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Abstract
Today, differential scanning calorimetry (DSC) has increasingly been an accepted method for diagnosing and monitoring 
different diseases. Moreover, as a highly sensitive technique it seems to be applicable in human cancer researches. Our 
workgroup in several previous researches has already demonstrated marked differences on DSC plasma profiles between 
healthy control and various tumorous patients and, in addition, at their different stages. The aim of this study was to compare 
deconvoluted plasma DSC curves on patients with solid tumors. Blood plasma DSC data were analyzed retrospectively from 
various patients, who has only local cancer diseases (malignant melanoma: n = 15, breast carcinoma: n = 10 and pancreas 
adenocarcinoma: n = 11) without any regional or distant metastases. The complex curves were deconvoluted in numerous 
individual transitions (five or seven melting points). In the examined patients with solid tumors, the thermodynamic param-
eters: heat flow and calorimetric enthalpy of the transitions corresponding to the most abundant plasma proteins, as well as 
the numbers of transitions were determined from the calorimetric profiles. Deconvoluted DSC curves from blood samples 
of patients showed differences and similarities at the same time in the thermal denaturation of plasma components in vari-
ous carcinoma cases.
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Introduction

According to the survey of World Health Organization 
(WHO), cancer is the second leading cause of death glob-
ally and is responsible for an estimated 9.6 million deaths 
in 2018 [1]. Based on the WHO GLOBOCAN (Global Can-
cer) database, breast cancer is the third, melanoma malig-
num (MM) is the fifth, while pancreas adenocarcinoma is 
the twelfth in terms of incidence and these malignant dis-
eases are ranked within the top twenty in terms of mortal-
ity [2]. Basically, these solid tumors have two major types 
of groups: sarcomas and carcinomas. Many types of solid 

tumors are often treated with surgery. But, next to the type 
and stage of tumors during treatment decision making for 
cancer takes into account risks contra benefits of planned 
therapy, and treatment should be supplemented with postop-
erative chemo- and/or radiotherapy, or with targeted biologi-
cal treatment or multimodal therapy if these are available for 
that cancer type [3].

Blood samples examination is still a noninvasive detec-
tion and monitoring method during cancer research and 
patient care also. Today, among the features that can be 
detected in blood only the tumor markers are suitable partly 
for diagnosis and partly for monitoring. These are gene 
products which signal the occurrence of tumors in different 
organs as well as their response to surgery and to preopera-
tive (neoadjuvant) or postoperative (adjuvant) therapy [4]. 
The first discovered tumor marker was alpha-fetoprotein 
(AFP) in 1956, followed by carcinoembryonic antigen (CA) 
in 1965. Since then, many different tumor markers have been 
characterized and are in clinical use. But, no “universal” 
marker in the blood has been found that can reveal the pres-
ence of any type of cancer. Tumor markers have tradition-
ally been proteins or other substances that are made by both 
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normal and cancer cells, but at higher amounts by cancer 
cells [5]. The other and new area of cancer research is, for 
example, using circulating tumor DNA with many consider-
able implications in clinical management. The main question 
is always the specificity and sensitivity of a given measure-
ment method [6].

It seems for us that in the last 60–70 years, research of 
blood tests has not brought the breakthrough in diagnosing 
and monitoring of tumors. In the last 10 years, many our 
research and previous studies from others have highlighted 
the potential applicability of the DSC technique in the diag-
nosis of certain tumors [7–11]. After positive results of the 
first experiments to elucidate the clinical utility of DSC, it 
is important to establish the sensitivity and specificity of the 
method. Moreover, it is important to examine the content 
elements of the data, to summarize the consequences of the 
measurements and finally to identify the individual parts of 
complex curves of the DSC curves. In the present study, our 
goal was to compare deconvoluted plasma DSC curves on 
patients with newly diagnosed, operable and metastasis-free 
solid tumors.

