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Abstract

The new 3d metal complexes of pyrimidine-2-carboxylic (2PCA) and pyrimidine-5-carboxylic (SPCA) acids were syn-
thesized and characterized using thermal analysis (TG-DSC, TG-FTIR), X-ray, spectroscopic (IR, Raman) methods and
theoretical (DFT) studies. In the complexes of pyrimidine-2-carboxylic acid of the general formula M(2PCA),-xH,O
(where 2PCA-pyrimidine-2-carboxylate; M = Mn(II), Co(II), Ni(Il), Cu(II) and Zn; x = 0 for Mn and Cu; x = 2 for Co, Ni
and Zn) coordination of metal ions occurs through nitrogen atom from pyrimidine ring and carboxylate oxygen atom. The
complexes of pyrimidine-5-carboxylic acid of the general formula M(5PCA),-xH,O (where SPCA—pyrimidine-5-car-
boxylate; M = Mn(Il), Co(II), Ni(Il), Cu(Il) and Zn; x = 6 for Cu and 4 for remaining complexes) were obtained as
monomeric isostructural compounds. Coordination of metal centers occurs through two nitrogen atom from different
pyrimidine-5-carboxylate ligand and four oxygen atoms from water molecules. The IR and Raman spectra of free acids as
well as obtained metal(Il) complexes were described in detail. Aromaticity (HOMA, EN, GEO and Is) of complexes was
determined and discussed. The investigated compounds decompose in air in two main stages connected with dehydration
and decomposition/burning of anhydrous compounds to the suitable metal oxides. Thermal decomposition in nitrogen leads
to the evolution of water, carbon oxides, ammonia and pyrimidine molecules.

Keywords Pyrimidine-2-carboxylic acid - Pyrimidine-5-carboxylic acid - 3d metal complexes - Aromaticity indices -
Thermal analysis

Introduction

Complexes of transition metals (Co, Mn, Ni, Zn, Cu) play
an important role in the life processes of living organisms.
They are, among others, components of enzymes, proteins
and vitamins; they participate in oxidation—reduction
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processes or in binding, storage and transport of oxygen
[1]. Many years ago, it was noticed that some complex
compounds of transition metals, including copper and zinc,
may react with the superoxide anion radical in a manner
reminiscent of the activity of native superoxide dismutases.
Hence, they were called superoxide dismutase mimetics
SOD [2]. Ligands that are heterocyclic nitrogen bases have
a significant effect on increasing the reactivity of copper(Il)
complexes with superoxide anion radicals. Although cop-
per(Il) complexes show a weaker antioxidant effect than
the SOD enzyme, they are important as potential super-
oxide dismutase mimetics due to the low molecular weight
[3, 4]. Complexes of transition metals have also been used
as medicines. In many cases, the ligand responsible for the
therapeutic effect of the drug may increase efficacy action
after the complexation by metal. Metal ions in complexes
with antitumor active ligands play the role as modulators of
activity [5]. The metal affects the redox activity of the
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ligand, its mode of action, therapeutic efficacy, solubility,
stability and a number of other properties [6]. Complexa-
tion by the metals effects on the change in the distribution
of electronic charge in the ligand, which translates into a
change in the physicochemical and biological properties of
the chemical compound [7-10]. Studies have shown that
transition metals influence the stability of the electron
system of complexes the aromatic acids [11-14]. This
impact depends not only on the properties of metal, but
also on the way the ligand—metal coordination. In com-
plexes of heteroaromatic acids, the metal may be attached
via a carboxyl anion and heteroatoms of the aromatic ring.
These types of binding are formed inter alia in the pyridine-
2-carboxylic, pyrazine-2-carboxylic or pyrimidine-2-car-
boxylic acid complexes [15-18]. The pyrimidine-5-car-
boxylic acid may form complexes by attaching a metal via
a ring nitrogen atom without the participation of a car-
boxylic group [19].

In the pyridinecarboxylic acid complexes, various types
of metal-ligand coordination depending on the position of
the nitrogen atom relative to the carboxylic group were
observed [20-28]. In the case of 2-pyridinecarboxylic acid
(picolinic acid) in which the nitrogen atom is located in
close proximity to the carboxyl group, the metal is coor-
dinated through the carboxyl group and the nitrogen atom
to form a chelate ring [20-22]. In the case of nicotinic acid,
a type of coordination through the carboxylic group was
observed [23-25]. In the case of isonicotinic acid, the
formation of complexes with coordination of metal—nitro-
gen atom and metal—carboxylic group was noticed [26-28].
It was found that the method of coordination affects the
electronic structure of the aromatic system as well as the
thermal properties of the complex [29, 30].

Zinc complexes with pyridinecarboxylic acids (nico-
tinic, picolinic, isonicotinic) show different thermal sta-
bility. Studies have shown that the complex with picolinic
acid (coordination O, N) is less thermally stable than
complexes with nicotinic acid and isonicotinic acid
[29, 30].

In the present work, complexes of pyrimidinecarboxylic
acids were investigated. Carboxylic acids derived from
diazines (Fig. 1) due to the number of potential chelating
sites can form various coordination structures in relation-
ships with metal ions [18, 19, 31, 32]. The pyrimidine
derivatives are found in living organisms where they play a
fundamental role in many life processes. The most
important naturally occurring pyrimidines are the pyrim-
idine uracil bases, thymine and cytosine, which are the
basic building blocks of nucleosides in deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA).

Many of the pyrimidine derivatives show a wide range
of biological activities and are known for their anticancer
(fluorouracil) [33], antimicrobial, analgesic, antiviral (also
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in the treatment of HIV, hepatitis B), antimalarial and
anesthetic [34] properties. Some of the pyrimidine
derivatives have been used as plant protection products
[35]. Orotic acid is commonly known as a precursor in
pyrimidine biosynthesis [36]. As a component of the daily
diet is found in milk and other dairy products. In the body,
it is transformed into uridine, which then participates in the
pyrimidine recovery pathway in the kidneys, liver and
erythrocytes [37].

In order to improve the bioavailability of orotic acid, its
combinations with organic cations (e.g., choline, carnitine)
or metal ions (Mg”, Zn”, Ca”, K+) are used. Such
combinations may be used in the therapy of metabolic
syndromes and in bodybuilding [38].

The aim of the work was to obtain complexes of tran-
sition metals 3d with carboxylic acid pyrimidine deriva-
tives. A series of complexes with ligands having different
carboxylic acid positions relative to the nitrogen atoms in
the aromatic ring (pyrimidine-2-carboxylic acid and
pyrimidine-5-carboxylic acid) were synthesized. The
influence of the metal on the electron system of the ligand
and the thermal properties of the obtained complexes
depending on the type of metal-ligand coordination were
evaluated.

Experimental
Synthesis of complexes

The complexes of manganese(Il), cobalt(Il), nickel(Il),
zinc and copper(Il) with pyrimidine-2-carboxylic (2PCA)
acid complexes were prepared as follows: 49.6 mg of acid
was added to the stoichiometric quantity of sodium
hydroxide (4 cm®; 0.1 mol dm_3). The suspension was
placed in an ultrasonic bath at 70 °C until the acid dis-
solved. Then, 2cm’® of metal(Il) chloride solution
(0.1 mol dm73) was added. The solution was shaken on a
shaker for 1 h at room temperature, and the complexes
were allowed to stand. The obtained precipitates/or crystals
were washed with water to rinse the chlorides under the
control of AgNOj; solution. Analogously, metal(Il) pyrim-
idine-5-carboxylate complexes were obtained.

Elemental analysis

The elementary analysis was carried out using the CHN
2400 PerkinElmer Analyzer. The water content was
determined from the thermogravimetric curves. Table 1
presents the results of elemental analysis of pyrimidine-2-
carboxylic acid complexes, and Table 2 presents the results
of elemental analysis for pyrimidine-5-carboxylic acid
complexes.
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Fig. 1 Structures of
pyrimidinecarboxylic acids

Pyrimidine-2-carboxylic acid

Table 1 Elemental analysis for pyrimidine-2-carboxylates

Pyrimidine-4-carboxylic acid Pyrimidine-5-carboxylic acid

Compound name Formula Content C/% Content H/% Content N/% Yield/%  Color
Calc. Exp. Calc. Exp. Calc. Exp.

