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Abstract
Hybrid nanofluids are better heat transfer fluids than conventional nanofluids because of the combined properties of two or 
more nanoparticles. In this study, the thermal conductivity of  Al2O3–ZnO nanoparticles suspended in a base fluid of distilled 
water is investigated. The experiments were conducted for three mixture ratios (1:2, 1:1 and 2:1) of  Al2O3–ZnO nanofluid 
at five different volume concentrations of 0.33%, 0.67%, 1.0%, 1.33% and 1.67%. X-ray diffractometric analysis, X-ray fluo-
rescence spectrometry and scanning electron microscopy were used to characterise the nanoparticles. The highest thermal 
conductivity enhancement achieved for  Al2O3–ZnO hybrid nanofluids with 1:2, 1:1 and 2:1  (Al2O3:ZnO) mixture ratios 
was 36%, 35% and 40%, respectively, at volume concentration 1.67%. The study observed the highest thermal conductivity 
for  Al2O3–ZnO nanofluid was achieved at a mixture ratio of 2:1. A “deeping” effect was observed at a mixture ratio of 1:1 
representing the lowest value of thermal conductivity within the considered range. The study proposed and compared three 
models for obtaining the thermal conductivity of  Al2O3–ZnO nanofluids based on temperature, volume concentration and 
nanoparticle mixture ratio. A polynomial correlation model, the adaptive neuro-fuzzy inference system model and an artificial 
neural network model optimised with three different learning algorithms. The adaptive neuro-fuzzy inference system model 
was most accurate in forecasting the thermal conductivity of the  Al2O3–ZnO hybrid nanofluid with an R2 value of 0.9946.
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List of symbols
h  Nanolayer thickness (m)
k  Thermal conductivity (W m−1 K−1)
R  Mixture ratio of  Al2O3
r  Radius of nanoparticle (m)
RMS  Root mean square
R2  Coefficient of determination
T  Temperature

Vb  Volume of the base fluid (mL)
W  Mass (g)

Greek symbols
β  Ratio of layer thickness to particle radius
γ  Ratio of layer thermal conductivity to particle 

thermal conductivity
μ  Dynamic viscosity (Pa s)
ρ  Density (kg m−3)
φ  Volumetric fraction of nanoparticles (%)

Subscript/superscript
a  Alumina
bf  Base fluid
eff  Effective
f  Fluid
n  Number of particles
nf  Nanofluids
np  Nanoparticles
p  Particles
z  Zinc oxide
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Abbreviations
ANFIS  Adaptive neuro-fuzzy inference system
ANN  Artificial neural network
BR  Bayesian regularisation
ASHRAE  American Society of Heating, Refrigeration 

and Air-Condition Engineers
ASTM  American Society for Testing and Materials
Conc  Concentration
JCPDS  Joint Committee on Powder Diffraction 

Standards
LVM  Levenberg–Marquardt backpropagation
SCG  Scaled conjugate gradient
SEM  Scanning electron microscope
XRD  X-ray diffraction
Vol.  Volume

Chemical formula
Al2O3  Aluminum oxide
CuO  Copper oxide
EG  Ethylene glycol
SiO2  Silicon oxide
ZnO  Zinc oxide

Introduction

Nanofluids are a colloidal suspension of nanometer-sized 
materials in base fluids. Nanofluids have unique character-
istics when compared to conventional fluids, making them 
highly applicable in diverse fields [1]. Certain areas where 
nanotechnology have gained application are in microelec-
tronics, medical and health technology, aerospace, agri-
culture [2] and even the decomposition of pollutants in the 
environment [3]. Nanofluids are effective heat transfer fluids 
due to their high thermal conductivity properties which have 
made them useful in industrial devices like industrial heat 
exchangers, solar heat exchangers and solar collectors [4].

Heat transfer is an essential field of science because of 
its varied application in the effective operation of various 
energy devices [5]. Improving the known heat transfer medi-
ums enables us to manage and efficiently use energy. Regular 
heat transfer fluids like water, oil and glycols have inher-
ently low thermal conductivity, which significantly limits 
their heat transfer abilities [6]. However, since the advent 
of nanoscience, a new category of fluids with significantly 
improved thermal conductivity properties has been real-
ised. These nanofluids are solid dispersions of nanoparti-
cles (particles with an average size of less than 100 nm) in a 
base fluid [7]. This nanofluid can be manufactured by either 
one-step chemical method [8], a one-step physical method 
[9] or a two-step method [10]. The nanofluids can also be 
classified into either conventional or hybrid nanofluids [11]. 
Conventional nanofluids are nanofluids that contain single 

material particle dispersions, while hybrid nanofluids con-
tain multiple material particle dispersions within the flu-
ids. The dispersion of nanoparticles within the based fluid 
improves the thermal conductivity of the resultant nanofluid 
when compared to the based fluids.