Materials and methods

Patient selection

Thirty-six patients (19 women and 17 men, aged from 22 
to 71 years) were involved in recent study; mean age was 
50.9 ± 8.2 years. Ten age- and sex-matched healthy persons 
with a mean age of 45.1 ± 4.7 were selected as controls. 
Patients had newly diagnosed operable skin cancer (n = 15) 
or breast cancer (n = 10) or pancreas tumor (n = 11) without 
any distant metastases. After cancer removal and histopatho-
logical evaluation of the specimen, histology confirmed the 
malignant lesions, namely malignant melanoma, invasive 
breast carcinoma and pancreas adenocarcinoma. Moreover, 
measurements of tumor propagation verified the only local 
tumor diagnosis. Blood samples were collected at the begin-
ning of surgery, and until then, nobody was given any anti-
tumor treatment (chemo- or radio- or biological therapy). 
Patients were operated in profession-specific units of Uni-
versity of Pécs (Department of Dermatology, Venereology 
and Oncodermatology; Department of Surgery). The study 
protocol was approved by regional ethical committee of Uni-
versity of Pécs.

Blood sample collection and preparation

Peripheral blood samples were collected from patients 
(n = 36) and from healthy individuals (n = 10). Blood sam-
ples were collected into the Vacutainer tubes containing 
EDTA (1.5 mg mL−1 of blood) centrifuged at 1.600 g for 

15 min at 4 °C to separate plasma fraction from cell com-
ponents. Native plasmas were stored at − 80 °C until DSC 
measurement.

Calorimetric measurement

The thermal unfolding of the human plasma components 
was monitored by SETARAM Micro DSC-II calorimeter 
as previously described [12]. In brief, all experiments were 
conducted between 0 and 100 °C. The heating rate was 
0.3 K min−1 in all cases. Conventional Hastelloy batch ves-
sels were used during the denaturation experiments with 850 
μL sample volume in average. Reference sample was nor-
mal saline (0.9% NaCl). The sample and reference samples 
were equilibrated with a precision of ± 0.1 mg. The repeated 
scan of denatured sample was used as baseline reference, 
which was subtracted from the original DSC curve. We have 
plotted the heat flow (DSC-II is a heat flux instrument with 
hermetically closed vessels) as a function of temperature. 
Calorimetric enthalpy was calculated from the area under 
the heat flow curve by using two-point setting SETARAM 
peak integration.

Deconvolution of DSC thermal curve

The plasma is a complex protein mixture. Therefore, it 
contains from a thermal point of view different “thermal 
domains” which can be assigned to the different compounds 
[7, 8, 13]. It means that a DSC scan can be decomposed into 
a sum of Gaussian curves that way that their total area is the 
same as of the experimental curve one, within a reasonable 
error (< 1%). To have the best fitting we applied more than 
five curves, but some contribution was less than the error of 
enthalpy determination, so they were omitted because cannot 
influence our final interpretation of data.

Statistical analysis

All results are given in mean values ± standard error of the 
mean (SEM). In the case of deconvoluted curves, those ther-
mal transitions where the enthalpy contribution was around 
the error of the determination of total calorimetric enthalpy 
are omitting from the evaluation (e.g., signing them on 
deconvoluted curves).

Results

The average main thermal curves (black line) were decon-
voluted and usually exhibited five to seven separable com-
ponents (colored lines, fitting curve is red). The order of 
appearance of each component in the case of seven transi-
tion temperatures was green, blue, pink, dark yellow, navy, 
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purple and brown. Presently, the results of blood plasma 
deconvoluted curves of healthy patients are shown in Fig. 1, 
the melanoma malignum in Fig. 2, breast cancer in Fig. 3 
and operable malignant pancreas adenocarcinoma in Fig. 4. 
According to the literature data, the next plasma com-
pounds can be identified using the thermal denaturation of 
each compound isolated by electrophoresis: in temperature 
range 48–58 °C fibrinogen, around 63 °C albumin (the main 