Manganese pyrimidine-2-carboxylate ~ Mn(2PCA), 39.89 3932 2.01 1.99 18.61 18.14 80 Yellow

Cobalt pyrimidine-2-carboxylate Co(2PCA),-H,O 35.21 3542 2.95 2.97 16.42 16.14 75 Orange

Nickel pyrimidine-2-carboxylate Ni(2PCA),-2H,O 35.23 35.11 2.96 2.83 16.43 16.18 70-80 Green

Zinc pyrimidine-2-carboxylate Zn(2PCA),-2H,0  34.55 34.51 2.96 2.81 16.43 16.27 75 White

Copper pyrimidine-2-carboxylate Cu(2PCA), 38.78  38.63 1.95 1.91 18.09 18.16 70 Blue

2PCA = CsH;N,0,

Table 2 Elemental analysis for pyrimidine-5-carboxylates

Compound name Formula Content C/% Content H/% Content N/% Yield/%  Color
Calc. Exp. Calc. Exp. Calc. Exp.

Manganese pyrimidine-5-carboxylate Mn(5PCA),-4H,0 32.18 32.20 3.78 3.69 15.01 14.55 80 Yellow

Cobalt pyrimidine-5-carboxylate Co(5PCA),-4H,0 31.84 31.51 3.74 3.68 14.85 14.44 75-80 Orange

Nickel pyrimidine-5-carboxylate Ni(5PCA),-4H,0 31.86  30.84 3.74 3.77 14.86 14.02 80 Green

Zinc pyrimidine-5-carboxylate Zn(5PCA),-4H,0 31.31 3142 3.68 3.55 14.60 1434 85 White

Copper pyrimidine-5-carboxylate Cu(5PCA),-6H,O 28.75 28.57 4.34 4.25 13.41 13.30 70-80 Blue

S5PCA = C5H3N202

Thermal analysis

Thermal analyses of the investigated complexes were car-
ried out by the thermogravimetric (TG) and differential
scanning calorimetry (DSC) methods using the Setsys
16/18 analyzer Setaram). The samples (about 5-8 mg)
were heated in alumina crucibles in the range of
30-1000 °C at a heating rate of 10 °C min~" in flowing air
atmosphere (v = 0.75 dm® h™"). The TG-FTIR coupled
measurements performed on Q5000 (TA) apparatus cou-
pled with the Nicolet 6700 spectrophotometer. The samples
of about 20-30 mg were heated in platinum crucibles from

room temperature up to 700 °C at a heating rate of
20 °C min™" in  flowing  nitrogen  atmosphere
(25 cm® min ).

FTIR and Raman study

The FTIR spectra were recorded with an Alfa (Bruker)
spectrometer within the range of 400-4000 cm™'. Samples
in the solid state were measured in KBr matrix pellets and
ATR technique. FT-Raman spectra of solid samples were
recorded in the range of 400-4000 cm™" with a MultiRam
(Bruker) spectrometer.

@ Springer
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Theoretical calculations

To calculate optimized geometrical structures of pyrim-
idinecarboxylic acids and copper(Il) complexes, the
quantum—mechanical method was used: density functional
(DFT) hybrid method B3LYP with non-local correlation
provided by Lee—Young—Parr expression. All calculations
for acids were carried out in functional base
6-3114++G(d,p) and for acids and copper complexes in
LANL2DZ base. Calculations were performed using the
Gaussian09 package [39]. Experimental spectra were
interpreted in terms of calculated at DFT method in
B3LYP/6-3114++4+G(d,p) level and literature data [40, 41].
Theoretical wavenumbers were scaled according to the
formula: Vscaled = 0.98 - Vealculated for B3LYP/6-
3114++G(d,p) level method. Spectral assignments used the
normal oscillation of the pyrimidine ring measured using
B3LYP/6-311+4-G(d,p).

The aromaticity indices (HOMA, GEO, EN, Is) were
calculated for geometric structures (theoretical and calcu-
lated) of pyrimidine-2-carboxylates and pyrimidine-5-car-
boxylates. The HOMA index (harmonic oscillator model of
aromaticity) differs from all other geometry-based ones by
assuming another reference bond length. In this model,
instead of the mean bond length a concept of the optimal
bond length is applied [42, 43]:

2 o
HOMA =1- |:d(Rop[ - Rav) +;Z (Rav - Ri)2:|
=1—-EN - GEO

within the confines of the HOMA model, it is possible to
obtain two components which describe different contribu-
tion to decrease in aromaticity, i.e., (a) due to bond elon-
gation (the EN component) and (b) due to bond length
alternation (the GEO component). The value of HOMA
index is equal 1 for the entire aromatic system; HOMA = 0
when the structure is non-aromatic and HOMA < 0 for
anti-aromatic ring.

The value of the Bird’s aromaticity index (Is, Ig)
describes the equation [44]:

[=100{1 — (V/Vi)}

where Vi is for the five-membered rings 35 and the six-
membered 33.3, and V is calculated from the equation:

1
n

V = (100/na) [Z (n: — nav)z/n]

r=1

where n,,-average binding order, n-bond order based on
bond length: n = (a/R) — b, a and b-parameters depending
on the type of atoms in the bond.
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SOD activity and HOMO, LUMO energies

SOD activity for copper(Il) complexes was determined
theoretically on the basis of the energy calculations for
geometrically optimized structures. As a theoretical
parameter defining the radical scavenging activity by the
studied complexes, HOMO and LUMO energy values and
EA affinity value were selected:

TEE-Cu(I)-TEE-Cu(Il), where TE E-Cu(l) is the total
energy of the complex E-Cu(I) and TEE-Cu(Il) with the
total energy of the E-Cu(Il) complex.

X-ray analysis

Suitable crystals were sequentially mounted on a fiber loop
and used for X-ray measurements. X-ray data were col-
lected on the Oxford Diffraction SuperNova DualSource
diffractometer with use of the monochromated CuKa X-ray
source (/4 = 1.54184). The crystals were kept at 100 K
during data collection. Data reduction and analytical
absorption correction were performed with CrysAlis PRO
[45]. Using Olex2 [46], the structures were solved with the
ShelXS [47] structure solution program using Direct
Methods and refined with the ShelXL [47] refinement
package using Least Squares minimization.

The non-hydrogen atoms were refined anisotropically.
The positions of OH hydrogen atoms were found on a
Fourier difference map and refined. Hydrogen atoms of
aromatic ring were introduced in calculated positions with
idealized geometry and constrained using a rigid body
model with isotropic displacement parameters equal to 1.2
of the equivalent displacement parameters of the parent
atoms. Summaries of relevant crystallographic data are
given in Tables 3 and 6 for pyrimidine-2-carboxylate and
pyrimidine-5-carboxylate complexes. The supplementary
crystallographic data for this paper can be obtained free of
charge from The Cambridge Crystallographic Data Centre
via www.ccdc.cam.ac.uk/data_request/cif.

Results
Crystal structure description

Isostructural copper(Il) and zinc(Il) pyrimidine-2-car-
boxylates M(2PCA),-2H,0 crystallize in the monoclinic
P2,/c space group (Table 3). The asymmetric unit is a half
of the complex molecule, and the metal cations are located
on a crystallographic inversion center. The cobalt and zinc
metal cations are coordinated identically by two pyrim-
idine-2-carboxylate ligands in the equatorial plane and by
two water molecules in the axial positions. The pyrimidine-
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Table 3 Crystal data and

structure refinement of Empirical formula Co(C5H4N,05),-2H,0 7Zn(CsHy4N,0,),-2H,0
pyrimidine-2-carboxylates Formula weight 341.15 347.59
Crystal system Monoclinic Monoclinic
Space group P2,/c P2/c
alA 5.201(7) 5.234(1)
blIA 11.713(2) 11.726(3)
c/A 10.041(7) 9.793(8)
al° 90 90
Br 96.448(4) 97.8387(12)
9/° 90 90
Volume/A? 607.9(5) 595.4(8)
z 2 2
Pearclg cm ™ 1.864 1.939

Crystal size/mm>

Final R indexes [I > 20 (I)]
Final R indexes [all data]
Largest diff. peak/hole/e A3
CCDC no.

