Skip to main content
Log in

Magneto-thermo analysis of oscillatory flow around a non-conducting horizontal circular cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study is based on oscillatory mixed-convection flow of electrically conducting fluid around a non-conducting horizontal circular cylinder. By following the statement of the problem, a mathematical model is constituted, and then, the formulated model is transformed into convenient form for integration by using primitive-variable formulation. The behavior of oscillatory skin friction, heat transfer and magnetic flux for pertinent parameters involved in the flow model such as mixed-convection parameter \( \lambda \), magnetic force parameter \( \xi \), the magnetic Prandtl number \( \gamma \) and the Prandtl number Pr is discussed numerically. For this purpose, first velocity profile, temperature distribution and magnetic-field profile at various positions \( \alpha = \pi /6, \;\pi /3 \) and \( \pi \) of the non-conducting horizontal circular cylinder for steady state are secured and then are used to calculate oscillatory skin friction, heat transfer and current density. It is predicted that oscillatory behavior of skin friction, heat transfer and current density is increased at position \( \alpha = \pi /4 \) for increasing values of the various physical pertinent parameters. It is pertinent to mention here that the convective heat transfer is practically associated with oscillatory flow behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

u, v :

Velocity along \( xy \)-direction (m s −1)

\( H_{\text{x}} \), \( H_{\text{y}} \) :

Magnetic field along \( xy \)-direction (Tesla)

\( \mu \) :

Dynamic viscosity (kg m −1 s −1)

\( \nu \) :

Kinematic viscosity (m 2 s −1)

\( \rho \) :

Density (kg m −3), \( \tau \) Shear stress (P a)

\( g \) :

Gravitational acceleration (m s −2)

\( \beta \) :

Thermal expansion coefficient (K −1)

\( \nu_{\text{m}} \) :

Magnetic permeability (H m −1)

\( \alpha \) :

Thermal diffusivity (m 2 s −1)

T:

Temperature (K)

\( C_{\text{p}} \) :

Specific heat (J kg −1 K −1)

\( T_{\infty } \) :

Ambient fluid temperature (K)

\( R_{{{\text{e}}_{\text{L}} }} \) :

Reynolds number

\( G_{{{\text{r}}_{\text{L}} }} \) :

Grashof number

\( \xi \) :

Magnetic force parameter

\( \lambda \) :

Mixed-convection parameter

\( \theta \) :

Dimensionless temperature

\( \gamma \) :

Magnetic Prandtl number

Pr:

Prandtl number

\( \sigma \) :

Electrical conductivity

References

  1. Blasius H. Grenzschichten in Flüssigkeitn mit kleiner Reibung. Z Math Phys. 1908;56:1–37.

    Google Scholar 

  2. Chawla SS. Fluctuating boundary layer on a magnetized plate. Proc Camb Phil Soc. 1967;63:513–25.

    Google Scholar 

  3. Dwyer HA, McCroskey WJ. Oscillating flow over a cylinder at large Reynolds number. J Fluid Mech. 1973;61:753–67.

    Google Scholar 

  4. Merkin JH. Mixed convection from a horizontal circular cylinder. Int J Heat Mass Transf. 1977;20:73–7.

    Google Scholar 

  5. Ingham DB, Pop I. Natural convection about a heated horizontal cylinder in porous medium. J Fluid Mech. 1987;184:157–81.

    CAS  Google Scholar 

  6. Merkin JH, Pop I. A note on the free convection boundary layer on a horizontal circular cylinder with constant heat transfer. Heat Mass Transf. 1988;22:79–81.

    CAS  Google Scholar 

  7. Chamkha AJ. Solar radiation assisted natural convection in a uniform porous medium supported by a vertical flat plate. ASME J Heat Transf. 1997;119:89–96.