constituent of plasma), ~ 70 °C mainly immunoglobulins 
(Ig), albumin’s minor and tail transition. The complement 
protein C3, IgA and albumin can appear at ~ 76 °C, and in 
some cases, a contribution can be identified around 82 °C 
from IgG and transferrin [7, 8]. As Table 1 shows, the total 
calorimetric enthalpies (HT) decreased in the three disease 
group compared to values of healthy volunteers. The con-
tribution of fibrinogen in calorimetric enthalpy was in the 
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Fig. 1  DSC curve of average healthy blood plasma (black line) and 
its deconvoluted thermal domains (with different colors). The fitted 
curve is in red. All the important transition temperatures are marked, 
and the endotherm process is directed downwards in all figures
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Fig. 2  Average DSC thermal curves and deconvoluted blood plasma 
components show melting points and thermal transitions on patients 
with local melanoma malignum cancer
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Fig. 3  DSC thermal changes and deconvoluted blood plasma compo-
nents on patients with breast cancer without metastatic lymph node 
complication
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Fig. 4  Human blood plasma DSC curves and its deconvoluted com-
ponents after malignant, but operable pancreas adenocarcinoma
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range of enthalpy determination error (~ 5%), and in the case 
of MM and pancreas adenoma, it exhibited two separable 
thermal domains (see Table 1). The transition-giving albu-
min’s melting point (in our healthy sample Tm2 = 62.5 °C) 
at MM stage increased to Tm4 = 63.4 °C with unchanged 
enthalpy, while in breast cancer and pancreas carcinoma it 
decreased to Tm2 = 61 °C as well as to Tm3 = 61.2 °C. The 
calorimetric enthalpy decreased significantly only in the 
case of breast cancer. The contribution of immunoglobulins 
(Ig) + albumin’s minor and tail transition (exhibited in the 
control at 65.3 °C) gave the highest enthalpy contribution in 
all samples, but Tm shifted up for MM to 67.5, in breast can-
cer to 66.4 and for pancreas tumor to 67.5 °C. The transition 
exhibited by complements and immunoglobulins showed the 
next changes; Tm4 = 74.8 °C control, Tm6 = 74.1 °C for MM, 
Tm4 = 71.9 °C in the case of breast cancer and Tm5 = 81 °C 
for pancreas sample (see Table 1 and Figs. 1–4). The calo-
rimetric enthalpy, as an indicator of overall thermal stabil-
ity of the whole system, showed a decreasing tendency in 
patients with MM and breast cancer compared to controls 
(1.29 Jg−1 versus 1.14 Jg−1 and 1.16 Jg−1).    

Discussion

Recently, the plasma proteome and peptidome still hold 
great promise for disease diagnosis and therapeutic moni-
toring. Interestingly, according to a validated method, mass 
spectrometry-based approach showed significant changes 
in low-abundance proteins and peptides in blood plasma. 
In contrast, in other studies, for example, nuclear magnetic 
resonance, electrophoresis and immunochemistry are widely 
applied to monitor the level of most abundant plasma pro-
teins to provide important information for disease detection 

and monitoring [14]. Knowing the different literature data, 
in several previous studies of our research group, we showed 
some “cancer-specific” changes which occur in the most 
abundant protein mass of the human blood plasma. Seeing 
different results and finding solutions no doubt, there is a 
constant need for new methods and technologies to provide 
reliable early detection a disease, particularly tumors and 
monitor patients with a noninvasive manner.

It has already been confirmed in several publications 
by each research group that during denaturation of blood 
plasma components the “cumulative” DSC curve can be 
broken down into 5–6 sub-curves containing same number 
transition temperatures (melting points) [7, 8, 13–15]. With 
this, deconvolution processes could be shown that mostly 
the thermodynamics of main plasma proteins are changed. 
Similarly, our previous investigations showed permanent 
appearance of plasma thermal changes also [9–12]. In fact, 
these observations are true for not only individual disease 
groups, but also in known malignant symptoms and in its 
different severity stages. The trend of changes—among the 
first—has prompted our research team to examine what com-
ponents are behind the summarized curves and how these 
are changing.