0.312 x 0.091 x 0.091
R, = 0.0308, wR, = 0.0794
R, = 0.0367, wR, = 0.0824
0.25/— 0.56

1,577,381

0.317 x 0.153 x 0.109
R, = 0.0268, wR, = 0.0705
R, = 0.0272, wR, = 0.0708
0.33/— 0.70

1,857,354

2-carboxylate ligands are bound to metal cations in a
bidentate N,O-chelate mode, forming five-membered rings
(Fig. 2). The bonds of the coordination sphere M-N1, M—
Ol and M-Ow are nearly equal in length (2.066(1)-
2.123(2) A), and the overall coordination sphere around
cobalt and zinc cations can be described as an octahedral.
However, the analysis of the valence angles O-M—-Ow and
O-M-N reveal a small distortion of the coordination
spheres, since the N1-Co-Olw and N1-Zn-O1 valence
angles are not a right angles and equal 79.5(5) and 79.9(6)
degrees, respectively (Table 4).

The hydrogen bonds patterns are marked in Fig. 3 as a
dashed line. There are three intermolecular hydrogen bonds
in the crystal structure of Co and Zn pyrimidine-2-car-
boxylate complexes. Two of them are O-H O type and
one is O—H "N type. Coordinated water molecules acts as a
proton donor, while O1 (coordinated), O2 (uncoordinated)
and N3 (uncoordinated) atoms play a role of the proton

Fig. 2 The molecular structure of the Co(Il) and Zn pyrimidine-2-
carboxylates complexes

Table 4 Selected geometrical parameters of cobalt (II) and zinc
pyrimidine-2-carboxylates complexes

1&, ° Co Zn

N1-C2 1.337(2) 1.338(2)
C2-N3 1.324(2) 1.328(2)
N3-C4 1.337(3) 1.341(2)
C4-C5 1.381(3) 1.387(2)
C5-C6 1.380(3) 1.384(2)
C6-N1 1.335(3) 1.337(2)
C5-C7 1.528(3) 1.533(2)
C7-01 1.275(2) 1.280(2)
C7-02 1.222(3) 1.228(2)
M-O1 2.066(1) 2.082(2)
M-N1 2.114(1) 2.103(5)
M-Olw 2.094(1) 2.123(2)
N1-C2-N3 125.8(2) 125.5(1)
C2-N3-C4 116.2(2) 116.4(1)
N3-C4-C5 122.4(2) 122.4(1)
C4-C5-C6 117.1(2) 116.8(1)
C5-C6-N1 121.1(2) 121.1(1)
C6-N1-C2 117.4(2) 117.7(1)
C2-C7-01 115.4(2) 115.3(1)
C2-C7-02 118.5(2) 118.0(1)
O1-M-01 W 91.8(6) 87.3(5)
O1-M-N1 91.4(7) 79.9(6)
01 W-M-N1 79.5(5) 87.1(4)

acceptors in hydrogen bonding. It is worth to emphasize
that the hydrogen atom HIWB is a donor in a bifurcated
(three-centered) hydrogen bond, where O2 and N3 atoms

@ Springer
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Fig. 3 Crystal structure of the Co(II) and Zn pyrimidine-2-carboxylates complexes. Hydrogen bonds are presented as a dashed lines

of the neighboring ligand molecule are acceptor centers.
Selected geometrical parameters of the hydrogen bonds
together with the symmetry codes (symm. op. 2) are pre-
sented in Table 5.

The complexes of manganese(I), cobalt(Il) and zinc
with pyrimidine-5-carboxylic acid of the formula
M(5PCA),-4H,0 crystallize in the monoclinic P2,/c space
group (Table 6). The crystal structure of copper complex
M(5PCA),-6H,O contains an additional uncoordinated

water molecule, and the symmetry of the structure is sig-
nificantly lower (P1).

However, in all cases the asymmetric unit is a half of the
complex molecule and the metal cations are located on a
crystallographic inversion center. The metal cations are
coordinated identically by two pyrimidine-5-carboxylate
ligands and two water molecules in the equatorial plane
and by two water molecules in the axial positions. The
pyrimidine-5-carboxylate ligands are bound to metal

Table 5 Geometrical parameters of the hydrogen bonds of cobalt (II) and zinc pyrimidine-2-carboxylates complexes

D H A d(D-Hy/A dH-A)/A d(D-A)/A D-H-A/° Symm. op. 2

Co o1 W HI WA o1 0.79(4) 1.952 2.734(2) 169(3) l—x, 1=y 1-z
olW Hl WB 02 0.72(5) 2.601 3.229(3) 147(4) n12—y, —12+z
ol W Hl WB N3 0.72(5) 2272 2.883(2) 143(4) n12—y, —12+z

Zn ol'W HI WA o1 0.78(3) 1.978 2.737(2) 164(3) —14+xyz
Ol W H1 WB 02 0.74(3) 2.597 3.250(2) 147(3) l—x,— 124y 15—z
Ol W H1 WB N3 0.74(3) 2.236 2.858(2) 142(3) l—x, =124y 15—¢

@ Springer
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Table 6 Crystal data and structure refinement of pyrimidine-5-carboxylates

Empirical formula Mn(CsH4N,0,),-4H,0 Co(CsH4N,0,),-4H,0O 7Zn(CsHy4N>0O,),-4H,0 Cu(CsH4N,0,),-4H,0,2H,0
Formula weight 373.19 377.18 383.62 417.82
Crystal system Monoclinic Monoclinic Monoclinic Triclinic
Space group P2,/c P2,/c P2,/c P—-1
alA 6.520(2) 6.514(6) 6.526(8) 6.189(1)
bIA 12.455(3) 12.456(1) 12.470(5) 6.764(6)
c/A 8.510(1) 8.508(3) 8.525(8) 9.521(2)
of° 90 90 90 105.450(5)
pre 98.089(6) 98.12(2) 98.03(5) 92.93(7)
y/° 90 90 90 96.02(2)
Volume/A? 684.24(2) 683.50(3) 687.12(4) 380.79(4)
VA 2 2 2 1
Peate/g cm > 1.811 1.833 1.854 1.822
Crystal size/mm’® 0.179 x 0.107 x 0.092  0.305 x 0.163 x 0.122  0.259 x 0.182 x 0.182  0.631 x 0.303 x 0.216
Final R indexes [I > 20 (I)] R, = 0.0364, R, = 0.0526, R, =0.0282, R, =0.0340,
wR, = 0.0966 wR, = 0.1358 wR, = 0.0718 wR, = 0.0953
Final R indexes [all data] R, =0.0382, R, =0.0583, R, =0.0287, R, =0.0387,
wR, = 0.0981 wR, = 0.1451 wR, = 0.0722 wR, = 0.0970
Largest diff. peak/hole/e A3 039/— 057 0.81/— 1.07 0.32/— 0.78 0.40/— 0.69
CCDC no. 1,577,382 1,577,386 1,577,385 1,577,383

cations in a monodentate mode to the N1 nitrogen atom of
the aromatic ring (Figs. 4 and 5). The analysis of the
valence angles Olw—-M-02w, O1w-M-N1 and Olw-M-
N1 does not indicate a distortion of the coordination
sphere, since all three angles are close to the right angle.
Additionally, the bond lengths: M-N1, M-Olw and M-
O2w are nearly equal. Therefore, the coordination sphere
can be described as an octahedral. However, in the case of
the copper complex, the significant elongation of the Cu—
O2w bonds is observed (Table 7). This is consistent with
the Jahn-Teller effect (JTE) typical for d° electron
configuration.