The most common technique used to measure the thermal 
conductivity of nanofluid is the transient hot-wire technique 
proposed in 1931 [12]. Several review papers have been 
written on the thermal conductivity of various nanofluids 
[11], and the effective parameters which influence the ther-
mal conductivity of the nanofluids [13]. Bashirnezhad et al. 
[14] in their review of experimental studies on the thermal 
conductivity of nanofluids identified about ten factors that 
affect the thermal conductivity of nanofluids. These factors 
include the size and shape of the nanoparticles, the nano-
particle volume fraction, the temperature and stability of 
the suspension, the clustering of nanoparticles, the pH and 
the use of surfactants. Of these parameters, there have been 
several studies to investigate the effects of volume concen-
tration (φ) on the thermal conductivity of nanofluids [15]. 
Izadkhah et al. [16] use classical molecular dynamics simu-
lations to investigate the stability and thermal conductivity 
of graphene-oxide EG water nanofluids. Their simulation, 
which was carried out for 3%, 4% and 5% graphene-oxide 
nanosheet, showed an increase in thermal conductivity 
by 24%, 28% and 33%, respectively. Kumar et al. investi-
gated the effect on volume concentration on  Al2O3–water, 
 Al2O3 ethylene glycol (EG) and  Al2O3–paraffin nanoflu-
ids and observed that the thermal conductivity of each of 
the nanofluids increased with an increase in volume con-
centration between 0.01% and 0.08%. Agarwal et al. [17] 
also performed a similar investigation using CuO water, 
CuO/EG and CuO/engine oil nanofluids. Their experiment 
also recorded that thermal conductivity increases with an 
increase in volume concentration between 0.25 and 2%. Esfe 
et al. [18] investigated the thermal conductivity of  Al2O3 
water nanofluid at volume concentration between 0.25% and 
5%. They performed a sensitivity analysis and concluded 
that both the nanoparticle concentration and temperature of 
the suspension affected the thermal conductivity of the nano-
fluids. Similar studies using  SiO2 [19], graphene [20] and 
other conventional nanofluids have provided a similar result.

More recently, the concept of hybrid nanofluids has found 
the attention of researchers. A hybrid nanofluid is formed 
by the dispersion of two or more nanoparticles into a base 
fluid. The idea is that the combined thermal properties of 
both nanoparticles would further enhance the properties of 
the resultant nanofluids better than when one nanoparticle 
material is used. Gangadevi and Vinayagam [21], com-
pared the thermal conductivity and viscosity performance 
of CuO/water,  Al2O3/water and Cuo–Al2O3/water nano-
fluids. Their results showed that the thermal conductivity 
was enhanced at 11.2%, 12.16% and 21% for  Al2O3/water, 
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CuO/water and Cuo–Al2O3/water nanofluids, respectively, 
at 0.2% volumetric concentrations of the nanoparticles. 
Testing the nanofluids on a hybrid solar collector, the 
authors found that the hybrid nanofluids were more effec-
tive in reducing the temperature of the collector, which in 
turn improved its overall efficiency of the system. Toghraie 
et al. [22], synthesized ZnO-TiO2 EG hybrid nanofluid and 
measured its thermal conductivity at volume concentra-
tions between 0.25% and 3%. Results obtained from their 
experiment show that an increase in volume concentration 
increased the thermal conductivity of the hybrid. Esfahani 
et al. [23] experimentally investigated the thermal conduc-
tivity of ZnO–Ag water hybrid at a nanoparticle mixture 
ratio of 50:50. Their experiment also noticed that volume 
concentration was directly proportional to the increase in 
thermal conductivity recorded. A lot of other hybrid nanoflu-
ids has been experimentally investigated and have provided 
similar relationships between thermal conductivity and vol-
ume concentration [24]. Therefore, in both conventional and 
hybrid nanofluids, the thermal conductivity increases with 
an increase in volume concentration.

Esfe et al. [25] studied the effect of nanoparticle size on 
the thermal conductivity of nanofluids using Fe nanopar-
ticles with an average size of 37 nm, 71 nm and 98 nm. 
The study reported that the thermal conductivity of nano-
fluids improved with the reduction in nanoparticle size. In a 
similar study performed by Chevalier et al. [26], using  SiO2 
particles with an average diameter of 35 nm, 94 nm and 
190 nm. They also observed the direct influence of particle 
size on thermal conductivity of  SiO2 alcohol nanofluid, as 
an increase in particle size decreased thermal conductivity 
at constant volume concentration and temperature.

Aggregation also affects the thermal conductivity of 
nanofluids. Hong and Kim [27] studied the effect of aggre-
gation on the thermal conductivity of  Al2O3 nanofluid. 
They induced aggregation in the nanofluid by adding of 
NaCl solution to the fluid. Their experiment observed that 
the thermal conductivity increased with an increase in 
particle aggregation. The maximum thermal conductivity 
enhancement observed was 22%. Also, Prasher et al. [28] 
modelled particle aggregation for three-level homogenisa-
tion theory using Monte Carlo numerical calculations. The 
study showed that fractal aggregates improve the thermal 
conductivity of nanofluids, and there is an active correlation 
between thermal conductivity enhancement and the chemi-
cal dimension of the aggregates. Parameshwaran and Kalai-
selvam [29] studied the effect of aggregation on the thermal 
conductivity of hybrid nanofluid by dispersing silver–titania 
hybrid nanocomposite particles in a phase change material 
(dimethyl adipate). The experiment observed that particle 
aggregation is vital in the thermal conductivity enhancement 
of nanofluids [29].

As colloidal particles are suspended within a base fluid, 
an interfacial layer forms around the particles. Interfacial 
layers are essential in understanding the particle fluid rela-
tion, determining the structure of the liquid layering around 
the particle and the effects on the thermal conductivity of 
nanofluids. Gerardi et al. [30], experimentally measured the 
thickness of the interfacial layer around  Al2O3 nanoparticles 
in water and observed layer thickness to be 1.4 nm. The 
thermal conductivity of the interfacial layer was simulated 
by applying molecular dynamics simulation, and it was 
observed that the thermal conductivity of the interfacial 
layer could be 1.6–2.5 times higher than that of the base 
fluid. Also, the thermal conductivity is dependent on the 
strength of solid–liquid interaction [31].

Several theoretical models have been proposed to account 
for the interfacial layers in nanofluids. Yu and Choi [32] 
improved on Maxwell’s model [33] to account for the inter-
facial layer. Also, Xue [34], Xie et al. [35] and Koo et al. 
[36] all proposed models that accounted for the effect of the 
interfacial layers.