Previous research works recorded that DSC average 
plasma profile from healthy individuals can be separated 
by five transitions at about 56 °C, 62 °C, 65 °C, 74 °C and 
82 °C [7, 8, 13]. Tm1 transition can be attributed mainly to 
fibrinogen, Tm2 to albumin, Tm3 to immunoglobulins and 
albumin minor tail, Tm4 to complement protein C3, IgA, IgG 
and finally Tm5 to one part of IgG and transferrin. Although 
the DSC data from our study reveal heterogeneity in the 
scans, some common characteristics for the plasma profiles 
majority were observable.

Table 1  Melting temperatures and calorimetric enthalpies of human blood plasma in healthy individuals and in patients who have been operated 
with different solid tumors (transition temperature: Tm/°C for influenced thermal domain)

Calorimetric enthalpy: ΔH/Jg−1 for convoluted curves, ΔHT/Jg−1 for average of DSC scans with average ± SD
Italic values indicate significant difference compared with healthy control

Groups Thermal parameters

Tm1/°C ΔH/
Jg−1

Tm2/°C ΔH/
Jg−1

Tm3/°C ΔH/
Jg−1

Tm4/°C ΔH/
Jg−1

Tm5/°C ΔH/
Jg−1

Tm6/°C ΔH/
Jg−1

Tm7/°C ΔH/
Jg−1

ΔHT/Jg−1

Healthy 
control

56.0 62.5 65.3 74.8 – – –
0.04 0.39 0.70 0.17 1.29 ± 0.06

Melanoma 
malignum 
(n = 15)

52.5 56 60 63.4 67.5 74.1 87
0.01 0.06 0.09 0.39 0.41 0.16   0.026 1.14 ± 0.05

Breast cancer 
(n = 10)

55.6 61 66.4 71.9 85 – –
0.07 0.15 0.38 0.56 0.01 1.16 ± 0.05

Pancreas ade-
nocarcinoma 
(n = 11)

48.4 55 61.2 67.5 81 – –
0.05 0.03 0.36 0.74 0.13 1.3 ± 0.06
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In this report were studied human blood plasma samples 
from healthy controls and patients with diagnosed skin or 
breast or pancreas carcinomas without any distal metasta-
ses. The scans from healthy subjects were clearly different 
from those corresponding to solid tumors patients. Further-
more, deconvoluted plasma scans showed similar tendency 
in thermal parameters: (1) transition temperatures decreased 
in near all cases and tumor types, (2) new transition tempera-
tures appeared in a higher (up to 70 °C) temperature range 
and (3) the calorimetric enthalpy, as an indicator of overall 
thermal stability of the whole system, showed a decreasing 
tendency in patients. Looking at the international literature, 
we found that present results can be considered as novel 
because there are no other results describing such blood 
plasma changes with thermoanalytical method on patients 
who have any solid tumor. Several research groups have 
been investigated blood plasma changes in patients yet who 
are treated for cancer, inflammatory disease or other causes 
[16–20]. But, the most important result is that local solid 
tumors can cause consistently early difference in plasma 
protein composition and these changes are detectable by 
deconvolution of DSC scans.

According to our knowledge, this is a first research that 
shows the solid tumor influences on the plasma composition. 
But, according to our hypothesis these transition tempera-
tures changes; not only numerical changes but also qualita-
tive changes may be responsible for the dramatic changes 
in melting temperatures. Other researchers explained these 
results, on the one hand, with conformational changes or 
protein modifications, while the others with specific interac-
tions between small and most abundant proteins [21, 22].

This work showed average thermal changes and human 
blood plasma deconvoluted components of patients with 
solid tumors originated from skin, mammary gland and pan-
creas tissue. With our current methods and technologies, the 
detectability of changes is not enough exact, but the constant 
appearance of changes shows that differences in plasma are 
consistent. But, we conclude that these changes appeared in 
a very permanent way not only in each disease group, but 
also in certain diseases and in their different stages. Never-
theless, modern biocalorimetry can bring new perspectives; 
thus, modern DSC devices and data evaluation software may 
also revolutionize the cancer prediction, diagnosis and moni-
toring in the near future.
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