Fig. 4 The molecular structure
of the Mn(II), Co(Il) and Zn
pyrimidine-5-carboxylates
complexes

The hydrogen bond patterns for aforementioned pyrim-
idine-5-carboxylate complexes are marked in Fig. 6 for
structures containing cobalt, zinc and manganese cations
and in Fig. 7 for the structure of the copper cation sepa-
rately. There are four intermolecular hydrogen bonds in the
crystal packing of the Co, Zn and Mn pyrimidine-5-car-
boxylate complexes. Three of them are O-H O type and
one is O-H N type. In case of the Mn, Co and Zn com-
plexes, coordinated water molecules act as a proton donor,
while O1 (uncoordinated), O2 (uncoordinated) and N3
(uncoordinated) atoms play a role of the proton acceptors
in hydrogen bonding. However, due to the presence of an
additional water molecule in the crystal structure of the Cu
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Fig. 5 The molecular structure
of the Cu(Il) pyrimidine-5-
carboxylates complex. The
hydrogen bonds of (x, y,

z) symmetry are presented as a
dashed lines

Table 7 Selected geometrical

A e Co Zn Mn Cu

parameters of manganese (II),

cobalt (II), zinc and copper (1) N1_cp 1.344(3) 1.343(2) 1.348(3) 1.338(3)

pyrimidine-5-carboxylates

complexes C2-N3 1.331(3) 1.334(2) 1.333(3) 1.323(3)
N3-C4 1.346(4) 1.345(2) 1.342(3) 1.334(3)
C4-C5 1.388(4) 1.389(2) 1.386(4) 1.380(4)
C5-C6 1.389(3) 1.386(2) 1.387(3) 1.389(3)
C6-N1 1.337(3) 1.345(2) 1.342(3) 1.339(3)
C5-C7 1.511(3) 1.513(2) 1.512(3) 1.509(3)
C7-01 1.247(3) 1.247(2) 1.246(3) 1.267(3)
Cc7-02 1.259(3) 1.264(2) 1.262(3) 1.230(3)
M-N1 2.185(2) 2.194(1) 2.182(3) 2.036(5)
M-Olw 2.055(1) 2.079(5) 2.076(6) 2.000(8)
M-02w 2.077(2) 2.070(8) 2.059(9) 2.345(5)
N1-C2-N3 125.7(2) 125.6(1) 125.6(2) 125.8(2)
C2-N3-C4 116.7(2) 116.6(1) 116.7(2) 116.0(2)
N3-C4-C5 122.3(2) 122.5(1) 122.6(2) 123.2(2)
C4-C5-C6 116.3(2) 116.2(1) 116.3(2) 116.6(2)
C5-C6-N1 122.4(2) 122.2(1) 122.4(2) 120.8(2)
C6-N1-C2 116.7(2) 116.8(1) 116.5(2) 117.6(2)
C5-C7-01 118.7(2) 118.8(1) 118.9(2) 118.2(2)
C5-C7-02 116.2(2) 115.9(1) 116.1(2) 116.3(2)
01 W-M-02 W 88.4(5) 88.8(4) 88.5(3) 88.1(9)
01 W-M-N1 89.2(7) 91.3(2) 91.1(5) 91.83)
02 W-M-N2 88.90(8) 90.9(1) 90.8(6) 87.0(6)

pyrimidine-5-carboxylate complex, the hydrogen bonds
pattern differs. Six intermolecular hydrogen bonds of dif-
ferent symmetry codes can be observed here. Similarly to
the structures described above, the water molecules play a
role of the proton donors. However, all hydrogen bonds are
O-H O type only. The coordinated water molecules are
non-covalently bonded to a two O1 atoms of the two dif-
ferent ligand molecules and to a two different O3W oxygen

@ Springer

atoms of the uncoordinated water molecules. The uncoor-
dinated water molecule is a donor in a two additional
hydrogen bonds O3W-H3WA 02 and O3W-H3WBOl,
where O1 and O2 atoms are the oxygen atoms of different
molecules. Selected geometrical parameters of the hydro-
gen bonds together with the symmetry codes (symm. op. 2)
are presented in Table 8.
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Fig. 6 Crystal structure of the Mn(Il), Co(Il) and Zn pyrimidine-5-carboxylates complexes. Hydrogen bonds are presented as a dashed lines

Fig. 7 Crystal structure of the Cu(lIl) pyrimidine-5-carboxylates complex. Hydrogen bonds are presented as a dashed lines

Aromaticity

The aromaticity indexes (Homa and Iy (Bird index) based
on the length of bonds in the aromatic ring allow to assess
the effect of the metal on the electronic system of the
molecule. The values of the indexes of aromaticity have
been calculated based on the values of the length of bonds

determined experimentally for the 3d metal complexes
with SPCA acid. HOMA and 16 indexes for metal com-
plexes have lower values than for ligand. Complexing by
the metals (zinc, cobalt, copper, nickel and manganese)
causes a decrease in the aromaticity of the pyrimidine ring
(Table 9). Due to the lack of geometry data for 2PCA acid,
the effect of 3d metals on the aromatic system of this

@ Springer



2822

G. Swiderski et al.

Table 8 Geometrical parameters of the hydrogen bonds of manganese(Il), cobalt(Il), zinc and copper(I) pyrimidine-5-carboxylates complexes

D H A d(D-Hy/A dH-A)/A d(D-A)/A D-H-A/A Symm. op. 2
Mn o1 W HI WA N3 0.82(4) 2.046 2.835(3) 163(3) 12—y, —12+z
o1 W HIWB 02 0.92(4) 1.756 2.670(2) 172(4) —x,— 124y, 12—z
02w H2 WA 02 0.88(4) 1.849 2.720(2) 171(4) —l=x,— 124y, 12—z
02 W H2WB 01 0.96(4) 1.679 2.642(2) 177(4) —l4+xyz
Co Ol W Hl WA 01 0.76(4) 1.884 2.643(3) 174(4) l—x,—y —2z
Ol W HIWB 02 0.96(5) 1.781 2.725(2) 169(6) x 12—y, — 12+
02w H2 WA 02 0.76(4) 1.921 2.669(3) 167(4) —14+x12 -y, 12+z
02w H2WB N3 0.84(5) 2.028 2.832(3) 160(5) —x, =124y, 12—
Zn o1 W Hl WA N3 0.76(3) 2.104 2.8409(18) 164(3) n15—y, —12+z
o1 W HIWB 02 0.79(3) 1.89 2.6720(16) 172(3) —x =124y, 12 -7
02 W H2 WA 01 0.81(3) 1.837 2.6496(16) 175(3) —14xyz
02w H2WB 02 0.87(3) 1.863 2.7242(16) 172(3) 1—x, — 124y 12 —¢
Cu Ol W Hl WA 01 0.87 2.114 2.799(2) 135.3 l—x,—y, —z
Ol W HIWB 03 W 0.87 1.978 2.837(3) 169.3 l—x,—y,1-z
02w H2 WA 0ol 0.87 1.921 2.713(2) 150.3 Ny, —1+7z
02w H2WB 03 W 0.87 1.852 2.724(2) 178.2 X2
03 W H3 WA 02 0.89(4) 1.815 2.699(3) 168(3) l—x, —y, —z
03 W H3WB o1 0.81(5) 2.02 2.835(3) 176(4) —x -y -z

ligand can not be assessed using aromaticity indices. A
comparison of the indexes for the complexes indicates that
the 2PCA cobalt and copper complexes have lower aro-
maticity than the metal complexes of SPCA, while the zinc
complex shows higher aromaticity. The values of the aro-
matic indexes were also compared for the theoretically
modeled structures in B3ALYP/LANL2DZ for pyrimidine-
2-carboxylic and pyrimidine-5-carboxylic acids and their
complexes with copper (Fig. 8). The data indicate that
copper may stabilize or destabilize the pyrimidine aromatic
system depending on the position of the carboxyl group in
the ring. In the case of 2PCA, index values indicated an
increase in aromaticity after complexing with copper,
while in the case of SPCA, a decrease in the aromaticity
system was observed (Table 10).