As stated, theoretical models of predicting thermal con-
ductivity are limited in accuracy, mainly due to the num-
ber of different variables that appear to affect the thermal 
conductivity of nanofluids. Many researchers have proposed 
various correlation models to ascertain the thermal conduc-
tivity of specific nanofluids, more recently, artificial neural 
networks have also presented an alternative to predicting 
the nanofluids thermal conductivity. There have been dif-
ferent artificial intelligence approaches used to predict the 
thermal conductivity of nanofluids; these include adaptive 
neuro-fuzzy inference system (ANFIS), multilayer per-
ceptron artificial neural network (MLP-ANN), radial basis 
function artificial neural network (RBF-ANN), least-square 
support vector machine (LSSVM), least-square support 
vector machine-genetic algorithm (LSSVM-GA), etc. Dif-
ferent optimisation algorithms have been used to improve 
the accuracy of the artificial intelligence approaches; they 
include Bayesian regularisation (BR), Levenberg–Marquardt 
(LVM), particle swarm optimisation (PSO) and scaled con-
jugate gradient (SCG).

Aybar et al. [37] conducted a review of the many predic-
tive models that have been presented for obtaining the ther-
mal conductivity of various nanoparticles. Zadkhast et al. 
[38] investigated the thermal conductivity of MWCNT-CuO/
water nanofluids. A 30.8% enhancement was witnessed with 
the use of the nanofluids at a 0.6% volume concentration. 
The authors also proposed a correlation for obtaining the 
thermal conductivity of MWCNT-CuO/water nanofluids. 
Esfe et al. [39] proposed a model based on the Jang and 
Choi model [40] for predicting the thermal conductivity of 
MWCNT-MgO/EG water nanofluids. Measuring their pre-
dicted results with the experimental data showed that their 
model was below 5% of the margin of deviation.
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Moosavi et al. [41] collected 483 data points from ther-
mal conductivity experiments of 18 different conventional 
nanofluids. The data points collected were used as the train-
ing and testing set in ANN-MLP, ANN-RBF, GMDH and 
ANFIS predicting methods. The study observed that ANFIS 
was the best model in predicting the thermal conductivity 
of conventional nanofluids. Li et al. [42] trained an artificial 
neural network using 70% of the 48 sets of experimental data 
obtained from  Al2O3-EG nanofluids. The ANN was more 
accurate than the proposed correlation model, with an R2 
of 0.9997. Razavi et al. [43] used particle swarm-optimised 
LSSVM and ANFIS to predict the thermal conductivity of 
nanofluids. In the study, 1109 data points were collected 
from experimental studies and were used to train and test 
the neural network. The study concludes that the LSSVM 
algorithm showed the most accurate performance in predict-
ing the thermal conductivity nanofluids.

The thermal conductivity of  Al2O3–CuO EG/water hybrid 
nanofluids at 11 different mixture ratios was measured; when 
ANN was used to forecast the values of thermal conductiv-
ity, R2 values were equal to 0.9846 [44].

MLP-ANN, ANFIS, LSSVM and RBF-ANN methods 
were used to forecast the thermal conductivity of  TiO2 water 
nanofluids [45]. Similar to Razavi et al. [43] study, this study 
also observed that LSSVM produced the best predictive 
results showing the least deviation factor. It is important to 
note that in the sensitivity analysis, the volume fraction of 
nanoparticles had a direct impact on the results. Peng et al. 
[46] used a feedforward MLP-ANN to predict the thermal 
conductivity of  Al2O3–Cu EG hybrid nanofluids. Using only 
a single hidden layer, the MLP-ANN showed an R2 value 
equal to 0.99974. Alarifi et al. [47] measured the thermal 
conductivity behaviour of  Al2O3-MWCNT/thermal oil 
hybrid nanofluids; in predicting the behaviour of the nano-
fluids, the ANFIS was optimised with genetic algorithms 
(GA) and particle swarm optimisation. The study concluded 
that while both models could predict thermal conductivity 
in the hybrid to a significant degree of accuracy; the ANFIS 
optimised with PSO had a better predictive performance 
compared to the ANFIS model optimised by GA.

From a review of the literature, we can see that several 
researchers have carried out numerous experiments measur-
ing the thermal conductivity of different nanofluids. How-
ever, until an acceptable theoretical approach is presented 
to calculate the thermal conductivity of nanofluids, more 
thermal conductivity experimental measurement are still 
needed as new nanofluids are developed. As a result, this 
study investigates the thermal conductivity of  Al2O3–ZnO 
water hybrid nanofluid at five different nanoparticle con-
centrations and at three mixture ratios of 2:1, 1:1 and 1:2 
 (Al2O3:ZnO). These nanoparticles were used in the synthe-
sis of hybrid nanofluids because they are chemically inert, 
cheap and can show good stability and dispersion behaviour. 

To the best of the author’s knowledge, no other study has 
been done on the thermal conductivity of  Al2O3–ZnO water 
hybrid nanofluids. Also, the effect of nanoparticles mixture 
ratio in the hybrid was particularly studied, to confirm if 
the “deeping” effect witnessed at 1:1 mixture ratio for both 
 Al2O3–CuO EG/water [44] and  SiO2–TiO2 EG/water [48] 
nanofluids apply to  Al2O3–ZnO water hybrid nanofluids. The 
study also presents and compares intelligent ways to pre-
dict the thermal conductivity of the hybrid nanofluid using 
ANFIS and MLP-ANN. Consequently, the input parameters 
in this study were the temperature of the nanofluid, the vol-
ume concentration of particles and the mixture ratio of par-
ticles. Finally, the performance of the predictive models was 
evaluated using statistical indices.