    CAS  Google Scholar 

  8. Chamkha AJ. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int J Eng Sci. 1997;35:975–86.

    CAS  Google Scholar 

  9. Takhar HS, Chamkha AJ, Nath G. Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int J Eng Sci. 1999;37:1723–36.

    Google Scholar 

  10. Chamkha AJ. Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes. Int J Heat Fluid Flow. 2000;21:740–6.

    Google Scholar 

  11. Takhar HS, Chamkha AJ, Nath G. Combined heat and mass transfer along a vertical moving cylinder with a free stream. Heat Mass Transf. 2000;36:237–46.

    Google Scholar 

  12. Helmy KA. On unsteady magnetohydrodynamic flow of viscous conducting fluid. J Appl Math Mech. 2000;80:665–80.

    Google Scholar 

  13. Chamkha AJ, Khaled ARA. Similarity solutions for hydromagnetic mixed convection heat and mass transfer for hiemenz flow through porous media. Int J Numer Methods Heat Fluid Flow. 2000;10:94–115.

    Google Scholar 

  14. Chamkha AJ. Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer Heat Transf Part A. 2001;39:511–30.

    CAS  Google Scholar 

  15. Takhar HS, Chamkha AJ, Nath G. MHD flow over a moving plate in a rotating fluid with magnetic field, hall currents and free stream velocity. Int J Eng Sci. 2002;40:1511–27.

    Google Scholar 

  16. Chamkha AJ. Double-diffusive convection in a porous enclosure with cooperating temperature and concentration gradients and heat generation or absorption effects. Numer Heat Transf Part A. 2002;41:65–87.

    Google Scholar 

  17. Chamkha AJ. On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions. Int J Heat Mass Transf. 2002;44:2509–25.

    Google Scholar 

  18. Chamkha AJ, Issa C, Khanafer K. Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation. Int J Therm Sci. 2002;41:73–81.

    Google Scholar 

  19. Takhar HS, Chamkha AJ, Nath G. Unsteady mixed convection flow from a rotating vertical cone with a magnetic field. Heat Mass Transf. 2003;39:297–304.

    Google Scholar 

  20. Chamkha AJ, Al-Mudhaf A. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int J Therm Sci. 2005;44:267–76.

    Google Scholar 

  21. Umavathi JC, Chamkha AJ, Mateen A, Al-Mudhaf A. Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf. 2005;42:81–90.

    CAS  Google Scholar 

  22. Mahmood M, Asghar S, Hossain MA. Hydromagnetic flow of viscous incompressible fluid past a wedge with permeable surface. Z Angew Math Mech. 2009;89:174–88.

    Google Scholar 

  23. Modather M, Rashad AM, Chamkha AJ. An analytical study on MHD heat and mass transfer oscillatory flow of micropolar fluid over a vertical permeable plate in a porous medium. Turk J Eng Environ Sci. 2009;33:245–58.

    CAS  Google Scholar 

  24. Khedr MEM, Chamkha AJ, Bayomi M. MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption. Nonlinear Anal Modell Control. 2009;14:27–40.

    Google Scholar 

  25. Magyari E, Chamkha AJ. Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface: the full analytical solution. Int J Therm Sci. 2010;49:1821–8.

    CAS  Google Scholar 

  26. Rashidi M, Chamkha AJ, Keimanesh M. Application of multi-step differential transform method on flow of a second-grade fluid over a stretching or shrinking sheet. Am J Comput Math. 2011;6:119–28.

    Google Scholar 

  27. Gorla RSR, El-Kabeir SMM, Rashad AM. Boundary layer heat transfer from a stretching circular cylinder in a nanofluid. J Thermophys Heat Transf. 2011;25:183–6.

    CAS  Google Scholar 

  28. Chamkha AJ, Mohamed RA, Ahmad SE. Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with joule heating, chemical reaction and radiation effects. Meccanica. 2011;46:399–411.

    Google Scholar 

  29. Ashraf M, Asghar S, Hossain MA. Fluctuating hydro-magnetic natural convection flow past a magnetized vertical surface in the presence of thermal radiation. Thermal Science. 2012;16:1081–96.

    Google Scholar 

  30. Ashraf M, Asghar S, Hossain MA. Computational study of the combined effects of conduction radiation and hydromagnetic on natural convection flow past a magnetized permeable plate. Appl Mathe Mech. 2012;33:731–50.