SOD activity of copper complexes

SOD activity for the tested compounds was determined by
theoretical methods. It is known that Cu, Zn-SOD dismu-
tase and other compounds trap the superoxide anion in the
following reactions:

E-Cu(Il) + 05 — E-Cu(I) + O, (1)
E-Cu(I) + O; +2H" — E-Cu(ll) + H,0, (2)

As a theoretical parameter defining the radical scav-
enging activity by the studied complexes, the HOMO and
LUMO energy values and the EA electron affinity value
defined as TEE-Cu(I)-TEE-Cu(Il) were selected in which
TE E-Cu(]) is the total energy of the complex E-Cu(I) and
TEE-Cu(Il) with the total energy of the E-Cu(II) complex.

Table 9 Aromaticity (HOMA, EN, GEO and I¢) of pyrimidine-2-carboxylates and pyrimidine-5-carboxylates (experimental structures)

Aromaticity ~ Pyrimidine-5- Pyrimidine-5-carboxylate Pyrimidine-2-carboxylate
index carboxylic - - -

Manganese Cobalt Copper Zinc Nickel Cobalt Copper  Zinc

complex complex complex complex  complex [19] [18] complex
HOMA 0.998 0.993 0.995 0.996 0.993 0.994 0994 0978 0.997
GEO 0.002 0.004 0.003 0.004 0.003 0.005 0.005  0.019 0.002
EN 0.001 0.003 0.002 0.001 0.004 0.001 0.002  0.002 0.001
Is 80.62 80.74 82.64 81.77 79.65 80.70 80.94  83.10 81.23

@ Springer
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Fig. 8 The coordination modes '
of copper complexes with
pyrimidinecarboxylic acids 3
calculated in B3LYP/

LANL2DZ J N\

9

Copper pyrimidine-2-carboxylate

Copper pyrimidine-5-carboxylate

Table 10 Aromaticity (HOMA, EN, GEO and I¢) of copper pyrimidine-2-carboxylates and copper pyrimidine-5-carboxylates (calculated in

B3LYP/LANL2DZ)

Aromaticity index Pyrimidine-2-carboxylic acid

Copper complex

Pyrimidine-5-carboxylic acid Copper complex

HOMA 0.936 0.940
GEO 0.002 0.005
EN 0.062 0.055
Is 80.32 82.15

0.915 0.912

0.005 0.010

0.079 0.077
83.68 77.29

The lower the EA value, the higher the electron transfer
rate. Electronic affinity (EA) is a good descriptor for
characterizing the superoxide radical scavenging activity
[48, 49].

The compounds with the lowest EA value have the
highest electron transfer capacity, thus giving the highest
SOD activity [49]. Calculations of energy values of
molecules and HOMO and LUMO molecular orbital have
been made for optimized structures of copper complexes
with diazines-derived acids. Geometric optimization was
performed using the B3LYP density functional method
using the LAN2LDZ calculation base.

Figure 9 presents HOMO and LUMO orbitals for copper
complexes with pyrimidinecarboxylic acids calculated in
B3LYP/LANL2DZ. In Table 11, the values of EA affinity
and HOMO and LUMO energy and other parameters
characterizing energy values are presented. For compar-
ison, literature data on the energy of the active center of
Cu, Zn-SOD enzyme were summarized [49]. EA calcula-
tions for copper complexes with diazines-derived acids
have shown that the highest SOD activity is exhibited by
the pyrimidine-5-carboxylic acid complex (it has the low-
est EA energy value of — 108,875 kcal mol™"), while the
pyrimidine-2-carboxylic acid complex has the lowest
activity — 100,021 kcal mol™". On the basis of the calcu-
lated values of EA energy and comparison with the value
of this energy for the active center of the enzyme dismu-
tase, it can be concluded that copper complexes with
pyrimidine-derived acids behave like superoxide dismutase
mimetics. One of the stability criteria for aromatic systems

is the energy difference between HOMO and LUMO levels
[50].

The higher the HOMO level energy of the m-reductant
compounds, the more easily they can be oxidized, while the
n-deficits compounds they are easier to reduce the easier
the lower the energy has the LUMO orbital level.

From the HOMO and LUMO energy calculations for the
copper complexes of pyrimidinecarboxylic acids, it appears
that the 2PCA copper complex it is easier to reduce than
the SPCA complexes. The hardness of the molecule can be
determined based on the HOMO and LUMO energy val-
ues. Absolute hardness is defined as follows: [51]:

1 = (eLumo — enomo)/2

The high value of absolute hardness # is a measure of
the thermodynamic stability of the system. The value of
chemical hardness for copper pyrimidine-5-carboxylate is
slightly lower than of copper pyrimidine-2-carboxylate.

IR and Raman spectra

The pyrimidine-2-carboxylic and pyrimidine-5-carboxylic
acids spectra include characteristic bands associated with
the oscillation of the carboxyl group and the vibration of
the C-N bonds of the aromatic ring. The position of these
bands in the spectrum of acid depends on the relative
position of the carboxyl group and the nitrogen atoms in
the aromatic ring. The bands derived from the vibrational
stretching vC=0 in the infrared spectrum of pyrimidine-2-

carboxylic acid are located at 1743 cm™' (1738 cm™! in

@ Springer
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Fig. 9 HOMO and LUMO
orbitals for copper complexes
with pyrimidinecarboxylic acids
calculated in B3LYP/
LANL2DZ (a: copper
pyrimidine-2-carboxylate, b:
copper pyrimidine-5-
carboxylate)

(b)

Table 11 Geometrical parameters calculated in BALYP/LANL2DZ

4

]

AE,omonumo = 0.06 eV

Enomo = — 508 eV

Copper pyrimidine-2-carboxylate

Copper pyrimidine-5-carboxylate

Dipole moment (D) 0.00003
TECu(Il) (hartree) — 1100.6524
TECu(I) (hartree) — 1100.8118
EA (kcal mol™") — 100.021
HOMO (Hartree) — 0.19142
LUMO (Hartree) — 0.18883
HOMO (eV) —5.21
LUMO (eV) —5.14
Energy gap 0.07
Ionization potential. I = — Egomo 5.21
Electron Affinity. A = — E; ymo 5.14
Electronegativity. y = &4 5.18
Chemical potential. y = — L4 —5.18
Chemical hardness. y = % 0.035
Chemical softness. S = zi,’ 14.29
Electrophilicity index. o = £ 383.32

2n

0.0013
— 1100.5447
— 1100.7182
— 108.875
— 0.18880
— 0.18662
—5.14
—5.08
0.06
5.14
5.08
5.11
-5.11
0.030
16.67

435.20

the IR spectrum of ATR) and 1719 cm™" and at 1721 cm™"
in the Raman spectrum (Table 12).

In the case of pyrimidine-5-carboxylic acid, the band is
located at 1714 cm™! in the IR spectrum of KBr,
1704 cm™' IR ATR and at 1708 cm™' in the Raman
spectrum. In the spectra of both acids, the bands originating
from the vibrations of the carboxylic group have different

@ Springer

positions (Table 13). The close vicinity of the nitrogen
atoms of the aromatic ring causes the vibrational numbers
of the pyrimidine-2-carboxylic acid carboxyl group to have
a higher value than in the pyrimidine-5-carboxylic acid
spectrum. In the pyrimidine-5-carboxylic acid spectrum,
the band is located at a lower wavenumber. Similar
dependencies were noted by comparing the spectra of
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Table 12 (continued)

Assignments

Cobalt Nickel Copper

Zinc

Manganese

Pyrimidine-2-carboxylate

Sodium

Pyrimidine-2-carboxylic acid

7} Springer

IR IR IR IR IR IR IR IR

Raman

IR Raman IR IR

IR

IR Inten

Raman

IR

IR

ATR KBr ATR KBr ATR KBr ATR

KBr

ATR

KBr

ATR

KBR

theor

ATR

KBr

yring

460m

4435

442m

436w

463vs

423w

422w

15

1.

489
411

418w

24
23

vCH, 7yring

422vw

377vs

403w

2.08
0.22

vYCH, yring

345vw

398

v: stretching; f: in plane; y: out of plane deformations; s: strong; vs: very strong; m: medium; w: weak; vw: very weak, as—asymmetric, sym—symmetric

pyridinecarboxylic acids (picolinic, nicotinic and isonico-
tinic acid) [52]. In the analyzed spectra, differences in the
position of bands associated with the vibration of the aro-
matic system in both acids were observed. Spectral
assignments used the normal oscillation of the pyrimidine
ring (Fig. 10) measured using B3LYP/6-3114++4G(d,p).

