Skip to main content
Log in

Application of TPO/TPR methods in oxidation investigations of CoSb3 and Mg2Si thermoelectrics with and without a protective coating of “black glass”

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the main problems in thermoelectric material research is degradation of thermoelectric materials caused by oxidation at elevated temperatures in air. In order to prevent these materials from oxidation, they can be covered with protective coating. A good candidate for such coating is layers made of so-called black glass, which can be successfully applied as a protective coating against oxidation. Thermal oxidation study can be demanding for measuring equipment used for in situ examination due to formation of volatile species which are corrosive for both metal and ceramic elements. This focused our attention on temperature-programmed reduction—temperature-programmed oxidation TPR/TPO methods in which the risk of damage of expensive parts of the equipment can be minimized. These methods have an important place in characterization of solid materials and can be used as the thermal analysis methods providing complementary results to TG and DTA. The aim of the study was to confirm the usefulness of TPR/TPO methods for the study of oxidation of modern thermoelectric materials and validation of “black glass” coatings as surface protection. Pure and doped (In; Ce) CoSb3 as well as pure Mg2Si were chosen for this study. XRD and SEM/EDX methods were used for material characterization, and TG/DTA measurements were carried out as reference for TPR/TPO. We succeeded to deposit “black glass” coating on Mg2Si and to show suppression of oxidation up to 495 °C. Experimental results show high usability of the TPR/TPO method in oxidation studies of thermoelectrics and protective coatings of thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 2006;31:188–98.

    Article  Google Scholar 

  2. Zheng XF, Yan YY, Simpson K. A potential candidate for the sustainable and reliable domestic energy generation—Thermoelectric cogeneration system. Appl Therm Eng. 2013;53:305–3011.

    Article  Google Scholar 

  3. Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Electron Mater. 2009;38:1245–51.

    Article  CAS  Google Scholar 

  4. Ma H-K, Lin C-P, Wu H-P, Peng C-H, Hsu C-C. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Appl Therm Eng. 2015;88:274–9.

    Article  CAS  Google Scholar 

  5. Wang T, Zhang Y, Peng Z, Shu G. A review of researches on thermal exhaust heat recovery with Rankine cycle. Renew Sustain Energy Rev. 2011;15:2862–71.

    Article  CAS  Google Scholar 

  6. NASA Radioisotope Power Systems, https://rps.nasa.gov/. Accessed 2 Oct 2018.

  7. Leszczyński J, Wojciechowski KT, Małecki AL. Studies on thermal decomposition and oxidation of CoSb3. J Therm Anal Calorim. 2011;105:211–22.

    Article  Google Scholar 

  8. Skomedal G, Kristiansen NR, Engvoll M, Middleton H. Methods for enhancing the thermal durability of high temperature thermoelectric materials. J Electron Mat. 2014;43:1946–51.

    Article  CAS  Google Scholar 

  9. Zhao D, Tian C, Tang S, Liu Y, Chen L. High temperature oxidation behavior of cobalt triantimonide thermoelectric material. J Alloy Compd. 2010;504:552–8.

    Article  CAS  Google Scholar 

  10. Xia X, Qiu P, Huang X, Wan S, Qiu Y, Li X, Chen L. Oxidation behavior of filled Skutterudite CeFe4Sb12 in air. J Electron Mat. 2014;43:1639–44.

    Article  CAS  Google Scholar 

  11. Sklad AC, Gaultois MW, Grosvenor AP. Examination of CeFe4Sb12 upon exposure to air: is this material appropriate for use in terrestrial, high-temperature thermoelectric devices? J Alloy Compd. 2010;505:6–9.

    Article  Google Scholar 

  12. Qiu P, Xia X, Huang X, Gu M, Qiu Y, Chen L. “Pesting”-like oxidation phenomenon of p-type filled skutterudite Ce0.9Fe3CoSb12. J Alloy Compd. 2014;612:365–71.

    Article  CAS  Google Scholar 

  13. Xia X, Qiu P, Shi X, Li X, Huang X, Chen L. High-temperature oxidation behavior of filled Skutterudites YbyCo4Sb12. J Electron Mat. 2012;41:2225–31.

