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Abstract
Heat transfer enhancement and entropy generation are investigated in a nanofluid, stagnation-point flow over a cylinder

embedded in a porous medium. The external surface of cylinder includes non-uniform transpiration. A semi-similarity

technique is employed to numerically solve the three-dimensional momentum equations and two-equation model of

transport of thermal energy for the flow and heat transfer in porous media. The mathematical model considers nonlinear

thermal radiation, magnetohydrodynamics, mixed convection and local thermal non-equilibrium in the porous medium.

The nanofluid and porous solid temperature fields as well as those of Bejan number are visualised, and the values of

circumferentially averaged Nusselt number are reported. The results show that thermal radiation significantly influences the

temperature fields and hence affects Nusselt and Bejan number. In general, more radiative systems feature higher Nusselt

numbers and less thermal irreversibilities. It is also shown that changes in the numerical value of Biot number can

considerably modify the predicted value of Nusselt number and that the local thermal equilibrium modelling may sig-

nificantly underpredict the Nusselt number. Magnetic forces, however, are shown to impart modest effects upon heat

transfer rates. Yet, they can significantly augment frictional irreversibility and therefore reduce the value of Bejan number.

It is noted that the current work is the first systematic analysis of a stagnation-point flow in curved configurations with the

inclusion of nonlinear thermal radiation and local thermal non-equilibrium.

Keywords Heat transfer enhancement � Stagnation-point flow � Local thermal non-equilibrium � Convective-radiative heat
transfer � Nonlinear radiation � MHD

List of symbols
a Cylinder radius

A1;A2;A3;A4 Constants

asf Interfacial area per unit volume of porous

media

Be Bejan number

Bem Average Bejan number

Bi Biot number Bi ¼ hsfasf �a
4kf

Br Brinkman number Br ¼ lf �k�að Þ2
kf Tw�T1ð Þ

B0 Magnetic field strength

Cp Specific heat at constant pressure

f g;uð Þ Function related to u-component of

velocity

f 0 g;uð Þ Function related to w-component of

velocity

G g;uð Þ Function related to v-component of

velocity

Gr Grashof number Gr ¼ g�bf �a3�T1
16�t2

f

h Heat transfer coefficient

hsf Interstitial heat transfer coefficient

k Thermal conductivity
�k Freestream strain rate

k1 Permeability of the porous medium

k� The mean absorption coefficient

M Magnetic parameter, defined as M ¼ r�B2
0

2qf ��k
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NG Entropy generation number NG ¼
_S000gen
_S0000

Nu Nusselt number

Num Circumferentially averaged Nusselt

number

p Fluid Pressure

P Non-dimensional fluid pressure

P0 The initial fluid pressure

Pr Prandtl number

qw Heat flow at the wall

qr Thermal radiation

r Radial coordinate

Re Freestream Reynolds number Re ¼ �k�a2
2t

Rd Radiation parameter Rd ¼ 16r�T3
1

3k��ks
S uð Þ Transpiration rate function S uð Þ ¼ U0 uð Þ

�k�a
_S0000 Characteristic entropy generation rate

_S000gen Rate of entropy generation

T Temperature

u, v, w Velocity components along (r � u� z)-

axis

U0 uð Þ Transpiration

z Axial coordinate

Greek symbols
a Thermal diffusivity

b Thermal expansion coefficient

c Modified conductivity ratio c ¼ kf
ks

g Similarity variable, g ¼ r
a

� �2

h g;uð Þ Non-dimensional temperature

hw Temperature parameter hw ¼ Tw
T1

k Permeability parameter, k ¼ a2

4k1

k1 Dimensionless mixed convection parameter

k1 ¼ Gr
Re2

¼ g�bf �T1
16�t2

f

e Porosity

l Dynamic viscosity

t Kinematic viscosity

q Fluid density

r Shear stress

�r Electrical conductivity

r� Stefan–Boltzman constant

/ Nanoparticle volume fraction

u Angular coordinate

Subscripts
1 Far field

f Base fluid

nf Nanofluid

np Nano-solid-particles

s Solid

w Condition on the surface of the cylinder

Introduction

Convective-radiative heat transfer in porous media is of

growing importance in a wide range of technological

applications [1, 2]. The increasing use of porous media in

radiative energy systems such as solar collectors, solar

reactors and porous burners has raised a pressing need for

further understanding and modelling of this combined

mode of heat transfer [3–5]. Further, the use of magnetic

effects in advanced energy technologies (e.g. cooling of

nuclear fusion reactors) necessitates inclusion of magne-

tohydrodynamic effects in heat transfer analyses. The

current work aims to respond to these needs through con-

duction of a numerical analysis on a generic configuration

including a vertical cylinder covered by a porous medium

and subject to an impinging flow. A magnetic field is

applied to the system, and nanoparticles are added to fur-

ther enhance electrical and thermal conductivity. The pri-

mary objective is to understand the influences of pertinent

parameters on this complex multiphysics problem.

Modelling of thermal radiation in porous media has

received a sustained attention over the last few decades

[6, 7]. Most of the early works was done on porous burners,

chiefly because of the importance of thermal radiation in

this specific application; see the reviews of the literature in

Refs. [8, 9]. For conciseness, here only the studies pub-

lished over the last 10 years are briefly reviewed. Using

homotopy technique, Hayat et al. [10] investigated the

effects of thermal radiation and magnetic fields on a flat

plate covered by a porous medium and under an impinging

flow. Thermal radiation was modelled through a linear

version of Rosseland approximation, and an extensive

parametric study was performed. Amongst other findings,

Hayat et al. showed that the influences of radiation and

magnetic parameters on the temperature field are quite

similar [10]. Bhattacharyya and Layek [11] analysed

boundary layer flow over a stretching porous flat surface by

considering the effects of transpiration (fluid suction and

blowing) and thermal radiation. A similarity solution was

developed to investigate the effects of transpiration on the

velocity and temperature fields [11]. These authors repor-

ted that by intensifying fluid suction, the wall temperature

may increase in one class of their proposed solutions. In a

subsequent work, the same group of authors added the

effects of micropolar fluid flow to their analysis [12]. It was

shown that by increasing thermal radiation, the temperature

and thermal boundary layer thickness decrease and there-

fore the heat transfer rate from the sheet enhances [12].