For example, the band denoted no. 5 is located at
1576 cm™" in the pyrimidine-2-carboxylic acid IR spec-
trum and at 1593 cm™" in the pyrimidine-5-carboxylic acid
spectrum.

Also bands 7 and 8 are located at higher values of wave
numbers for 5PCA acid than in the 2PCA spectrum
(1484 cm™', 1439 cm™' and 1442 cm™', 1408 cm ™,
respectively). In the case of other bands, e.g., 12, 13, 17,
there are also significant differences in the position of the
bands for each acid. Some of the bands are observed in the
pyrimidine-2-carboxylic acid spectrum (e.g., band 14), and
they are absent in the pyrimidine-5-carboxylic acid spec-
trum. Some of the bands are observed in the pyrimidine-5-
carboxylic acid spectrum (e.g., 10, 15 bands), but they are
absent in the pyrimidine-2-carboxylic acid spectrum.

The vibrations of the carboxylate anion are present in
the spectra of the pyrimidinecarboxylic acids metal com-
plexes (Figs. 11 and 12). The analysis of position of the
asymmetric and symmetrical stretching bands of the car-
boxylate anion in comparison with position of the bands of
carboxylate anion of the sodium salt allows the determi-
nation of the metal-ligand coordination mode. Table 14
contains the values of wave numbers of the carboxylate
anion vibrations for the 2PCA acid complexes as well as
differences in the values of these vibrations. According to
Nakamoto, this allows the assessment of the metal-ligand
coordination mode [53]. In the case of complexes (Mn, Co,
Cu, Zn) of pyrimidine-2-carboxylic acid, the difference in
wavenumbers of tensile vibrations of asymmetric and
asymmetric carboxylate anions (Av = v, COO™ — vy
COO™) for 3d metal complexes of 2PCA acid is higher
than for sodium salts indicates a monodent mode of metal—
ligand coordination by a carboxyl group, which agrees with
the X-ray diffraction results for single crystals. Additional
metal-ligand binding takes place via the nitrogen atom of
the pyrimidine ring, which is observed in changes in the
infrared spectra (the disappearance of the tensile bands
vCN in the spectra of the complexes).

In the case of the nickel complex, the difference Av in
the spectrum is smaller than in the sodium salt, which
suggests a bidentate chelation coordination mode. The
mode of metal-ligand coordination by the nitrogen atom
without the participation of a carboxylic group is more
likely due to the characteristic changes in the bands orig-
inating from vibrations of the aromatic system (disap-
pearance of bands in the nickel complex) and the
appearance of an unbound carboxylate anion with aligned
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Assignments

Nickel Copper

Cobalt

Manganese

Zinc

Pyrimidine-5-carboxylate

Sodium

Table 13 (continued)
Pyrimidine-5-carboxylic acid
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IR ATR IRKBr IRATR IRKBr IRATR IRKBr IR ATR

IR KBr

IR ATR Raman

IR KBr

IR ATR Raman

Inten IR KBR

IR theor

IR ATR Raman

IR KBr

21

Bring

678w
643m

43.04

649
630

702w

22

653m 656vw 651m 651m 653m 654m 654m 657m 660m 651m Bring
602m 602w

653m
598m

11.44  642m
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electronic charge on the oxygen atoms in the carboxyl
group).

Under the influence of complexing in the acids spectra,
changes in the position of many bands are observed, as well
as the disappearance or appearance of some bands in
complexes with respect to the ligand. Comparative analysis
of the position of bands in the spectra of the acid and its
complexes allows to assess the influence of the metal on
the distribution of the electron charge of the ligand. Our
research so far has shown that alkali metals cause disorder
of the ligand’s aromatic system, while transition metals
stabilize the ligand’s electronic system [54]. If in the IR
and Raman spectra, we observe a decrease in the number,
wavenumber and/or intensities of the bands for metal
complexes in comparison with the appropriate bands in the
spectra of ligands and there is a disorder of the aromatic
system. It is caused by a decrease in the force constants of
the bonds and polarization of the C—C, C-N bonds in the
ring [54]. By comparing the spectra of sodium salts and
pyrimidine-2-carboxylic acid and pyrimidine-5-carboxylic
acid, it was observed that sodium causes disorder in the
aromatic system in each of the ligands. In the sodium
pyrimidine-2-carboxylate spectra, it was observed that for
many bands originating from vibrations of the aromatic
system and the wavenumber (3, 4, 5, 6, 13) are reduced.
Many of the bands present in the ligand spectrum disappear
in the spectrum of sodium salt (8, 12, 14, 17, 18, 20, 22).
Some of the bands do not change (7, 9, 10, 16), and only
for some bands, the wavenumbers increase in the spectrum
of the sodium salt with respect to the ligand (11, 21, 23).
Similar observations have been made for SPCA acid and its
sodium salt.

In the spectrum of sodium salt, a number of bands
present in the spectrum of acid disappear. These are bands
marked with 4, 5,7, 8,9, 11, 12, 17, 18, 21). Some of the
bands are shifted toward the lower values of wave numbers
in the spectrum of sodium salt (13, 22). An increase in the
value of wave numbers for vibration bands (6, 10, 19, 23)
in the spectrum of sodium salt with respect to the spectrum
of the acid was also observed. The analysis showed that the
atom of the lithium destabilizes the pyrimidine-5-car-
boxylic acid electron system to a greater extent than the
pyrimidine-2-carboxylic acid.

The position of heteroatoms relative to the carboxyl
group is important here. Similarly, it was observed in the
case of the influence of alkaline metals on the electronic
system of pyridinecarboxylic acids [55]. Transition metals,
as shown in previous studies, stabilize the ligand electron
system. In the IR and Raman spectra, this is observed in the
form of an increase in wave numbers of bands originating
from vibrations of the aromatic system of complexes with
respect to the ligand. In the spectra of transition metal of
pyrimidine-2-carboxylic acid complexes, an increase in
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wave numbers of many bands originating from the vibra-
tions of the aromatic system was observed (5, 7, 8, 11, 13,
20, 21). There are also vibration-derived bands that were
absent in the spectrum of the ligand (e.g., band No. 15). For
some of the bands, decreasing of the wavenumber value in
the complex spectrum with respect to the ligand or disap-
pearance of the bands (6, 9, 12, 16) was observed. This
indicates an increase in the aromaticity of the 2PCA acid
system under the influence of complexation. In the spectra
of pyrimidine-5-carboxylic acid metal complexes, greater
changes were observed with respect to the ligand than in
the spectra of the pyrimidine-5-carboxylic acid complexes.
Decreased values of wave numbers or disappearance of
bands derived from vibrations of the pyrimidine carboxylic
acid ring were observed. These are bands marked with 5, 6,
7, 8, 9, 12, 13, 14. An increase in wavenumbers was
observed only for some bands (10, 11, 15). A comparative
analysis of the spectra of pyrimidine carboxylate com-
plexes and pyrimidinecarboxylic acids has shown that

Fig. 10 Normal modes of pyrimidine ring calculated in DFT/B3LYP/
6-311++(d,p)

transition 3d metals have a greater impact on the 2PCA
acid aromatics system than 5PCA acid. In the case of
2PCA, the transition metals attached via the carboxyl group
and the nitrogen atom of the aromatic ring stabilize the
electron system, whereas in the case of pyrimidine-5-car-
boxylic acid complexes, a disorder of the aromatic ligand
system is observed. Direct attachment of the metal to the
aromatic pyrimidine ring causes an increase in the distur-
bance of the aromatic system.

Thermal analysis

Different methods of thermal analysis (TG-DSC, TG-
FTIR) were used to determine thermal behavior of two
series of metal(II) complexes during heating in air and
nitrogen atmospheres. Thermal analysis methods allow to
demonstrate that the same metal ions with the isomers of
pyrimidinecarboxylic acid give complexes with a different
number of solvent molecules. The pyrimidine-2-carboxy-
late complexes contain in the structure a smaller number of
water molecules compared to the corresponding complexes
with pyrimidine-5-carboxylic acid.