    Article  CAS  Google Scholar 

  14. Park K-H, You S-W, Ur S-C, Kim I-K, Choi S-M, Seo W-S. High-temperature stability of thermoelectric Skutterudite In0.25Co3FeSb12. J Electron Mat. 2012;41:1051–6.

    Article  CAS  Google Scholar 

  15. Peddle JM, Gaultois MW, Grosvenor AP. On the oxidation of EuFe4Sb12 and EuRu4Sb12. Inorg Chem. 2011;50:6263–8.

    Article  CAS  Google Scholar 

  16. Shin D-K, Kim I-H, Park K-H, Lee S, Seo W-S. Thermal stability of La0.9Fe3CoSb12 Skutterudite. J Electron Mat. 2014;44:1858–63.

    Article  Google Scholar 

  17. Tani J-I, Takahashi M, Kido H. Fabrication of oxidation-resistant β-FeSi2 film on Mg2Si by RF magnetron-sputtering deposition. J Alloys Compd. 2009;488:346.

    Article  CAS  Google Scholar 

  18. Stathokostopoulos D, Chaliampalias D, Pavlidou E, Paraskevopoulos KM, Chrissafis K, Vourlias G. Oxidation resistance of magnesium silicide under high-temperature air exposure. J Therm Anal Calorim. 2015;121:169–75.

    Article  CAS  Google Scholar 

  19. Skomedal G, Holmgren L, Middleton H, Eremin IS, Isachenko GN, Jaegle M, Tarantik K, Vlachos N, Manoli M, Kyratsi T, Berthebaud D, Truong NYD, Gascoin F. Design, assembly and characterization of silicide-based thermoelectric modules. Energy Convers Manag. 2016;110:13–21.

    Article  CAS  Google Scholar 

  20. Bourgeois J, Tobola J, Wiendlocha B, Chaput L, Zwolenski P, Berthebaud D, Gascoin F, Recour Q, Scherrer H. Study of electron, phonon and crystal stability versus thermoelectric properties in Mg2X (X = Si, Sn) compounds and their alloys. Funct Mat Lett. 2013;5:1340005–19.

    Article  Google Scholar 

  21. Saber H, El-Genk MS. Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers Manag. 2007;48:1383–400.

    Article  CAS  Google Scholar 

  22. Sakamoto JS, Caillat T, Fleurial JP, Snyder GJ. United States Patent, No.: US 7,480,984 B1, Date of Patent: Jan. 27, 2009.

  23. Dong H, Li X, Tang Y, Zou J, Huang X, Zhou Y, Jiang W, Zhang GJ, Chen L. Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings. J Alloy Compd. 2012;527:247–51.

    Article  CAS  Google Scholar 

  24. Dong H, Li X, Huang X, Zhou Y, Jiang W, Chen L. Improved oxidation resistance of thermoelectric skutterudites coated with composite glass. Ceram Int. 2013;39:4551–7.

    Article  CAS  Google Scholar 

  25. Park Y-S, Thompson T, Kim Y, Salvador JR, Sakamoto JS. Protective enamel coating for n- and p-type skutterudite thermoelectric materials. J Mat Sci. 2015;50:1500–12.

    Article  CAS  Google Scholar 

  26. Zhao D, Bai S, Ma Q, Zuo M, Teng X. Protective properties of YSZ/Ti film deposited on CoSb3 thermoelectric material. Corros Sci. 2015;98:163–9.

    Article  CAS  Google Scholar 

  27. Zhao DG, Zuo M, Wang ZQ, Teng XY, Geng HR. Protective properties of magnetron-sputtered Ti coating on CoSb3 thermoelectric material. Appl Surf Sci. 2014;305:86–92.

    Article  CAS  Google Scholar 

  28. Xia X, Huang X, Li X, Gu M, Qiu P, Liao J, Tang Y, Bai S, Chen L. Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material. J Alloy Compd. 2014;604:94–9.