Hybrid nanofluid synthesis, characterisation 
and thermal conductivity measurement 
technique

Hybrid nanofluids have been shown to have better ther-
mal properties than conventional nanofluids. Therefore, 
this study uses ZnO and  Al2O3 nanoparticles to synthesis 
a hybrid nanofluid. The idea is that the combined thermal 
properties of both nanoparticles would further enhance the 
properties of the resultant nanofluids. The choice of  Al2O3 
nanoparticles in this study is due to its extensive investiga-
tion in the literature along with its relatively cheap cost of 
purchase [49, 50]. ZnO nanoparticles on the other is utilised 
because it has very good optical properties, enhanced band-
gap energy along with its environmental friendliness and its 
stability nature [1].

Al2O3 nanoparticles are synthesised using the technique 
presented in Wole-Osho et al. [51].  Al2O3 produced from 
this synthesis method produced nanoparticles with an aver-
age particle size of 29 nm. Also, another synthesis method 
proposed by Romadhan et al. [52] was used to produce ZnO 
nanoparticles with an average size of 70 nm. The properties 
of both nanoparticles are presented in Table 1. Figure 1a, 
b shows the SEM image of  Al2O3 and ZnO nanoparticles. 
The SEM images show spherical patterns in both  Al2O3 and 

Table 1  Properties of nanoparticles used

Properties Specifications

Molecular formula ZnO Al2O3

Nanoparticle shape Spherical Spherical
Nanoparticle average size 70 nm 29 nm
Density 5.6 g cm−3 3.8 g cm−3

Appearance White White
Purity > 87% > 98.5%
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ZnO nanoparticles; some agglomeration can be observed in 
Fig. 1a, b.

Figure 2 shows the XRD analysis of the nanofluids and 
their peak intensities: the red line, green line and blue 
lines represent the observed pattern obtained for the ZnO, 
 Al2O3 and the hybrid nanofluids, respectively. Cu Kα 
radiation (1.5406 Å) was used to record the diffraction, 
and the XRD pattern was taken at 2θ for values ranging 
from 20° to 80°. The observable peaks have been refer-
enced with the ZnO wurtzite structure (JCPDS Data Card 
No: 36-1451), and they showed great similarities with the 
reference data. The XRD analysis for  Al2O3 nanoparticles 
(green line) appeared to peak at 32°, 39°, 48°, 57°, 62° 
and 68°; this is in accordance with the all corresponding 
characteristic reflection of (220), (222), (400), (422), (511) 
and (440) which is in agreement with the JCPDS card no. 

Fig. 1  SEM characterisation of 
dispersed a  Al2O3 and b ZnO 
in water
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Fig. 2  XRD characterisation for ZnO,  Al2O3 and  Al2O3–ZnO water 
nanoparticles

Fig. 3  XRF analysis of nanoparticles
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02-1420. The peaks observed tend to show that the nano-
particles have a high degree of purity; the XRF analysis 
also supports this.

X-ray fluorescence spectrometer (Rigaku XRF, ZSX Pri-
mus II) was used in determining the constituent elements of 
the nanofluids. The physical characterisation of the nano-
particles was evaluated by using the XRF. Based on X-ray 
fluorescence analyses,  Al2O3 is about 98.5% pure, and ZnO 
is about 87% pure, L.O.I (loss on “eye” ignition) accounts 
for 1.03% in  Al2O3 and 12% in ZnO, as seen in Fig. 3.

The hybrid nanofluids were synthesised at volume concen-
trations of 0.33%, 0.67%, 1.0%, 1.33% and 1.67% and mix-
tures ratios of 1:1, 2:1 and 1:2  (Al2O3:ZnO) using the two-step 
method. Zeta potential analysis was done at five pH values of 
1, 4, 7, 10 and 12. The preparation technique and the stabil-
ity performance of the nanofluid are presented in Wole-Osho 
et al. [51].

The thermal conductivity readings for the samples were 
measured using the KD2 pro II analyser, according to the 
ASTM D7896-19 [53]. The readings were taken for tempera-
tures ranging from 25 to 65 °C. These readings from the KD2 
analyser were verified by taking the readouts of both deionised 
water and glycerine before testing. The measurements from 
the digital readout were repeated three times, and the average 
value from the sets of readouts was taken. Measurements were 
taken between fixed time intervals to reduce the error that may 
occur as a result of temperature variation on the sensor when 
in direct contact with the nanofluids sample.

Uncertainty analysis

In determining the uncertainty of the experimental results 
obtained in this study, the measurement errors for thermal 
conductivity, temperature and mass were considered. The ther-
mal conductivity of nanofluids was studied using the KD2 Pro 
analyser, the mass of the nanoparticles was measured by preci-
sion balance PL602E (Mettler Toledo), and the temperature 
was measured using a resistive temperature detector (DHT11). 
Experimental uncertainty was determined as follows:

The accuracy of the KD2 Pro Analyser was ± 5%. The accu-
racy of the RTD was ± 0.1° C. The precision balance was 
accurate to about ± 0.05 g. Experiment uncertainty was, 
therefore, less than 2%.

(1)Ue = ±

√(
Δk

k

)2

+

(
ΔW

W

)2

+

(
ΔT

T

)2

Models to predict the thermal conductivity 
of nanofluids

Several different models have been proposed to predict the 
thermal conductivity of nanofluids. However, more research is 
required, especially for hybrids, because classical models have 
proven to be inadequate in predicting thermal conductivity in 
hybrids nanofluids [54].

Theoretical models for thermal conductivity 
prediction

Maxwell [33] first postulated the theoretical understanding of 
the thermal conductivity of fluids containing colloidal disper-
sions. However, this model has been fairly inaccurate in pre-
dicting the thermal conductivity of nanofluids. In the last two 
decades, there have been several proposed theoretical models 
to predict the thermal conductivity of nanofluids; however, 
many of these models are still relatively inaccurate.

