–9.

  28. Gokhale NW. Chemical composition of biotites as a guide to ascertain the origin of granites. Bull Geol Soc Finl. 1968;40:107–11.

    Article  CAS  Google Scholar 

  29. Mostafa NY, Shaltout AA, Omar H, Abo-El-Enein SA. Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. J Alloys Compd. 2009;467:332–7.

    Article  CAS  Google Scholar 

  30. Baltakys K, Siauciunas R. Influence of gypsum additive on the gyrolite formation process. Cem Concr Res. 2010;40:376–83.

    Article  CAS  Google Scholar 

  31. Sato H, Grutzeck M. Effect of starting materials on the synthesis of tobermorite. In: MRS online proceedings library archive. 1991. p. 245. https://doi.org/10.1557/PROC-245-235.

  32. Smalakys G, Siauciunas R. The synthesis of 1.13 nm tobermorite from carbonated opoka. J Therm Anal Calorim. 2018;134:493–502.

    Article  CAS  Google Scholar 

  33. Raverdy M, Brivot F, Paillere AM, Dron R. Appréciation de l’activité pouzzolanique de constituents secondaires. Proc 7e congrés Int la Chim des ciments, Paris, Fr. 1980;6–41.

  34. Shaw S, Henderson CMB, Komanschek BU. Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol. 2000;167:141–59.

    Article  CAS  Google Scholar 

  35. Suzuki K, Nishikawa T, Ito S. Formation and carbonation of CSH in water. Cem Concr Res. 1985;15:213–24.

    Article  CAS  Google Scholar 

  36. Baltakys K, Iljina A, Bankauskaite A. Thermal properties and application of silica gel waste contaminated with F ions for CSH synthesis. J Therm Anal Calorim. 2015;121:145–54.

    Article  CAS  Google Scholar 

  37. Li M, Jiang H, Xu D. Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying. J Porous Mater. 2018;25:1417–25.

    Article  CAS  Google Scholar 

  38. Diez-Garcia M, Gaitero JJ, Santos JI, Dolado JS, Aymonier C. Supercritical hydrothermal flow synthesis of xonotlite nanofibers. J Flow Chem. 2018;8:89–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. S-MIP-17-92) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Smalakys.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smalakys, G., Siauciunas, R. Peculiarities of xonotlite synthesis from the raw materials with different SiO2 activities. J Therm Anal Calorim 142, 1671–1679 (2020). https://doi.org/10.1007/s10973-020-09744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09744-2

Keywords

Navigation