Radiative-conductive thermal boundary condition was

applied to a cylindrical configuration, and the entropy

generation was analysed analytically by Torabi and Aziz

[13]. In this analysis, the internal heat generation and
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thermal conductivity were assumed to be linear functions

of temperature. The results reflected the strong influence of

thermal radiation on the thermodynamic irreversibilities of

the system [13]. Heat and mass transfer in a radiative flow

of Maxwell fluid over a titled stretching surface was

studied by Ashraf et al. [14]. This work included exami-

nation of a large number of parameters including Biot

number, thermodiffusion parameter, Deborah number,

inclined stretching angle, radiation parameter, mixed con-

vection parameter upon the thermal and concentration

boundary layers. In particular, it was shown that the

thickness of thermal boundary layer decreases at higher

thermal radiative powers [14]. Ashraf et al. also argued that

radiation could have opposite effects upon Nusselt and

Sherwood number [14]. In another theoretical work,

Zhang et al. [15] considered heat and mass transfer in a

nanofluid flow in porous media including magnetic and

thermal radiation effects. They also added fluid transpira-

tion to their investigation and found that this effect as well

as those of magnetic field and radiation can strongly affect

the velocity and temperature fields [15].

Heat transferring, radiative stagnation-point flow of a

nanofluid over a flat plate was modelled by Makinde and

Mishra [16]. These authors included the thermophoresis and

Brownian motion of the nanoparticles in their similarity

solution [16]. They reported decreasing trends of Nusselt

number and increasing of Sherwood number at higher

thermal radiation. An analogous study was reported by

Hayat et al. [17] for non-Newtonian nanofluid flow in the

presence of a magnetic field. In keeping with the previous

investigations, it was shown that application of a magnetic

field results in depletion of momentum and thus weakening

of the hydrodynamic boundary layer [17]. Stagnation-point

flow of unsteady radiative Casson fluid with chemical

reactions over a stretching surface was analysed by

Abbas et al. [18]. A temperature-dependent chemical reac-

tion was considered in this work, and it was shown that

through this effect radiation can significantly influence the

mass transfer problem. As an important point, most of the

existing studies are concerned with flat surfaces and only

few investigations have been reported on the boundary

layers over curved surface [19]. Carbon nanotubes were

considered in a boundary layer flow of water over the axis of

cylinder. It was shown that, for all investigated nanotubes,

fluid temperature near the surface of cylinder was higher at

larger values of curvature parameter [19].

A common point in the preceding works is the linear

modelling of thermal radiation. Such simplification has been

released in a few recent studies. For example, Hussian et al.

[20] implemented a nonlinear model of thermal radiation in

their analysis of stagnation-point flow over a vertical flat

surface. This revealed that heat transfer enhancement could

be more accurately predicted through incorporation of a

nonlinear thermal radiation model in comparison with its

linear counterpart. Mushtagh et al. [21] considered nonlinear

radiation in the problem of solar absorption in a stagnation

nanofluid flow in which Brownian motion of nanoparticles

was considered. Hayat et al. [22] investigated the three-di-

mensional viscous flow on a nanofluid over stretching sur-

face in the presence of nonlinear thermal radiation and

magnetic effects. Their results showed that intensification of

thermal radiation leads to increases in the gradient of tem-

perature on the surface of the wall [22]. A similar analysis

was reported by Farooq et al. [23] for a viscoelastic nano-

fluid flow and Hayat et al. [24] on an unsteady Oldroyd-B

fluid. In the latter, it was shown that in the case of convective

thermal boundary condition, increases in the radiation

parameter result in the thickening of the thermal boundary

layer. Other investigated configurations with nonlinear

radiation include convectively heated cylinders [25], mixed

convection in stretched flow of an Oldroyd-B fluid with

convective condition [26], MHD Carreau fluid over stretched

surface [27]. In all these works, it was asserted that imple-

mentation of nonlinear radiation improves the analysis and

makes the predictions of heat transfer rates more accurate.

The preceding survey of the literature clearly shows that

a wealth of stagnation-point flow configurations over flat

surfaces with MHD and nonlinear radiation effects has

been already investigated. However, the corresponding

problem for curved surfaces has received very little atten-

tion. Further, those cases that considered the flow inside a

porous medium often used local thermal equilibrium (LTE)

assumption and the more accurate local thermal non-

equilibrium (LTNE) approach has been rarely used toge-

ther with radiation and magnetic effects. This is an

important shortcoming particularly in thermochemical

porous systems for which the existence of local thermal

non-equilibrium is well demonstrated [28, 29]. The pri-

mary objective of the current work is to address these

issues through using a semi-similarity solution technique.

Theoretical and numerical methods

Problem configuration, assumptions
and governing equations

Figure 1 shows a schematic view of the problem under

investigation. A heat transferring, vertical cylinder is

imbedded in porous media and subject to an impinging

flow of nanofluid while a magmatic field is acting on the

system. The system is a simplified configuration of solar

reactors and solar collectors for energy storage purposes as

discussed in detail in Ref. [3]. The external surface of the

cylinder can include non-uniform transpiration. The fol-

lowing assumptions are made throughout this work.
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• The nanofluid flow is steady and laminar.

• The nanofluid is assumed to be Newtonian and single

phase.

• The cylinder is assumed to be infinitely long, and the

porous medium is homogenous, isotropic and under

local thermal non-equilibrium.

• An external axisymmetric radial stagnation-point flow

of strain rate of �k impinges on the cylinder. However,

because of the non-uniformity of transpiration, the flow

configuration around the cylinder can be non-

axisymmetric.

• The viscous dissipation of kinetic energy of the flow is

ignored. Also, porosity, specific heat, density and

thermal conductivity are assumed to be constant and

thus the thermal dispersion effects are ignored.

• A moderate range of pore-scale Reynolds number is

considered in the porous medium, and hence nonlinear

effects in momentum transport are negligibly small.