As observed in Table 2, these classical models cannot ade-
quately predict the thermal conductivity of nanofluids over an 
extended range of values. The limitations occur because the 
models fail to consider many of the parameters that potentially 
influence the thermal conductivity of nanofluids. These param-
eters include temperature, particle size, nanoparticles cluster, 
agglomeration, Kapitza resistance, particle Brownian motion, 
particle distribution and the interfacial layer between particle 
fluid composites, etc.

Researchers have postulated several other models to 
improve on these classical models taken into account some of 
these earlier mentioned parameters. The role of the interfacial 
layer is essential to understanding the thermal conductivity in 
nanofluids. Wang et al. [55] put forward a model to account 
for the interfacial layer by applying the effective medium 
approximation; however, this model still appears inaccurate 
when compared with experimental data.

Recently, many researchers have opted to use both statisti-
cal modelling technique and artificial intelligence techniques 
to predict the thermal conductivity of nanofluids.

Adaptive neuro‑fuzzy inference system (ANFIS) 
approach

Jang initially proposed the adaptive neuro-fuzzy inference sys-
tem (ANFIS) approach in the 1990s [62]. ANFIS applies fuzzy 
“if–then” rules to determine the relationship between input and 
output variables. The combination of both a fuzzy inference 
system (FIS) and artificial neural network (ANN) allows for 
the system to describe the thermal conductivity behaviour of 
the complex system. ANFIS is structured such that there are 
five layers, as observed in Fig. 4.
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Fuzzy membership functions were employed to study the 
thermal conductivity values. The membership function deter-
mines the degree of exactness; rather a switch value (TRUE or 
FALSE, 0 or 1) its value tends to range between 0 and 1 [63]. 
ANFIS is premised on the rationale that the fact that, different 
rules cannot have the same output membership function and 
that the number of membership functions must be equal to 
the number of rules. With initial if–then instructions, connect 
by certain rules. For instance, if input values are x and y, two 
if–then rules are generated.

Layer 1: In this layer, all the nodes are adaptive; the out-
put from the nodes in layer one is fuzzy by the applica-
tion of membership functions. The Gaussian membership 
function can be seen in Eq. (4).

Layer 2: In this layer, the masses are being determined 
based on initial rules:

Layer 3: In this layer, average mass values are deter-
mined:

Layer 4: In this layer, a determinative function is reached 
to computer average mass values:

Layer 5: In this layer, the sum of the outputs is deter-
mined:

For the ANFIS analysis in this study, three (3) member-
ship functions each in respect to the input variables (temper-
ature, volume concentration and mixture ratio) were utilised.

Artificial neural networks

The operation of ANN is designed to imitate the learning 
process of the human brain. The ANN model comprises of 
a combination of connected units called neurons. The ANN 

(2)Rule 1∶ if x isA1 and y isB1 then f = p1x + q1y + r1

(3)Rule 2∶ if x isA2 and y isB2 then f = p2x + q2y + r2
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architecture also consists of the input layer, hidden layers 
and the output layer. A nonlinear transfer function in each 
node distributes the signals from one layer to the other. The 
neurons in the hidden layers multiply the masses (wij) with 
the sum of its input layers (xi) . The output layer is repre-
sented in Eq. (9).

where l is the number of layers, wl
ij
 represents the masses in 

each layer l with I input and l layer, the dimension of the 
network is d and f is the threshold function, which is a sig-
moid function.

For excellent predicting quality, the model and parameters 
need to be varied to choose the most efficient architecture. 
The different training algorithms used in this study are Lev-
enberg–Marquardt backpropagation (LM), scaled conjugate 
gradient (SCG) and Bayesian regularisation (BR). Also, the 
number of neurons in the hidden layer in each algorithm is 
adjusted. Pre-processing of the dataset is important before 
training of the dataset as it helps to reach training faster 
and avoid getting stuck in local optima. All data are nor-
malised between [0–1] before training and testing and are 
de-normalised afterwards.

(9)yj = f

⎛⎜⎜⎝

di−1�
i=0

�
wl
ij
xl−1
i

�⎞⎟⎟⎠

(10)f =
1

1 + e−x

(11)

Xn =

((
Xactual − Current_min

)(
Newmax − Newmin

))
(
Currentmax − Currentmin

) + Newmin

(12)

X
actual

=((
X
n
− Newmin

)(
Currentmax − Currentmin

))
(
Newmax − Newmin

) + Currentmin

Xn represents the normalised dataset and Xactual is the de-
normalised dataset. Table 3 shows the training conditions 
used in analysing the ANN prediction model.

The performance of each the ANN models is analysed 
using the R2, root mean square (RMSE) and the sum of 
squared estimate error. Figure 5 shows the flowchart of the 
methodology of the ANN model analysis. 70% of the data 
are used in training and validating the ANN network, and 
the rest 30% which are unused in the training phase, made 
up for testing the model. Figure 6 shows the topology of the 
ANN model; the three input parameters used are tempera-
ture, volume fraction and mixture ratio, while the output is 
the thermal conductivity ratio.

(13)RMSE =

√√√√ 1

N

N∑
i=1

(
kexp,i − kpred,i

)2

Fig. 4  Schematic diagram for 
ANFIS

Inputs

Inputs f

Layer 1

A

Nx

y NΠ

Π

∑

A2

B1

B2

Layer 2 Layer 3 Layer 4 Layer 5

Output

Table 3  Training conditions of ANN model

Parameters Settings

Training pattern 70%
Epoch 1000
Testing pattern 30%
Learning rate 0.1
Number of hidden layers 1
Node in hidden layer 5, 10, 15, 20
Learning algorithm LM, BR, SCG
Threshold function Sigmoid
Performance function R2, RMSE, SSE
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where k̄ represents the mean of the predicted thermal con-
ductivity data, kexp represents the experimental thermal 
conductivity and k̂pred represents the predicted thermal 
conductivity.