    Article  CAS  Google Scholar 

  29. Godlewska E, Zawadzka K, Mars K, Mania R, Wojciechowski K, Opoka A. Protective properties of magnetron-sputtered Cr-Si layers on CoSb3. Oxid Met. 2010;74:205–10.

    Article  CAS  Google Scholar 

  30. Yin K, Zhang Q, Zheng Y, Su X, Tang X, Uher C. Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. J Mater Chem C. 2015;3:10381.

    Article  CAS  Google Scholar 

  31. Zhang L, Chen X, Tang Y, Shi L, Snyder GJ, Goodenough JB, Zhou J. Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating. J Mater Chem A. 2016;4:17726.

    Article  CAS  Google Scholar 

  32. Homeny J, Nelson G, Risbud S. Oxycarbide glasses in the Mg-Al-Si-O-C system. J Am Ceram Soc. 1988;7:386–90.

    Article  Google Scholar 

  33. Soraru GD, Dallapiccola E, D’Andrea G. Mechanical characterization of sol-gel derivied silicon oxycarbide glasses. J Am Ceram Soc. 1996;79:2074–80.

    Article  CAS  Google Scholar 

  34. Pantano CG, Singh AK, Zhang H. Silicon oxycarbide glasses. J Sol-Gel Sci Technol. 1999;14:7–25.

    Article  CAS  Google Scholar 

  35. Bik M, Stygar M, Jeleń P, Dąbrowa J, Leśniak M, Brylewski T, Sitarz M. Protective-conducting coatings based on black glasses (SiOC) for application in solid oxide fuel cells. Int J Hydrogen Energy. 2017;42:27298–307.

    Article  CAS  Google Scholar 

  36. Aroux A. Calorimetry and thermal methods in catalysis. Berlin: Springer; 2013.

    Book  Google Scholar 

  37. Drożdż E, Łącz A, Spałek Z. Deposition of NiO on 3 mol% yttria-stabilized zirconia and Sr0.96Y0.04TiO3 materials by impregnation method. J Therm Anal Calorim. 2017;130:291–9.

    Article  Google Scholar 

  38. Handke M, Sitarz M, Długoń E. Amorphous SiCxOy coatings from ladder-like polysilsesquioxanes. J Mol Struct. 2011;993:193–7.

    Article  CAS  Google Scholar 

  39. Sitarz M, Jastrzębski W, Jeleń P, Długoń E, Gawęda M. Preparation and structural studies of black glasses based on ladder-like silsesquioxanes. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:884–8.

    Article  CAS  Google Scholar 

  40. Jeleń P, Bik M, Nocuń M, Gawęda M, Długoń E, Sitarz M. Free carbon phase in SiOC glasses derived from ladder-like silsesquioxanes. J Mol Struct. 2016;1126:172–6.

    Article  Google Scholar 

  41. Skomedal G, Burkhov A, Samunin A, Haugsrud R, Middleton H. High temperature oxidation of Mg2(Si-Sn). Corrosion Sci. 2016;111:325–33.

    Article  CAS  Google Scholar 

  42. Nieroda P, Mars K, Nieroda J, Leszczyński J, Król M, Drożdż E, Jeleń P, Sitarz M, Koleżyński A. New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Cer Int. 2019;45(8):10230–5. https://doi.org/10.1016/j.ceramint.2019.02.075.

    Article  CAS  Google Scholar 

  43. Leszczyński J, Nieroda P, Nieroda J, Zybała R, Król M, Łącz A, Kaszyca K, Mikuła A, Schmidt M, Sitarz M, Koleżyński A. Si-O-C amorphous coatings for high temperature protection of In0.4Co4Sb12 skutterudite for thermoelectric applications. J App Phys. 2019;125:215113.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Polish National Science Center [Grant No. 2016/21/B/ST8/00409].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliusz Leszczyński.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leszczyński, J., Mizera, A., Nieroda, J. et al. Application of TPO/TPR methods in oxidation investigations of CoSb3 and Mg2Si thermoelectrics with and without a protective coating of “black glass”. J Therm Anal Calorim 140, 2657–2666 (2020). https://doi.org/10.1007/s10973-019-08994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08994-z

Keywords

Navigation