The details of three-dimensional governing equations

and boundary conditions are provided in the followings.

The continuity of mass is expressed by

o ruð Þ
or

þ ov

ou
þ r

ow

oz
¼ 0: ð1Þ

The momentum equation in the radial direction [30, 31]

reads

qnf
e2

u
ou

or
þ v

r

ou

ou
� v2

r
þ w

ou

oz

� �

¼ � op

or
þ lnf

e
o2u

or2
þ 1

r

ou

or
� u

r2
þ 1

r2
o2u

ou2
þ o2u

oz2

� �

� lnf
k1

u; ð2Þ

and that in angular direction and by including the magnetic

forces is given by [29]

qnf
e2

u
ov

or
þ v

r

ov

ou
þ uv

r
þ w

ou

oz

� �

¼ � 1

r

op

ou
þ lnf

e
o2v

or2
þ 1

r

ov

or
� v

r2
þ 1

r2
o2v

ou2
þ 2

r2
ou

ou
þ o2v

oz2

� �

� lnf
k1

v� �rB2
0 � v:

ð3Þ

The transport of momentum in the axial direction is

expressed by the following equation in which buoyancy

force is also included

qnf
e2

u
ow

or
þ v

r

ow

ou
þ w

ow

oz

� �

¼ � op

oz
þ lnf

e
o2w

or2
þ 1

r

ow

or
þ 1

r2
o2w

ou2
þ o2w

oz2

� �

� qbð Þnfg Tnf � T1ð Þ � lnf
k1

� �rB2
0 � w:

ð4Þ

Nanofluid in
porous media

Thermal radiation
effect

B0 B0

U0

qr qr

g

r

z

ψ

(ψ)

Fig. 1 Schematic diagram of a

stationary cylinder under radial

stagnation flow and thermal

radiation of nanofluid in porous

media

1374 R. Alizadeh et al.

123



A two-equation model is used here to express the

transport of thermal energy in the porous medium. The

energy equation for the nanofluid phase is written as [32]

u
oTnf

or
þ v

r

oTnf

ou
þ w

oTnf

oz

¼ knf

qCp

� �
nf

o2Tnf

or2
þ 1

r

oTnf

or
þ 1

r2
o2Tnf

ou2
þ o2Tnf

oz2

� �

þ hsf :asf

qCp

� �
nf

Ts � Tnfð Þ;

ð5Þ

while the transport of thermal energy in the solid phase is

expressed by

ks
o2Ts

or2
þ 1

r

oTs

or
þ 1

r2
o2Ts

ou2
þ o2Ts

oz2

� �
� hsf � asf Ts � Tnfð Þ

� 1

r

o

or
r � qrð Þ ¼ 0:

ð6Þ

Using Rosseland approximation [33–35] for thermal

radiation, the radiative heat flux is simplified as follows

qr ¼ � 4r�

3k�
oT4

s

or
: ð7Þ

Equation (6) can be now re-written in the form of

ks
o2Ts

or2
þ 1

r

oTs

or
þ 1

r2
o2Ts

ou2
þ o2Ts

oz2

� �
� hsf � asf Ts � Tnfð Þ

þ 1

r

o

or
r:
16r�

3k�
T3
s

oTs

or

� �
¼ 0:

ð8Þ

It should be noted that in the existing literature, T4
s in

Eq. (7) is often expanded and linearised about the ambient

temperature T1 [10–12]. However, in the present case this

simplification has been avoided and the full nonlinear form

of the expression for thermal radiation is implemented.

In Eqs. (1–8) p, qnf, lnf , T , qCp

� �
nf
, knf , b, g, T1, r�, k�

and qr are the pressure, density, kinematic viscosity of the

nanofluid, temperature, the heat capacitance of the nanofluid,

thermal conductivity of the nanofluid, thermal expansion

coefficient, gravitational acceleration, prescribed tempera-

ture at the wall, Stefan–Boltzman constant, constant, the

mean absorption coefficient and radiative heat flux, respec-

tively. These properties are evaluated inside the boundary

layer and in the vicinity of the flow impingement point.

The nanofluid properties are defined by the followings

[33, 34],

qnf ¼ 1� /ð Þqf þ /qnp; q � Cp

� �
nf
¼ 1� /ð Þ q � Cp

� �
f
þ/ q � Cp

� �
np

lnf ¼
lf

1� /ð Þ2:5
;

knf

kf
¼

knp þ 2kf � 2/ kf � knp
� �

knp þ 2kf þ 2/ kf � knp
� �

ð9Þ

in which / represents the nanoparticle volume fraction. In

Eq. (9) the subscripts ‘‘f’’ and ‘‘np’’ denote base fluid and

solid fraction properties, respectively.

The hydrodynamic boundary conditions are given by the

following expressions.

r ¼ a:w ¼ 0; v ¼ 0; u ¼ �U0 uð Þ ð10Þ

r ¼ 1:w ¼ 2�kz; lim
r!1

rv ¼ 0; u ¼ ��k r � a2

r

� �
ð11Þ

Also, the followings illustrate the boundary conditions

with respect to u (angular coordinate)

u r; 0ð Þ ¼ u r; 2pð Þ; ou r; 0ð Þ
ou

¼ ou r; 2pð Þ
ou

;

v r; 0ð Þ ¼ v r; 2pð Þ; ov r; 0ð Þ
ou

¼ ov r; 2pð Þ
ou

:

ð12Þ

Equation (10) represents no-slip conditions on the

external surface of the cylinder, and Eq. (11) shows that

the viscous flow solution approaches, in an analogous way

to the Hiemenz flow, the potential flow solution as r ! 1
[36–39]. This can be verified by starting from the conti-

nuity equation in the followings. � 1
r

o ruð Þ
or

� ov
ou ¼ ow

oz
Con-

stant ¼ 2�kz and integrating in r and z directions with

boundary conditions, w ¼ 0 when z ¼ 0 and u ¼ �U0 uð Þ
when r ¼ a.