(14)R2 = 1 −

∑�
kexp,i − k̂pred,i

�2
∑�

kexp,i − k̄pred,i
�2

(15)SSE =

n∑
i=1

(
kexp − k̄

)2

Fig. 5  Flowchart of ANN 
modelling Start

Input Experimental data of
temperature, mixture ratio, volume
fraction and Thermal conductivity

Normalization of data between 0
and 1

Randomization of dataset

Division of data into 70% Training
and 30 Testing

Assign activation function

Assign number of neurons in the
hidden layer

Train the network

MSE is better than
previous section

Stopping criteria satisfied?

Save the network
– RMSE values
– Model network

Test the network

Create a new architecture

Stop!

yes

Yes

No

No

Temperature

Input
layer

Hidden
layer

Output
layer

Thermal
conductivity

Volume
fraction

Mixture
ratio

Fig. 6  Topology of the neural network model
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Results and discussion

Thermal conductivity measurement was taken for 
 Al2O3–ZnO hybrid nanofluid at different mixture ratios 
and they include:  Al2O3:ZnO (1:1),  Al2O3:ZnO (1:2) and 
 Al2O3:ZnO (2:1). The thermal conductivity values were also 
taken at five temperature ranges (25° C, 35° C, 45° C, 55° C 
and 65° C) and five volume concentration values (0.33%, 
0.67%, 1.0%, 1.33% and 1.67%). Thermal conductivity 
measurement was validated with ASHRAE [64] and com-
pared with distilled water. An observed deviation between 
the measured data for water and that of ASHRAE was seen 
to be less than 1.5%.

Hybridisation effect

Figure 7 shows the thermal conductivity of water,  Al2O3, 
ZnO and the hybrid nanofluids at a volume concentration of 
1% and a temperature range between 25 and 65° C. Figure 7 
shows that  Al2O3 water nanofluid has a better thermal con-
ductivity when compared to ZnO nanofluids. However, the 
hybrid nanofluids at all the considered mixture ratios have 
higher thermal conductivity than both  Al2O3 water nanofluid 
and ZnO water nanofluid; this is in agreement with the lit-
erature where thermal conductivity of hybrid nanofluids has 
shown to be higher than that of conventional nanofluids [24].

Effect of temperature on thermal conductivity 
of  Al2O3–ZnO hybrid nanofluid

Figure  8a–c shows the thermal conductivity and tem-
perature relationship for  Al2O3–ZnO hybrid nanofluid at 
1:2, 1:1 and 2:1  (Al2O3:ZnO) mixture ratios, respectively. 
We observe that for each mixture ratio, an increase in the 

suspension temperature enhances the thermal conductivity 
of the nanofluid. This rate of enhancement with tempera-
ture is relatively constant for all mixture ratios considered 
at all volume concentration consider. This phenomenon is 
also observed in the base fluid and agrees with the thermal 
conductivity–temperature relationship proposed in Calla-
way’s model [65]. Within the temperature range considered 
in this study, thermal conductivity is expected to increase 
with temperature increase. The highest thermal enhance-
ments observed in the  Al2O3–ZnO hybrid nanofluids at 1:2, 
1:1 and 2:1  (Al2O3:ZnO) mixture ratios were 36%, 35%, and 
40%, respectively, at volume concentration 1.67% and 65° C.

Effect of volume concentration on thermal 
conductivity of  Al2O3–ZnO hybrid nanofluid

Figure 9a–c shows the thermal conductivity volume concen-
tration relationship for  Al2O3–ZnO hybrid nanofluid at 1:2, 
1:1 and 2:1  (Al2O3:ZnO) mixture ratios, respectively. We 
observe that for each mixture ratio, the increase in volume 
concentration of the nanofluid increases the thermal conduc-
tivity of the nanofluids.

Within the range of volume, concentration investigated 
the maximum thermal conductivity achieved for  Al2O3–ZnO 
hybrid nanofluids at 1:2, 1:1 and 2:1  (Al2O3:ZnO) mixture 
ratios was 36%, 35% and 40%, respectively, at volume con-
centration 1.67% and 65° C.  Al2O3–ZnO hybrid nanofluid 
at 0.33% volume concentration provided the least thermal 
conductivity within the considered range.

Fig. 7  Thermal conductivity 
comparison of water,  Al2O3 and 
ZnO and hybrid nanofluids
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Fig. 8  Effect of temperature on 
thermal conductivity of  Al2O3–
ZnO nanofluids at different 
mixture ratios a 1:2, b 1:1 and c 
2:1  (Al2O3:ZnO)
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Fig. 9  Effect of volume concen-
tration on thermal conductivity 
of  Al2O3–ZnO nanofluids at 
different mixture ratios a 1:2, b 
1:1 and c 2:1  (Al2O3:ZnO)

Thermal conductivity of 1:2 (Al2O3-ZnO) varrying concentration

Thermal conductivity of Al2O3:ZnO(1:1) varrying Volume concentration
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Effect of mixture ratio on thermal conductivity 
of  Al2O3–ZnO hybrid nanofluid

Figure 10 shows the thermal conductivity of  Al2O3–ZnO 
hybrid nanofluid as the particle ratio of  Al2O3 is increased 
from one-third to half and ultimately to two-third of the 
particle concentration of the hybrid. Figure 10a, b shows 
the effect of the particle mixture ratio at a temperature of 
25° C and a volume concentration of 1.0%, respectively. It 
is observed that the particle mixture ratio and thermal con-
ductivity relation is nonlinear. As the ratio  Al2O3 particle is 
increased, a “deeping effect” is noticed when the mixture 
ratio is 0.5, and the maximum thermal conductivity enhance-
ment is observed when  Al2O3 constitutes 0.67 of particle 
concentration.