Thermal decomposition of the investigated complexes in
air atmosphere proceeds in two main stages connected with
dehydration and decomposition/burning  processes
(Tables 15, 16, Figs. 13-17).

Manganese(Il) pyrimidine-2-carboxylate (MnL,) as an
anhydrous complex exhibits high thermal stability up to
about 250 °C, while manganese(Il) pyrimidine-5-car-
boxylate tetrahydrate (MnL,-4H,0O) is stable to 110 °C
(Fig. 13). Further heating leads to the one-stage removal of
all four water molecules associated with 18.85% mass loss
in the temperature range 110-140 °C accompanied by a
strong endothermic effect at 122 °C observed on the DSC
curve. The corresponding molar enthalpy of dehydration
process is equal to 153.5 kJ mol™'. An anhydrous form of
manganese(Il) pyrimidine-5-carboxylate is thermally
stable up to about 350 °C. Further heating of both man-
ganese(Il) complexes results in distinct mass losses
observed on the TG curves connected with one-stage
decomposition and combustion of organic ligands. Very
strong exothermic effects appear on the DSC curves.
Manganese(IIl) oxide is the final decomposition product
formed at about 470-480 °C. During heating up to about
940 °C, Mn,05 transforms into Mns;O4 [56, 57].

The first mass losses on the TG curves of cobalt com-
plexes CoL;-2H,O and CoL,-4H,O are a result of the
dehydration process (Fig. 14). The release of water mole-
cules in the CoL;-2H,0 complex takes place in the tem-
perature range 150-220 °C. The other complex is less
stable, and loss of solvent molecules is observed at lower
temperature 123-205 °C. The shapes of the DSC curves of
both complexes CoL;-2H,O and CoL,-4H,0 indicate that
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Fig. 11 IR spectra of
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removal of water molecules occurs in overlapping stages
with the overall molar dehydration enthalpy values of
78.0 kJ mol™' and 177.9 kJ mol™', respectively. The
anhydrous complexes CoL; and CoL, are stable in the
narrow temperature ranges 220-307 and 205-260 °C,
respectively. At a higher temperature, two mass losses
appear on the TG curves as a result of the decomposition
and burning of the anhydrous form of complexes. These
stages are accompanied by very strong exothermic effects.
As the final solid product of thermal decomposition, Co304
is formed. Further heating of such compound leads to the
transformation into the CoO at about 940 °C [58, 59].
The nickel complexes NiL;-2H,O and NiL,-4H,0
exhibit thermal stability up to 164 and 132 °C, respectively
(Fig. 15). During heating of nickel(Il) pyrimidine-2-

@ Springer
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carboxylate dihydrate, the removal of both water molecules
occurs in the temperature range 164-258 °C. The first mass
loss connected with the dehydration process is 11.58%
(calc. 10.57%). As can be deduced from the shape of the
DSC curve, this process probably proceeds in two stages
(temperatures of the endothermic peaks are 201 °C and
229 °C) with the overall enthalpy of 83.6 kJ mol .
Nickel(Il) pyrimidine-5-carboxylate tetrahydrate loses all
water molecules in one stage in the temperature range
132-208 °C with the corresponding molar dehydration
enthalpy value of 192.3 kJ mol™' (the maximum of the
endothermic peak at 200 °C). Anhydrous compounds are
stable in narrow temperature ranges and heating leads to
the two-stage decomposition connected with burning of the
organic ligand. Very strong exothermic effects can be
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Table 14 Spectral parameters (vibrations stretching the carboxylate anion) from the IR spectra of pyrimidine-2-carboxylates and proposed type
of coordination the metal to carboxylic group of the ligand

Compound Vasym (COO™) Vsym (COOT) AV? Proposed coordination
Wavenumber/cm ™! Wavenumber/cm ™! Wavenumber/cm ™!

Sodium salt 1639 1379 260

Manganese complex 1626 1311 315 Monodentate

Cobalt complex 1668 1357 311 Monodentate

Nickel complex 1637 1391 246 Bidentate chelation

Copper complex 1653 1351 302 Monodentate

Zinc complex 1664 1358 306 Monodentate

AV = Vaym(CO0 ™) — vgym(COO™)
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observed on the DSC curves. Nickel(II) oxide is formed at
about 480 °C as the final solid product of thermal
decomposition nickel complexes [60].

The copper(Il) compound with pyrimidine-2-carboxylic
acid as a anhydrous complex displays great thermal sta-
bility. Two-stage decomposition occurs in the temperature
range of 260-390 °C. As the final solid product of
decomposition, copper(Il) oxide is formed. Copper(Il)
pyrimidine-5-carboxylate hexahydrate is stable to 80 °C.
During further heating, the dehydration process occurs in
two hardly separated stages. Mass losses of 24.30% and 2%
observed on the TG curve are associated with the removal
of 5.5 and 0.5 water molecules. The first stage of dehy-
dration is accompanied by a very strong endothermic effect
with the molar enthalpy of dehydration equal to
200.7 kJ mol™! (temperature of the peak maximum is
95.6 °C). The other endothermic effect was recorded at
150 °C. The dehydrated form of complex is stable to
245 °C. Next, the two-step decomposition takes place in
the range 286-384 °C (Fig. 16). Also, CuO is formed as
stable solid residue [58, 61].

The zinc complexes ZnL;-2H,0 and ZnlL,-4H,O are
thermally stable up to 110 and 98 °C, respectively
(Fig. 17). At higher temperature, mass losses on the TG
curves are observed due to the dehydration process. As can
be concluded from the TG and DSC curves of the ZnL.
2H,0 complex, release of water molecules takes place in
two hardly distinguishable stages. The mass loss of 10.97%
is observed in the temperature range 110-190 °C. The
dehydration process proceeds with the two overlapping
endothermic effects with the maxima at 144 °C and 156 °C
and total molar dehydration enthalpy of 83.6 kJ mol™'. In
the other zinc complex, four water molecules are released
in one stage in the narrow temperature range 110-140 °C.
This process is accompanied by a very strong endothermic
effect with the molar dehydration enthalpy
174.8 kJ mol™'. The dehydration process resulted in the
formation of anhydrous compounds which are stable in the

relatively wide temperature ranges: 190-370 °C and
152-316 °C. Similarly to the above-described compounds,
further heating leads to the two-stage decomposition
resulting from degradation and burning of anhydrous form
of complex. Zinc oxide is formed as a final solid product of
complexes decomposition [58, 60].

TG-FTIR analysis

Volatile products of thermal decomposition of the CoL,.
2H,0 and CoL,-4H,0 complexes were investigated by the
coupled TG-FTIR method as representatives of two series
of investigated complexes. The infrared spectra of gaseous
products released during complexes heating in nitrogen
atmosphere are given in Fig. 18. The CoL,-2H,0 complex
is stable in the nitrogen temperature to 178 °C. Next, in the
temperature range 180-240 °C, water molecules are
evolved. The FTIR spectra exhibit characteristic bands in
the  wavenumber ranges 40003400 cm~'  and
1800-1200 cm™"' corresponding to the stretching and
deformation vibrations of water molecules [57]. As shown
in Fig. 18, the dehydrated form of the complex is stable up
to 330 °C. At higher temperature, carbon dioxide mole-
cules are released. The FTIR spectra show very diagnostic
characteristic bands in the region 2359-2310 cm™' and
that at 669 cm™' derived from the stretching and defor-
mation vibrations of carbon dioxide (Fig. 18). Above
450 °C besides the bands from the carbon dioxide mole-
cules, also a double band with the maxima at 2182 and
2094 cm™' is observed due to evolved carbon monoxide
[62]. Moreover, along with carbon oxides weak bands
derived from the ammonia and pyrimidine molecules are
observed. These gases give the most intense bands at
440-500 °C. Identification of pyrimidine molecules can be
made based on the bands in the region 3100-3000 cm ™"
which can be assigned to the stretching vibrations of CH
groups. The bands recorded at 1569, 1540 cm ™' and those
at 1436, 1339 cm~! can be ascribed to the stretching