The boundary condition associated with the energy

equations in the porous region is given by

r ¼ a:
Tnf ¼ Tw ¼ Constant,

Ts ¼ Tw ¼ Constant;
ð13Þ

r ¼ 1:
Tnf ¼ T1;

Ts ¼ T1:

and the two boundary conditions with respect to angular

coordinate, u are

Tnf r; 0ð Þ ¼ Tnf r; 2pð Þ; Ts r; 0ð Þ ¼ Ts r; 2pð Þ;
oTnf r; 0ð Þ

ou
¼ oTnf r; 2pð Þ

ou
;
oTs r; 0ð Þ

ou
¼ oTs r; 2pð Þ

ou
;

ð14Þ

where Tw is temperature of the cylinder surface and T1
denotes the freestream temperature.

Self-similar solutions

Reducing the governing Eqs. (1–7) by applying the fol-

lowing similarity transformations,

Effects of radiation and magnetic field on mixed convection stagnation-point flow over a… 1375

123



u ¼ �
�k � a
ffiffiffi
g

p f g;uð Þ; v ¼
�k � a
ffiffiffi
g

p G g;uð Þ; w

¼ 2�kf 0 g;uð Þ �
�k

g
oG

ou

� �
z; p ¼ qf �k

2a2P; ð15Þ

in which g ¼ r
a

� �2
is the dimensionless radial variable,

results in the following dimensionless equations. Relations

(15) automatically satisfy the continuity of mass and sub-

stitution into Eqs. (2), (3) and (4) results in:

e gf 000 þ � 1

8g2
o3G

ou3
� 1

2

oG0

ou
þ 1

2g
oG0

ou
� 1

2g2
oG

ou
þ 1

4g
o2f 0

ou2

� �

þ Re � A1 � 1� /ð Þ2:5 1þ ff 0 � f 0ð Þ2� f

2g
oG0

ou
þ f

2g2
oG

ou

�

� G

2g
of 0

ou
þ G

4g2
o2G

ou2
þ f 0

2g
oG

ou
� 1

4g2
oG

ou

� �2
#

þ e2 � k 1� f 0½ �

� e2 � A4 � k1 � hw � 1ð Þhnf þ e2 � Re �M 1þ 1

2g
oG

ou
� f 0

� �
¼ 0;

ð16Þ

P� P0 ¼ � 1

2e2
f 2

g

� �
� 1

e � A1 � 1� /ð Þ2:5

f 0

Re
� 1

4Re
r
g

1

1

g2
o2f

ou2
dg

��

þ 1

2Re
r
g

1

1

g2
oG

ou
dg

�
þ k
Re

r
g

1

f

g
dg

�

� 2
1

e2
þ 1

A1 1� /ð Þ2:5
k
Re

" #
z

a

	 
2

þ 1

e2
1

�k2
r
g

1

1

g2
G2 þ G

of

ou

� �
dg;

ð17Þ

where Re ¼ �k�a2
2tf

is the freestream Reynolds number, k ¼ a2

4k1

is the reciprocal of Darcy number, Gr ¼ g�bf �a3�T1
16�t2

f

is the

Grashof number, k1 ¼ Gr
Re2

¼ g�bf �T1
16�t2

f

is the dimensionless

mixed convection, and prime indicates differentiation with

respect to g.
Considering Eqs. (10), (11), and (12), the boundary

conditions for Eqs. (16) and (17) reduce to:

g ¼ 1 : f 0 1;uð Þ ¼ 0; f 1;uð Þ ¼ S uð Þ ð18Þ

g ! 1 : f 0 1;uð Þ ¼ 0 ð19Þ

f g; 0ð Þ ¼ f g; 2pð Þ; of g; 0ð Þ
ou

¼ of g; 2pð Þ
ou

; ð20Þ

where S uð Þ ¼ U0 uð Þ
�k�a is the transpiration rate function.

Combining Eq. (15) with Eqs. (3) and (4) yields a differ-

ential equation in terms of G g;uð Þ and an expression for

the pressure

e � gG00 þ 1

4g
o2G

ou2
� 1

2g
of

ou

� �
þ Re � A1

� 1� /ð Þ2:5 f � G0 � G

2g
oG

ou

� �
� e2 � G � kþM½ �

¼ 0: ð21Þ

Considering conditions (10)–(12), the boundary and

initial conditions for Eq. (21) can be written as

g ¼ 1 : G 1;uð Þ ¼ 0;
oG 1;uð Þ

ou
¼ 0 ð22Þ

g ! 1 : G 1;uð Þ ¼ 0 ð23Þ

G g; 0ð Þ ¼ G g; 2pð Þ; oG g; 0ð Þ
ou

¼ oG g; 2pð Þ
ou

ð24Þ

Equation (5) is non-dimensionalised by using the fol-

lowing transformation

h g;uð Þ ¼ T g;uð Þ � T1
Tw � T1

; ð25Þ

and therefore

T g;uð Þ ¼ T1 1þ hw � 1ð Þh½ �; ð26Þ

By substituting Eqs. (15) and (26) into Eq. (5) and

neglecting the small dissipation terms, the following

equation is derived.

gh00nf þ h0nf þ
1

4g
o2hnf
ou2

þ Re � Pr � A2

A3

� f � h0nf �
G

2g
ohnf
ou

� �

þ Bi

A3

hs � hnfð Þ ¼ 0;

ð27Þ

in which hw ¼ Tw
T1

is the temperature parameter, Bi ¼ hsfasf �a2
4kf

is the Biot number, Rd ¼ 16r�T3
1

3k��ks is the radiation parameter,

and the thermal boundary conditions for the nanofluid

phase reduce to

g ¼ 1 : hnf 1;uð Þ ¼ 1 ð28aÞ
g ! 1 : hnf 1;uð Þ ¼ 0 ð28bÞ

hnf g; 0ð Þ ¼ hnf g; 2pð Þ; ohnf g; 0ð Þ
ou

¼ ohnf g; 2pð Þ
ou

ð29a; bÞ

Substitution of Eqs. (15) and (26) into Eq. (8) results in

gh00s þ h0s þ
1

4g
o2hs
ou2

� Bi � c � hs � hnfð Þ

þ Rd �
o

og
g � 1þ hw � 1ð Þhsð Þ3��hs
h i

¼ 0;