The “deeping” effect was first observed by Hamid et al. 
[48] in  TiO2–SiO2 hybrid nanofluid. According to Hamid 
et al. [48], the “deeping” effect might be due to the size of 

the particles. Hamid et al. [48] proposed that the amount of 
the smaller particles present in the mixture and the unique 
arrangement of the nanoparticles may explain this effect. In 
this study, the  Al2O3 average nanoparticles size is 29 nm, 
and the ZnO nanoparticle has an average particle size of 
70 nm. Therefore, Hamid et al. [48] observation resonates 
with the  Al2O3–ZnO hybrid nanofluid investigation; when 
the  Al2O3–ZnO hybrid is at 1:1 mixture ratio, the nanofluid 
has the lowest amount of particles. However, when the 
 Al2O3–ZnO hybrid nanofluid has a mixture ratio of 2:1 the 
fluid has the highest amount of particles.

Correlation model

A correlation equation was developed using the experi-
mental data from thermal conductivity measurements of 
the hybrid nanofluid. Unlike previous models discussed in 
Table 3, this model accounts for the effect of the mixture 

Fig. 10  Effect of particle mix-
ture ratio on thermal conductiv-
ity of  Al2O3–ZnO nanofluids 
at a 25° C and (b) 1% volume 
concentration

0.84

0.82

0.8

0.78

0.76

0.74

0.72

0.7

0.68

0.66

0.64

0.84

0.82

0.78

0.76

0.74

0.72

0.7
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0.8

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Thermal conductivity particle ratio relationship at 1% Vol. Conc.

Particle ratio of Al2O3 in particle concentration of hybrid nanofluid

Mixture ratio thermal conductivity relationship at 25 C

Particle ratio of Al2O3 in particle concentration of hybrid nanofluid

0.33% Vol.Con.
0.67% Vol. Con.
1.0% Vol. Con.
1.33% Vol. Con.
1.67% Vol. Con.

25 C
35 C
45 C
55 C
65 C

T
he

rm
al

 c
on

du
ct

iv
ity

/W
 m

–1
 K

–1
T

he
rm

al
 c

on
du

ct
iv

ity
/W

 m
–1

 K
–1

(a)

(b)



684 I. Wole-Osho et al.

1 3

ratio on the thermal conductivity of the hybrid nanofluids. 
Unlike most studies in the literature where a power multipli-
cative function is used, this study uses a polynomial additive 
model as it would better account for the “deeping” effect 
witnessed from the experimental results. The correlation 
model is presented in Eq. (16).

where T represents temperature, � represents volume con-
centration and R represents the ratio of  Al2O3 in nanoparticle 
concentration.

The equation approximates the thermal conductivity of 
water-based  Al2O3–ZnO hybrid nanofluids for tempera-
tures ranging between 25 and 70 °C and volume concentra-
tion below 2%. Table 4 shows the value of the constants in 
Eq. (16), determined by multivariate regression.

The model was statistically validated by determining the 
RMS value and the R2 value. The R2 value of the regression 
correlation presented in Eq. (16) is 0.9718, with an RMS value 
of 0.014. Also, Fig. 11 shows the forecasted values obtained 
from the regression correlation and the recorded experimental 
value for thermal conductivity are in good agreement.

(16)
knf

kbf
= a0 + a1T + a2T

2 + a3R + a4R
2 + a5� + a6�

2

Figure 12 compares the proposed regression model to 
experimental data for varying mixture ratio. It is observed 
that the model is in good agreement with experimental data. 
The mixture ratio of the hybrid nanofluid is not accounted 
for in all proposed models and therefore cannot identify 
the behaviour of  Al2O3–ZnO hybrid nanofluids at different 

Table 4  Values of coefficient in 
Eq. (16)

Constant Value

a0 1.1732
a1 0.002974
a2 − 0.0000156
a3 − 0.9976
a4 1.0999
a5 18.809
a6 − 130.607
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Fig. 11  Correlation model experimental keff versus predicted keff
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Table 5  Training parameters for ANFIS model

Parameters Values

No of Membership function 3 3 3
Membership function type Trimf
Membership function type (output) Constant

Table 6  Performance values for estimating thermal conductivity

R2 RMSE SSE

Training and 
testing

0.9902 0.0010036 0.00058418

Testing 0.9946 0.0049 0.0049
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mixture ratios. Figure 12a, b shows a comparison between the 
model value and experimental value at constant temperature 
and volume concentration of 1.0% and 1.67%, respectively.

Intelligent prediction models

In this section, the results from the soft computing tools 
(ANFIS and ANN) are presented and discussed. The goal is 
to estimate the most efficient model for accurately predicting 
the experimental values of the thermal conductivity of the 
hybrid nanofluid.

ANFIS approach

The performance of the ANFIS model is assessed using the 
R2, RMSE and SSE values. The training parameters and 
results are given in Tables 5 and 6, respectively.

Table 5 shows the number of membership functions 
applied in fuzzing the output. The triangular membership 
function was applied; triangular membership function is the 
simplest shaped membership function [63]. The experimen-
tal values for thermal conductivity very much agree with the 
predicted values obtained from the ANFIS model based on 
the statistical analysis shown in Fig. 13. It can be observed 
that the prediction is almost exact with the experimental 
result. However, there are some negligible deviations from 
the perfect experimental data. The marginal deviation of the 
predicted and experimental values of the thermal conductiv-
ity is calculated as:

The margin of deviation (MOD) of the predicted values 
using the ANFIS computation is within ± 1.4% range.

