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Abstract
A new electrospinning process was developed for preparing TiO2 nanofibers using a water-soluble Ti-precursor,

[bis(kappa1O-hydroxo)(bis(kappa2O,O0-lactato)titanium(IV)] commonly known as titanium(IV) bis (ammonium lactato)

dihydroxide (TiBALDH). The importance of the study is justified by the fact that Ti-precursors used for electrospinning,

sol–gel, hydrothermal and other fiber synthesis processes are mostly non-water soluble. Accordingly, anatase TiO2

nanofibers of diameter between 20 and 140 nm were synthesized by electrospinning and annealing. Polyvinylpyrrolidone

(PVP) and different concentrations of TiBALDH were dissolved in a mixture of water, ethyl alcohol and acetic acid to

optimize the electrospinning conditions. The thermal decomposition and fragmentation of PVP, TiBALDH and the fibers

with 50% mass fraction of TiBALDH were studied by TGA-MS measurements. The fibers were then annealed at

1 �C min-1 until 600 �C. The TiO2 fibers were characterized using SEM–EDX, FTIR and XRD
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Introduction

Titanium dioxide is used in a number of applications

including self-cleaning, antimicrobial thin film coatings,

photocatalysis, gas sensing and dye-sensitized solar cells

[1–5]. This has led to a lot of research in the preparation of

TiO2 nanofibers with well-controlled morphology [6–10].

Many methods of synthesis of TiO2 nanofibers have been

developed including sol–gel, hydrothermal and electro-

spinning [11–13]. Electrospinning as a method of synthesis

of nanofibers has been widely reported [14–17]. The

technique is a versatile and efficient method for synthe-

sizing uniform fibers with large specific surface area

[18–21]. In electrospinning, high static voltage is applied to

a polymer solution or melt, which can contain a precursor

salt of metal oxide in a syringe. The solution or melt is

ejected from the needle tip, accelerated by electric field and

is collected on a grounded substrate in form of thin con-

tinuous fibers [17, 22–24]. The nanofiber properties can be

controlled to offer more flexibility in surface functionalities

of the end product. Many studies use Ti-alkoxides and Ti-

halides as precursors for the synthesis of TiO2; however,

these are insoluble in water [25]. There is a need to prepare

TiO2 nanofibers from water-soluble precursors. This would

enable coupling TiO2 with other metal oxides having

water-soluble precursors. In this study, [bis(kappa1O-hy-

droxo)(bis(kappa2O,O0-lactato)titanium(IV)] commonly

known as titanium(IV) bis (ammonium lactato) dihydrox-

ide (TiBALDH) was used as the precursor in preparing

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s10973-019-08398-z) con-
tains supplementary material, which is available to autho-
rized users.

& Odhiambo Vincent Otieno

vincent.odhiambo@mail.bme.hu

1 Department of Inorganic and Analytical Chemistry, Budapest

University of Technology and Economics, Szent Gellért tér
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TiO2 nanofibers. The structure of TiBALDH is shown in

Fig. 1.

TiBALDH is a water-soluble titanium precursor with

low reactivity [26, 27]. It has been used to make various

titania nanomaterials. Mockel et al. reported that

TiBALDH was utilized to produce almost monodispersed

anatase nanocrystals by thermohydrolysis [28].

Mayya et al. [29] reported a nanoscale coating of gold

nanoparticles with titania based on TiBALDH. Lee et al.

[30] prepared anatase TiO2 nanoparticles coupled with

carbon nanotubes (CNTs) by controlled hydrolysis of

TiBALDH in CNTs containing aqueous media.

Hongzhi et al. [31] prepared TiO2 nanocrystals by

hydrolysis and hydrothermal treatment of TiBALDH.

There is only one report in which a water-soluble TiO2

precursor was used to synthesize TiO2 nanofibers by

electrospinning. Nakane et al. [32] prepared hybrid nano-

fibers of poly(vinyl-alcohol) and titanium lactate by elec-

trospinning. In their study, Nakale et al did not optimize the

concentration for the precursors and only one set of con-

centration was published. However, no studies have been

reported about the use of TiBALDH as a precursor in the

synthesis of TiO2 nanofibers by electrospinning. There are

also no reports on thermal analysis of TiBALDH which is

important since to obtain crystalline TiO2, an annealing

step is often needed.