ð30Þ

where c ¼ kf
ks

is the modified conductivity ratio and the

thermal boundary conditions for the solid phase of the

porous medium are as follows
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g ¼ 1 : hs 1;uð Þ ¼ 1 ð31aÞ
g ! 1 : hs 1;uð Þ ¼ 0 ð31bÞ

hs g; 0ð Þ ¼ hs g; 2pð Þ; ohs g; 0ð Þ
ou

¼ ohs g; 2pð Þ
ou

ð32; bÞ

In Eqs. (16), (17), (21) and (27), A1, A2, A3 and A4 are

constants in the following forms:

It is noted that Eq. (27) is the complete form of

Eqs. (14) in Ref. [40]. Equations (16), (21), (27) and (30),

and the boundary conditions (18–20), (22–24), (28–29) and

(31–32), were numerically solved by employing an impli-

cit, iterative tri-diagonal finite-difference method [41–43].

G g;uð Þ ¼ 0

e gf 000 þ f 00 þ 1

4g
o2f 0

ou2

� �
þ Re � A1 � 1� /ð Þ2:5 1þ ff 0 � f 0ð Þ2

h i

þ e2 � k 1� f 0½ � � e2 � A4 � k1 � hw � 1ð Þhnf
þ e2 � Re �M 1� f 0½ � ¼ 0;

ð34Þ

P� P0 ¼ � 1

2e2
f 2

g

� �
� 1

e � A1 � 1� /ð Þ2:5

�f

Re
� 1

4Re
r
g

1

1

g2
o2f

ou2
dg

 !

þ k
Re

r
g

1

f

g
dg

" #

� 2
1

e2
þ 1

A1 1� /ð Þ2:5
k
Re

" #
z

a

	 
2
;

ð35Þ

gh00nf þ h0nf þ
1

4g
o2hnf
ou2

þ Re � Pr � A2

A3

� f � h0nf
� �

þ Bi

A3

hs � hnfð Þ ¼ 0;

ð36Þ

gh00s þ h0s þ
1

4g
o2hs
ou2

� Bi � c � hs � hnfð Þ

þ Rd �
o

og
g � 1þ hw � 1ð Þhsð Þ3��hs
h i

¼ 0:

ð37Þ

Shear stress and Nusselt number

The shear stress induced by the nanofluid flow on the

external surface of the cylinder is given by:

r ¼ lnf
ow

or

� �

r¼a

; ð38Þ

where lnf is the nanofluid viscosity. Employing Eq. (15), a

semi-similar solution for the shear stress on the surface of

the cylinder can be developed. This reads

r ¼ lnf
2

a
2�kzf 00 1;uð Þ½ �) r � a

4l�kz
¼ 1� �/
	 
�2:5

f 0 1;uð Þ:

ð39Þ

The local heat transfer coefficient and rate of heat

transfer are defined by the following relations

h ¼ qw

Tw � T1
¼

�knf
oTnf
or

� �
r¼a

Tw � T1
¼ � 2knf

a

ohnf 1;uð Þ
og

; ð40Þ

and

qw ¼ � 2knf

a

ohnf 1;uð Þ
og

ðTw � T1Þ: ð41Þ

Therefore, Nusselt number is expressed as

Nunf ¼
h � a
2kf

¼ � knf

kf
�hnf 1;uð Þ ¼ �A3 � �hnf 1;uð Þ: ð42Þ

Entropy generation

The volumetric rate of local entropy generation in the

porous region of the problem can be expressed by the

following relation [44–48]:

A1 ¼ 1� /ð Þ þ
qnp
qf

/; A2 ¼ 1� /ð Þ þ
q � Cp

� �
np

q � Cp

� �
f

/

A3 ¼
knf

kf
¼

knp þ 2kf � 2/ kf � knp
� �

knp þ 2kf þ 2/ kf � knp
� � ; A4 ¼ 1� /ð Þ þ

q � bð Þnp
q � bð Þf

/

ð33Þ
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where NG ¼
_S000gen
_S0000

and _S0000 ¼ 8kf � Tw�T1ð Þ2tf
�k�a4�T2

1
are the character-

istic entropy generation rate. Using the similarly variables

given in Eqs. (15) and (43), the non-dimensional form of

local entropy generation (NG) is given by

NG ¼ Re � A3 � h2w
1þ hw � 1ð Þhnf½ �2
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ou
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ð44Þ

in which Br ¼ lf �k�að Þ2
kf Tw�T1ð Þ is the Brinkman number. The

Bejan number, defined as the ratio of entropy generation by

heat transfer to the total entropy generation, can be further

expressed as

Be ¼ Re � A3 � h2w
1þ hw � 1ð Þhnf½ �2

gh02nf þ
1

4g2
ohnf
ou

� �2
" #"
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Grid independency and validation

To verify grid independency of the numerical solution,

Table 1 reports the average value of Nusselt and Bejan

number as well as dimensionless shear stress with varying

mesh densities of 51� 18, 102� 36, 204� 72, 408� 144

and 816� 288. It is clear from Table 1 that there are no

considerable changes of Num and Bem for (g;u) mesh sizes

of (204� 72), (408� 144) and (816� 288). Hence, in this

work a (408� 144) grid in g� u directions was used for

the computational domain reported. A non-uniform grid

was implemented in g-direction to resolve the strong gra-

dients around the external surface of the cylinder, and a

uniform mesh was applied in u direction. The computa-

tional domain extends over umax ¼ 360� and gmax ¼ 15,

where gmax corresponds to g!1. It is noted that, for all

Table 1 Grid independence study at Re ¼ 10; k ¼ 10; k1 ¼ 1:0;
M ¼ 1:0; Bi ¼ 0:1; Rd ¼ 1:0; hw ¼ 1:2