(17)
[
%MOD =

kexp − kpred

kexp

]
× 100
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Fig. 13  ANFIS scatter plots of predicted versus experimental result 
of thermal conductivity (testing dataset)

Table 7  ANN model optimised 
with LVM, BR and SCG 
algorithms

No of neurons Training Testing

R2 RMSE SSE R2 RMSE

LVM
5 0.9458 0.0002032 1.65E−06 0.9791 0.0064 0.0006515
10 0.9925 8.359E−05 2.795E−07 0.9909 0.0045 0.0003187
15 0.9718 0.0001488 8.855E−07 0.9344 0.0117 0.0022
20 0.9772 0.0001484 8.803E−07 0.973 0.0074 0.0008798
BR
5 0.9887 0.0001004 4.034E−07 0.9928 0.0038 0.0002336
10 0.9745 0.0001464 8.57E−07 0.9922 0.0038 0.0002347
15 0.9772 0.0001357 7.365E−07 0.9896 0.0042 0.0002798
20 0.9747 0.0001448 8.384E−07 0.9912 0.0042 0.000279
SCG
5 0.7645 0.0004945 9.782E−06 0.5084 0.0208 0.0069
10 0.7544 0.0004212 7.096E−06 0.7556 0.02 0.0064
15 0.8019 0.0005099 1.04E−05 0.5481 0.0279 0.0125
20 0.8229 0.0004634 8.59E−06 0.7957 0.0326 0.0171
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Fig. 14  Performance of training algorithms for different neurons in 
the hidden layer
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Table 6 shows the ANFIS to have an R2 value of 0.9946. 
This value is a higher value than the R2 value of the proposed 
correlation model. Therefore, the ANFIS model is a better 
predictive model for the hybrid nanofluid than the proposed 
correlation model.

ANN approach

Various types of ANN models have been analysed, and 
the test results are shown in Table 7. Figure 14 shows the 
performance of the ANN models for each algorithm and 
an increasing number of neurons with one hidden layer. It 
is shown that the least efficient algorithm is the SCG. The 
LVM and BR have almost the same prediction accuracy. 
The reason for this is that they give a better generalisation 
for noisy and small datasets. The BR algorithm minimises 
squared errors and masses, which gives a more generalised 
and efficient model. The most accurate model is the BR 
algorithm with five neurons in the hidden layer, and an R2 
value of 0.9928; increasing the number of neurons in the 
hidden layer did not appear to improve model’s predictions. 
When the SCG algorithm is applied to the ANN, increasing 
the number of neurons in the hidden layer tends to increase 
the accuracy of the ANN. However, this is not observable in 
the both LVM- and BR-optimised models.

The ANN, ANFIS and correlation models are compared 
in terms of accuracy in prediction of the experimental ther-
mal conductivity values. This comparison is made for all 
the test datasets, which were not used in the training phase 

of the neural network models. The ANN architecture of 
LVM algorithm with 10 neurons is chosen for this com-
parative analysis as it is the best model obtained from the 
ANN design. Table 8 shows that the ANFIS model has the 
best ability to accurately predict the thermal conductivity of 
the experimentally observed  Al2O3–ZnO hybrid nanofluid. 
Table 8 also shows that while the ANFIS prediction model 
is most accurate in predicting thermal conductivity while 
the correlation model is the least efficient in predicting the 
thermal conductivity especially at higher values.

Conclusions

An experimental investigation on the thermal conductiv-
ity of  Al2O3–ZnO water hybrid nanofluids at three differ-
ent mixture ratios and at a volume concentration of 0.33%, 
0.67% 1.00%, 1.33% and 1.67% is studied. The experimen-
tally measured results for the hybrid nanofluids are presented 
and the following significant findings:

• The thermal conductivity of the hybrid nanofluids 
increases with an increase in volume concentration and 
also increases as temperature increases within the con-
sidered range.

• The maximum thermal conductivity enhancement 
achieved for  Al2O3–ZnO hybrid nanofluids with 1:2, 1:1 
and 2:1  (Al2O3:ZnO) mixture ratios was 36%, 35% and 
40%, respectively, at volume concentration 1.67% and 
65 °C.

• Al2O3–ZnO nanofluids at a 1:1 mixture ratio present the 
least value for thermal conductivity when compared to 
2:1 and 1:2 mixture ratio at all volume concentrations 
and temperature ranges considered.

• A “deeping” effect is observed for thermal conductivity 
when the hybrid mixture is at a ratio of 1:1. We attribute 
this effect to be as a result of the total number of particles 
within the nanofluid and difference in average particle 
size between the  Al2O3 and ZnO nanoparticles.

• The thermal conductivity models used in the study sig-
nificantly deviated from experiment results and could 
not account for the “deeping” effect observed at the 1:1 
mixture ratio.

• The correlation model proposed in this study was in 
good agreement with measured data and accounted for 
the effect of the mixture ratio on the thermal conductivity 
of the hybrid nanofluid with an R2 value of 0.9826.

• ANN model showed almost perfect prediction with an R2 
value of 0.9928. The BR algorithm gave this best fit.

• The ANFIS model gave the best prediction accuracy for 
the experimentally obtained thermal conductivity values 
with an R2 value of 0.9946.

Table 8  Testing data for three predictive models

Experiment ANFIS model Correlation model ANN model

0.708 0.699846 0.708876 0.701137
0.75 0.751563 0.738888 0.742343
0.768 0.766251 0.768694 0.772545
0.688 0.683931 0.685724 0.689208
0.825 0.820865 0.826188 0.82942
0.703 0.699873 0.698757 0.694243
0.831 0.827905 0.811377 0.827536
0.838 0.841115 0.847435 0.845993
0.658 0.654292 0.645467 0.646128
0.739 0.741426 0.74582 0.752335
0.79 0.793719 0.78088 0.7969
0.843 0.847486 0.869087 0.846427
0.692 0.693937 0.68824 0.686875
0.824 0.82039 0.828387 0.821023
0.725 0.725849 0.723599 0.722371
0.756 0.754535 0.757789 0.755527
0.831 0.843253 0.837233 0.84616
0.862 0.854264 0.870174 0.867919
R2 0.9946 0.9826 0.9919
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