    Google Scholar 

  31. Rashad AM, Chamkha AJ, Modather M. Mixed convection boundary layer flow of a nanofluid from a horizontal circular cylinder embedded in a porous medium under convective boundary conditions. Comput Fluids. 2013;86:380–8.

    Google Scholar 

  32. Salinas-Vazquez M, Vicente W, Barrera E, Martinez E. Numerical analysis of the drag force of the flow in a square cylinder with a flat plate in front. Revista mexicana de física. 2014;60:102–8.

    Google Scholar 

  33. Ghalambaz M, Behseresht A, Behseresht J, Chamkha AJ. Effects of nanoparticles diameter and concentration on natural convection of the Al2O3-water nanofluids considering variable thermal conductivity around a vertical cone in porous media. Adv Powder Technol. 2015;26:224–35.

    CAS  Google Scholar 

  34. Reddy PS, Chamkha AJ. Soret and Dufour effects on MHD convective flow of Al2O3-water and TiO2-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv Powder Technol. 2016;27:1207–18.

    CAS  Google Scholar 

  35. Chamkha AJ, Ismael M, Kasaeipoor A, Armaghani T. Entropy generation and natural convection of cuo-water nanofluid in c-shaped cavity under magnetic field. Entropy. 2016. https://doi.org/10.3390/e18020050.

    Article  Google Scholar 

  36. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28:385–97.

    CAS  Google Scholar 

  37. Roy NC, Hossain MA. Unsteady magnetohydrodynamic mixed convection flow of micropolar fluid past a permeable sphere. J Thermophys Heat Transf. 2017;31:1–14.

    Google Scholar 

  38. Ogut EB. Magnetohydrodynamic mixed convection in a lid-driven rectangular enclosure partially heated at the bottom and cooled at the top. Thermal Science. 2017;21:863–74.

    Google Scholar 

  39. Ashraf M, Chamakh AJ, Iqbal S, Ahmad M. Effects of temperature dependent viscosity and thermal conductivity on mixed convection flow along a magnetized vertical surface. Int J Numer Meth Heat Fluid Flow. 2016;26:1580–92.

    Google Scholar 

  40. Ashraf M, Fatima A, Gorla RSR. Periodic momentum and thermal boundary layer mixed convection flow around the surface of sphere in the presence of viscous dissipation. Can J Phys. 2017;95:976–86.

    CAS  Google Scholar 

  41. Ashraf M, Iqbal I, Ahmad M, Sultana N. Numerical prediction of natural convection flow in the presence of weak magnetic Prandtl number and strong magnetic field with algebraic decay in mainstream velocity. Adv Appl Math Mech. 2017;9:349–61.

    Google Scholar 

  42. Ashraf M, Fatima A. Numerical simulation of the effect of transient shear stress and rate of heat transfer around different position of sphere in the presence of viscous dissipation. J Heat Transfer. 2018;140:1–12.

    Google Scholar 

  43. Domínguez-Lozoya JC, Perales H, Cuevas S. Analysis of the oscillatory liquid metal flow in an alternate MHD generator. Revista Mexicana de Física. 2019;65:239–50.

    Google Scholar 

  44. Chowdhury K, Alim A. MHD mixed convection flow in a lid driven enclosure with a sinusoidal wavy wall and a heated circular body. Int J Fluid Mech Thermal Sci. 2019;5:102–10.

    Google Scholar 

  45. Kumar KA, Sugunamma V, Sandeep N, Mustafa MT. Simultaneous solutions for first order and second order slips on micropolar fluid flow across a convective surface in the presence of Lorentz force and variable heat source/sink. Sci Rep. 2019;9:14706.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ashraf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, Z., Ashraf, M. & Rashad, A.M. Magneto-thermo analysis of oscillatory flow around a non-conducting horizontal circular cylinder. J Therm Anal Calorim 142, 1567–1578 (2020). https://doi.org/10.1007/s10973-020-09571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09571-5

Keywords

Navigation