Mesh size Num
rm �a
4l�kz

Bem

51 9 18 8.658791 21.15879 0.54677

102 9 36 8.876546 21.45861 0.58179

204 9 72 9.125783 21.89883 0.60548

408 9 144 9.709241 22.52879 0.63035

816 9 88 9.727194 22.55027 0.63005
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investigated cases, the computational domain fully contains

the entire momentum and thermal boundary layers. Fig-

ure 2 shows the computational grid utilised in the current

study. A convergence criterion was applied to the numer-

ical simulations, in which when the difference between the

two consecutive iterations became less than 10�7. The

solution was considered to have converged and therefore

the iterative process was terminated. The numerical error

of the implemented numerical scheme is estimated to be of

OðDgÞ2 [41–43]. The solutions developed in ‘‘Self-similar

solutions’’ and ‘‘Shear stress and Nusselt number’’ sections

were validated by comparing the average Nusselt number,

shear stress and velocity parameters with those obtained

from the literature for flows over cylinders with no tran-

spiration and infinitely large permeability. Tables 2, 3 and

4 show the outcomes of this comparison. The excellent

agreement between the two datasets confirms validity of

the numerical simulations.

Results and discussion

Two types of fluid including pure water and a CuO–water

nanofluid, with varying concentration of nanoparticles, are

used in the rest of this study. Table 5 summarises the

thermophysical properties of the nanofluid, and Table 6

provides the default values of the pertinent parameters.

Temperature field, Nusselt number and friction
coefficient

The hydrodynamics of nanofluids under magnetic effects

are already well investigated [32], and therefore they are

not further elaborated in here. Nonetheless, to illustrate the

flow field, Fig. 3a depicts the distribution of f (see Eq. 15)

for different values of Reynold number. Complexity of the

flow field is completely evident in this figure. The radial

flow field includes a stagnation and a low-velocity region

that form as a result of the interactions between the

impinging uniform flow and the non-uniform transpiration

(see Fig. 1). This low-velocity region diminishes in size as

the value of Reynold number increases. Figure 3b illus-

trates the variations in the temperature field of the nano-

fluid induced by the changes in Reynold number. As

expected, at low Reynolds numbers the temperature field is

nearly symmetric, and the thermal boundary layer is uni-

form and thick. However, increase in Reynolds number

changes this significantly and results in reducing the

thickness of thermal boundary layer. This is due to the

well-known dependency of the thickness of velocity

boundary layer upon Reynolds number and the relation

between the thicknesses of thermal and velocity boundary

layers through Prandtl number [52]. An exception to this

Fig. 2 The computational grid used in this study

Table 2 Comparison between the current results and those of Gorla [49] on average Nusselt number and average shear stress for different values

of magnetic parameter when Re ¼ 100; k ¼ 0; / ¼ 0; k1 ¼ 1:0; Bi ¼ 1000; Rd ¼ 0

Pr rm �a
4lf �kz

Num

Present work Gorla. [49] Deviation percentage/% Present work Gorla [49] Deviation percentage/%

0.01 18.2115 18.2521 0.2229 1.6521 1.6541 0.1211

0.7 15.3561 15.1712 1.2188 7.1875 7.1941 0.0918

1000 13.1121 13.2514 1.0624 91.1342 91.9241 0.8667
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general behaviour is the low-velocity region in which the

thickness of the boundary layer remains large.

Figure 4a shows the influences of volumetric concen-

tration of nanoparticles on the nanofluid temperature field.

Increasing the volumetric concentration of nanoparticles

from 0 to 10% has resulted in a noticeable increase in the

thickness of the thermal boundary layer. This can be

explained by noting that thermal conductivity of the

nanofluid increases by magnifying the volumetric concen-

tration of nanoparticles. The resultant increase in the

thermal diffusivity of the nanofluid is the reason for the

observed thickening of the boundary layer. Figure 4b

shows that variations in the mixed convection parameter do

not have any noticeable influences upon most of the ther-

mal boundary layer. Yet, increases in the value of mixed

convection parameter lead to shrinkage of the high-tem-

perature spot around the low-velocity region (see Fig. 3a),

which could be due to the relative weakening of inertia

forces.

Table 3 Comparison between the present work and the results of Gorla [51] in the limit of very large porosity and permeability

Re f h

Gorla [51] Present work Deviation percentage/% Gorla [51] Present work Deviation percentage/%

0.01 0.12075 0.12051 0.1991 0.84549 0.84557 0.0095

0.1 0.22652 0.22659 0.0309 0.73715 0.73701 0.0190

1.0 0.46647 0.46683 0.0772 0.46070 0.46045 0.0543

10 0.78731 0.78725 0.0076 0.02970 0.02983 0.4377

Table 4 Comparison between the present work and the results of Wang [50] in the limit of very large porosity and permeability

g Re = 1.0 Re = 10

Wang [50] Present work Wang [50] Present work

F F0 f f0 Deviation percentage of

f/%

f f0 f F0 Deviation percentage of

f0/%

1.2 0.02667 0.25302 0.02693 0.25993 0.9749 0.06638 0.58982 0.06631 0.58961 0.0356

1.4 0.09665 0.43724 0.09652 0.43710 0.1347 0.21400 0.84821 0.21393 0.84793 0.0330

1.6 0.19836 0.57315 0.19828 0.57329 0.0403 0.39532 0.94852 0.39541 0.94827 0.0264

1.8 0.32361 0.67444 0.32365 0.67438 0.0123 0.58919 0.98380 0.58914 0.98351 0.0295

2.0 0.46674 0.75054 0.46683 0.75046 0.0193 0.78731 0.99522 0.78735 0.99483 0.0392

Table 5 Thermo-physical

properties of the base fluid and

nanoparticle [36]

Physical properties Cp/J kg
-1 K-1 q/kg m-3 K/W m-1 K-1 b 9 10-5/K-1

Fluid phase (water) 4179 997.1 0.613 21

CuO 531.8 6320 76.5 1.8

Table 6 Default values of the

simulation parameters
Simulations parameters g u k e Re S uð Þ Bi Br hw c ; M Rd k1