Table 15 Results of thermal decomposition of Ni(II), Co(II), Cu(II), Zn(II) and Mn(II) complexes with pyrimidine-2-carboxylic acid in air

Complex AT,/°C AH/kJ mol ™! (Tpear/°C) Mass loss/% AT»/°C Mass loss/% Residue
Found Calc. Found Calc.
Co(2PCA),-2H,0 150-220 78.0 (183, 198) 12.39 10.55 307-480* 78.60 77.07 Co304
Ni(2PCA),-2H,0 164-258 83.6 (201, 229) (201, 229) 11.58 10.57 320480 78.72 78.08 NiO
Zn(2PCA),-2H,0 110-190 83.6 (144, 156) 10.97 10.36 370-530 77.67 76.56 ZnO
Mn(2PCA), - - - 250-489%** 74.15 73.78 Mn,05
Cu(2PCA), - - - 260-390 74.57 74.30 CuO

2PCA—CsH;3N,0, (pyrimidine-2-carboxylate); AT,—temperature range of dehydration; AT,—temperature range of degradation of anhydrous
complex to suitable oxide; *—further transformation of Co3;0, oxide into CoO oxide is observed; **—further transformation of Mn,O3 oxide

into Mn30, oxide is observed

@ Springer
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Table 16 Results of thermal decomposition of Ni(II), Co(II), Cu(II), Zn(II) and Mn(II) complexes with pyrimidine-5-carboxylic acid in air

Complex AT,/°C (AH/KJ mol ! (Tpear!°C) Mass loss/% AT,/°C Mass loss/% Residue
Found Calc. Found Calc.
Co(5PCA),-4H,0O 123-205 177.9 (183) 19.95 19.10 260-449%* 79.73 78.71 Co304
Ni(5PCA),-4H,O 132-208 192.3 (200) 20.30 19.11 300-480 79.96 80.17 NiO
Zn(5PCA),-4H,O 98-152 174.8 (133) 19.23 18.78 316-572 82.09 78.76 ZnO
Mn(5PCA),-4H,0 110-140 153.5 (122) 19.85 19,29 350-470%* 80.75 78.84  Mn,O;
Cu(5PCA),-6H,O 80-167 200.7 (95.6) 26.13 25.86 245-384 82.95 80.94 CuO

SPCA—CsH3N,0, (pyrimidine-5-carboxylate); AT,—temperature range of dehydration; AT,—temperature range of degradation of anhydrous
complex to suitable oxide; *—further transformation of Co3z0, oxide into CoO oxide is observed; **—further transformation of Mn,O3 oxide
into Mn30, oxide is observed
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Fig. 13 TG and DSC curves of manganese(Il) complexes with: a pyrimidine-2-carboxylic acid; b pyrimidine-5-carboxylic acid
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Fig. 14 TG and DSC curves of cobalt(Il) complexes with: a pyrimidine-2-carboxylic acid; b pyrimidine-5-carboxylic acid

vibrations of aromatic ring v(CC) and v(NC) and defor-
mation vibrations of CH moieties [63]. Ammonia mole-
cules were detected among the gaseous products of
complex thermal decomposition due to the presence of
very diagnostic double peak bands at 967 and 933 cm ™.

At higher temperature, only carbon oxides and traces of
water are evolved.

Cobalt(Il) pyrimidine-5-carboxylate tetrahydrate is
stable in the inert atmosphere to 127 °C. Next, the dehy-
dration process occurs with water molecules evolution in
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Fig. 17 TG and DSC curves of zinc(II) complexes with: a pyrimidine-2-carboxylic acid; b pyrimidine-5-carboxylic acid

the range 130-210 °C. The FTIR spectra exhibit diagnostic
bands derived from the stretching and deformation vibra-
tions of water (Fig. 18). The anhydrous compound is
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stable to 310 °C. Further heating leads to the degradation
of the pyrimidine-5-carboxylate ligand with the evolution
of carbon dioxide, ammonia and pyrimidine molecules at
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(a)

0.00

Fig. 18 FTIR spectra of gaseous products evolved during the decomposition of: a Co(2PCA),-2.5H,0; b Co(5PCA),-4H,0

the same time. Compared with the previously described
thermal decomposition of cobalt(Il) pyrimidine-2-car-
boxylate, the bands derived from the pyrimidine molecules
are more intense. In the wavenumber region
3100-3000 cm ™", there can be distinguished three peaks at
3086, 3055 and 3040 cm™' from the stretching vibrations
of CH. In the lower wavenumber region, there are observed
several double bands with the maxima at: 1574,
1507 cm™'; 1436, 1387 cm™'; 1230, 1209 cm ™' and 1151,
1140 cm ™" assigned to the stretching and different modes
of deformation vibrations of CC, CN and CH moieties [63].
Carbon monoxide is evolved above 600 °C.

Conclusions

Two series of novel metal(I[) complexes with pyrimidine-
2-carboxylic and pyrimidine-5-carboxylic acid were
obtained and characterized. The work allowed to assess the
influence of selected metals on the electronic structure and
antioxidant properties of the pyrimidinecarboxylic acids.
The influence of metals on the above properties was
evaluated depending on the location of the carboxyl group
relative to the heteroatoms in the aromatic ring. As a result
of synthesis, some complexes were obtained in a crystalline
form, which allowed for precise determination of the
structure using X-ray diffraction. In addition, theoretical
calculations of some structures were made, which allowed
for a broader interpretation of the obtained results. Two
ligands (pyrimidine-2-carboxylic acid and pyrimidine-5-
carboxylic acid) were selected for the experimental tests.

Taking into account obtained results several conclusions
can be drawn:

1. The metal-ligand coordination mode in complexes
depends on the position of the carboxylic group in

relation to positions of the heteroatoms in the aromatic
rings of acids. In the case of metal complexes with
pyrimidine-2-carboxylic acid, the metal ions are linked
to the ligand via the monodentate carboxylate group
and the nitrogen atom of the aromatic ring. In the case
of metal complexes with pyrimidine-5-carboxylic acid,
the metal ions are only attached to the ligand via the
nitrogen atom. These conclusions were confirmed by
single-crystal X-ray diffraction method as well as
spectroscopic (IR, Raman) investigations.

Water molecules in hydrated form of complexes play
role of monodentate ligands. Only in copper(Il)
pyrimidine-5-carboxylate, two additional water mole-
cules are in inner coordination sphere.

The analysis of spectroscopic data (IR, Raman) and
theoretical calculations (aromaticity indexes) showed
that transition 3d metals cause changes in the elec-
tronic charge distribution of the ligands. This effect is
the greatest for the pyrimidine-5-carboxylates in where
the metal ions are coordinated directly to the aromatic
ring (by nitrogen atom). The metals can stabilize the
electron system of pyrimidine-2-carboxylate ligand,
while in the case of pyrimidine-5-carboxylate ligand
decrease in aromaticity is observed.

Theoretical calculations (the SOD activity) have shown
that the copper complex of pyrimidine-2-carboxylic
acid has lower antioxidant activity than the copper
complexes of pyrimidine-5-carboxylic acids.

The metal coordination mode also affects the thermal
stability of the studied complexes. Thermal analysis
has shown that the metal complexes with pyrimidine-2-
carboxylic acid (with the exception of the manganese
complex) exhibit a higher thermal stability compared
to the metal pyrimidine-5-carboxylates. The final
products of thermal degradation in the air atmosphere
of studied complexes are suitable metal oxides. The
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research shows that complexes of transition metals
with pyrimidine carboxylic acids are more thermally
stable when the metal is coordinated through the
carboxyl group and the nitrogen atom of the pyrimidine
ring than complexes in which the metal is coordinated
only through the nitrogen atom of the pyrimidine ring.
Investigated metal complexes decompose in nitrogen
atmosphere with releasing of water, carbon oxides,
ammonia and pyrimidine molecules.
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