1.45 72� 10 0.9 5.0 Ln uð Þ 0.1 2.0 1.2 1.5 0.1 1.0 1.0 1.0
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Figure 5 shows the response of the nanofluid and porous

solid temperature fields to the increases in radiation

parameter. By introduction of thermal radiation (increasing

Rd from 0 to 1), the thickness of thermal boundary layer in

nanofluid and the thickness of the heated porous solid have

increased noticeably. In the current modelling setting,

radiation can be viewed as an added thermal diffusivity and

thus introduction of thermal radiation is equivalent to

making the medium more diffusive. It is well known that

increases in thermal diffusivity lead to deeper thermal

penetration lengths in the solid phase. This increase in

thermal diffusivity thickens the thermal boundary layer in

the nanofluid phase by means of heat exchanges between

the porous solid and nanofluid phase. Figure 6 shows that

Biot number is a key parameter affecting the temperature

fields of nanofluid and porous solid phase. At low Biot

numbers (Bi = 0.1), the two temperature fields can be

significantly different, in which the temperature of the solid

phase is much higher than that of nanofluid phase. This is

because of the poor heat exchanges between solid and

nanofluid phases at low Biot numbers. However, at higher

Biot numbers (e.g. Bi = 10) the two temperature fields

feature major similarities, as there is now a strong capa-

bility for the exchange of heat between the two phases.

Re = 0.1

(a) (b)
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Fig. 3 Effects of Reynolds

number on a f g;uð Þ, b
hnf g;uð Þ, / ¼ 0:1;
M ¼ 1:0; Rd ¼ 1:0;
k ¼ 10; k1 ¼ 1:0; Bi ¼ 0:1
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Theoretically, it is expected that in the limit of infinite Biot

number the solid and nanofluid temperature fields become

identical, and therefore a local thermal equilibrium (LTE)

condition applies. However, as depicted by Fig. 6, the two

temperature fields at low values of Biot numbers can be

quite distinctive. This clearly reflects the importance of

employing a local thermal non-equilibrium approach in the

current problem.

Figures 7 and 8 show the circumferential variation of

Nusselt number as the pertinent parameters vary. Further

information on variations of the circumferentially averaged

Nusselt number with these parameters is provided in

Tables 7, 8 and 9. Figure 7 shows that increases in Biot

number lead to a significant drop of Nusselt number for a

large fraction of the cylinder circumference. This is an

important result from the modelling viewpoint, as it indi-

cates that LTE models, which effectively assume very

large Biot numbers, may highly underpredict the numerical

value of Nusselt number. Hence, the use of LTNE mod-

elling is an important necessity in the current problem.

According to Fig. 7b, temperature parameter plays a key

role in determining the value of Nusselt number. Increasing

(a) (b)
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Fig. 4 hnf g;uð Þ for varying
values of a nanoparticle volume

fraction, b mixed convection

parameter Rd ¼ 2:0;
/ ¼ 0:05; M ¼ 0; Re ¼ 10;
Bi ¼ 0:1; k ¼ 10; k1 ¼ 1:0
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the temperature parameter can lead to large enhancement

of heat transfer coefficient when forced and natural con-

vection is of comparable significance. This is due to the

direct dependency of energy equation (see Eq. 27) and thus

natural convection upon the wall temperature. At higher

values of temperature parameters, natural convection is

stronger and as long as mixed convection parameter is

around or below unity, the Nusselt number is enhanced.

Figure 7c confirms that increases in the concentration of

nanoparticles magnify the value of Nusselt number. This

can be attributed to the higher thermal conductivity of

nanofluid with larger concentration of nanofluid. The

observed trend is consistent with that reported in other

studies of nanofluid flow in porous media, see for example

Refs. [33, 34].
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Fig. 5 Effects of radiation parameter on a hnf g;uð Þ, b hs g;uð Þ, / ¼ 0:05; M ¼ 0; Re ¼ 10; Bi ¼ 0:1; k ¼ 10; k1 ¼ 1:0
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It is well established that, in general, Reynold number

dominates forced convection of heat and thus Nusselt

number is strongly enhanced by increases in Reynolds

number [52]. In keeping with this generic view, Fig. 7d

shows that increasing Reynolds number can substantially

increase the value Nusselt number. Table 9 shows that

increasing the value of Reynolds number from 1 to 100

leads to an enhancement of Nusselt number by almost 15

times. Figure 8a indicates that increases in radiation

parameter can result in major enhancement of Nusselt

number. According to Table 7, increasing radiation

parameter from 0 to 7 increases the value of circumferen-

tially average Nusselt number by more than 80%, reflecting

the strong influence of this parameter upon the heat transfer

process. As discussed earlier, increases in the radiation

parameter are equivalent to enhancement of the thermal

conductivity of the solid phase which then leads to

improvement of heat transfer in the nanofluid phase. The

values of mixed convection parameter greater than one can

slightly enhance Nusselt number and the inverse effect is

observed for negative values of mixed convection param-

eter (see Fig. 7b). Figure 8c and d shows that changes in
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Fig. 6 Effects of Biot number

on a hs g;uð Þ, b Be g;uð Þ,
/ ¼ 0:05; M ¼ 1:0; Re ¼ 10;
Rd ¼ 1:0; Br ¼ 2:0; k ¼ 10;
k1 ¼ 1:0; hW ¼ 1:2
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the permeability of the porous medium and intensity of the

magnetic field have modest effects upon Nusselt number.

Thermodynamic irreversibilities

Figure 9 shows the distribution of Bejan number and

entropy generation number in the domain with varying

values of radiation parameter, while Table 7 provides the

average value of Bejan number. As discussed in the pre-

vious section, increases in radiation parameter boosts

Nusselt number. The resultant increase in heat transfer rate

relaxes the temperature gradients in the system and thus

reduces the thermal irreversibilities. This is depicted by

Fig. 9a and in the reported values of average Bejan number

in Table 7. The complex nature of entropy generation in

the current problem is well reflected by Fig. 9b. Switching

from pure water to nanofluid appears to have a strong effect

upon the distribution of Bejan number (see Fig. 10a). In the

absence of nanoparticles (/ ¼ 0Þ large values of Bejan

number can be found in most of the domain. Addition of

Table 7 Effects of Biot number, modified conductivity ratio and on average Nusselt and Bejan numbers number when Re ¼ 1:0; k ¼ 10; k1 ¼
1:0; M ¼ 1:0; Bi ¼ 0:1; Rd ¼ 1:0; hw ¼ 1:2; / ¼ 0:1

Bi Num Bem c Num Bem Rd Num Bem

0.1 4.380546 0.045425 0.1 2.282902 12.667 0 2.023269 0.94563

1.0 4.361441 0.021875 1.0 2.283273 1.2233 1 2.283467 0.80084

10 4.347604 0.013311 2 2.283652 0.59028 3 2.780153 0.6025

100 4.320692 0.012485 5 2.284617 0.21592 5 3.254344 0.47515

200 4.316352 0.012231 10 2.285825 0.097321 7 3.712680 0.38791

Table 8 Effects of mixed convection, permeability and magnetic parameter on average Nusselt and Bejan number when,

Re ¼ 1:0; k ¼ 10; k1 ¼1:0; M ¼ 1:0; Bi ¼ 0:1; Rd ¼ 1:0; hw ¼ 1:2

k1 Num Bem k Num Bem M Num Bem

0.1 4.376399 0.046931 1.0 4.357398 0.02536 0 4.266912 0.047515

1.0 4.380546 0.045425 10 4.380546 0.045425 1 4.380546 0.045425

10 4.420391 0.034127 100 4.417175 0.004072 3 4.383869 0.041768

30 4.500133 0.021613 1000 4.439515 0.000405 5 4.386696 0.038668

- 20 4.274283 0.014048 5000 4.446507 0.000081 7 4.389146 0.036002

Table 9 Effects of Reynolds and Prandtl number and temperature parameter on average Nusselt and Bejan number when, Re ¼ 1:0; k ¼
10; k1 ¼ 1:0; M ¼ 1:0; Bi ¼ 0:1; Rd ¼ 1:0; hw ¼ 1:2

Re Num Bem Pr Num Bem hw Num Bem

0.1 3.904873 0.013189 0.1 3.906162 0.011565 1 4.380546 0.045425

1.0 4.380546 0.045425 0.4 4.063833 0.018016 2 22.02809 0.170111

10 9.731774 1.05851 0.7 4.221933 0.029383 3 93.86373 0.345881

50 34.83388 2.19961 1.0 4.380546 0.045425 4 263.9523 0.504231

100 64.18778 2.32591 10 9.460663 1.34883 5 583.6297 0.590221
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nanoparticles with / ¼ 0:05, results in a considerable

reduction of Bejan number, while increasing the volumetric

concentration to 0.1 eliminates all large values of Bejan

number. This can be readily explained by noting the

influences of nanoparticles on heat transfer coefficient. It

was shown in ‘‘Temperature field, Nusselt number and

friction coefficient’’ section that increases in the concen-

tration of nanoparticles results in augmentation of Nusselt

number and therefore enhances the heat transfer process.

Consequently, the temperature gradients are partially

relaxed and thus less thermal irreversibility is encountered.

Figure 11 depicts the effects of intensity of the magnetic

field on the distribution of Bejan number and temperature

of nanofluid. According to this figure, increasing the

magnetic parameter by an order of magnitude does not

result in any noticeable modification in Bejan number and

nanofluid temperature. Nonetheless, intensification of the

magnetic field by another two orders of magnitude causes a
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considerable reduction of Bejan number (as also confirmed

by Table 8). Figure 8d shows that enhancement of Nusselt

number with increases in magnetic field is rather small.

Further, it can be seen from Fig. 11b that nanofluid tem-

perature field hardly changes with variation of magnetic

parameter for a few orders of magnitude. Magnetic field

does not have any direct effect on the transport of thermal

energy in the current problem and its indirect influences are

manifested through the velocity field. Nonetheless, since

low velocities are an inherent characteristic of stagnation-

point flows, magnetohydrodynamic effects on the investi-

gated heat transfer processes are not significant. Hence, the

observed changes in Bejan number are induced by fric-

tional irreversibility. It has been already demonstrated that

intensifying the magnetic field increases frictional forces

and hinders the nanofluid flow [31]. As a result, hydrody-

namic entropy generation increases significantly, while

thermal irreversibly has remained nearly unchanged. The

net effect is reduction of Bejan number as shown in

Fig. 11.
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Conclusions

Transfer of heat and generation of entropy by the combined

mode of radiation-convection was investigated numeri-

cally. The investigated problem included a stagnation-point

flow over a cylinder embedded in a porous medium and

subject to non-uniform transpiration. The three-dimen-

sional Darcy–Brinkman model of momentum transport in

porous media along with two-equation (LTNE) model of

transport of thermal energy were solved in cylindrical

coordinate through using a semi-similarity technique. The

mathematical model considered non-thermal linear radia-

tion, magnetohydrodynamics and mixed convection.

Temperature fields of nanofluid and porous solid as well as

Bejan number field were presented under varying param-

eters. Further, the angular distribution and the

circumferentially averaged values of Nusselt number were

reported. The key findings of this study can be summarised

as follows.

• Increases in the volumetric concentration of nanopar-

ticles result in the thickening of thermal boundary layer,

enhancement of Nusselt number and reduction of Bejan

number.

• Increases in radiation parameter strongly increase the

value of Nusselt number, while it also reduces the

average Bejan number.

• Variation in Biot number can considerably affect the

value of Nusselt and Bejan number. Hence, the use of

local thermal non-equilibrium (LTNE) approach is

essential for ensuring accurate prediction of heat

transfer rates.
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• Magnetic effects have small influences upon Nusselt

number. However, they can majorly modify Bejan

number distribution by altering the frictional irre-

versibility of the flow.

As a closing remark, it is emphasised that the presented

work was the first investigation of heat transfer and entropy

generation in non-flat configurations that considered non-

linear radiation, magnetic effects and local thermal non-

equilibrium in porous media.
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