In this study, TiO2 nanofibers were prepared by elec-

trospinning a mixture of alcoholic and aqueous solutions of

polyvinylpyrrolidone (PVP) and TiBALDH. We studied

how the properties of the electrospun fibers could be con-

trolled by using different concentrations of the precursor.

The thermal decomposition and fragmentation of PVP,

TiBALDH and the fiber with 50% mass fraction of

TiBALDH were studied by TGA-MS measurements. The

thermal properties of the electrospun fibers were investi-

gated in nitrogen by simultaneous thermogravimetry/dif-

ferential thermal analysis (TG/DTA). The electrospun

fibers were annealed at 600 �C to remove the polymer

component, decompose the precursor and obtain TiO2

nanofibers. The electrospun and annealed nanofibers were

characterized by scanning electron microscopy (SEM) and

energy-dispersive X-ray spectroscopy (EDX). The fibers,

PVP and TiBALDH were studied by Fourier transform

infrared spectroscopy (FTIR). The annealed fibers were

investigated by X-ray diffraction (XRD).
2NH4

+

H3C

HO

CH3

O O

O

OO

O

OHTi

2–

Fig. 1 Structure of TiBALDH
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Experimental

Materials

All materials were analytical grade and used as received.

Polyvinylpyrrolidone [PVP, (C6H9NO)n, K-90] and tita-

nium(IV) bis(ammonium lactato)dihydroxide [(C6H18N2

O8Ti) TiBALDH, 50 mass% in water)] were obtained from

Sigma-Aldrich.

Preparation and characterization of TiO2 fibers

The polymer solution contained 20 mass% PVP dissolved

in 1:1 mixture of acetic acid and ethyl alcohol. 2 mL of the

polymer solution was mixed with 2 mL of an aqueous

solution containing 50, 30, 25 and 10 mass% TiBALDH,

respectively. The mixture was stirred for 6 h at room

temperature. The mixed solution was loaded into a plastic

syringe equipped with a needle for electrospinning. The

feeding rate was 1 mL h-1, while the applied voltage was

25 kV. The fibers were collected on an Al foil screen

covered by a polyethylene sheet.

For the thermal measurements, a 50 mass% solution of

TiBALDH was carefully1 dried. TG/DTA–MS measure-

ments for TiBALDH, PVP and as-spun fiber of 50 mass%

TiBALDH were carried out using the TA Instruments’

Q600 simultaneous TG/DSC setup coupled to a Hiden

Analytical HPR-20/QIC mass spectrometer. The measure-

ments were carried out in flowing argon (flow

rate = 50 cm3 min-1) in an alumina crucible and empty

crucible as a reference. The sample mass was ca. 7 mg.

Selected ions between m/z = 1–125 were monitored in

multiple ion detection mode (MID) at a heating rate of

10 �C min-1.

The electrospun fibers were annealed in air to remove

the polymer and decompose the precursor. The annealing

was done at a rate of 1 �C min–1 up to 600 �C. The thermal

decomposition of the electrospun fibers in nitrogen was

investigated in an STD 2960 simultaneous DTA/TGA (TA

Instruments Inc.) thermal analyzer. The samples were

heated up to 600 �C using a heating rate of 10 �C min–1 in

nitrogen.

The morphology of the as-spun fibers was studied by

scanning electron microscopy (SEM) in a JEOL JSM-

5500LV scanning electron microscope in a high vacuum

mode at 20 kV. For the annealed samples, the SEM images

were observed by a LEO 1440 XB electron microscope in a

high vacuum mode with secondary electron detector. The

EDX analysis of the annealed fibers was done using JEOL

JSM-5500LV electron microscope. Before the measure-

ment, the nanofibers were coated with a thin Au/Pd layer in

a sputter coater. Fourier transform infrared spectroscopy

(FTIR) measurements of carefully dried 50 mass%

TiBALDH, PVP, electrospun and annealed nanofibers were

recorded with a Nicolet 6700 apparatus in the

400–4000 cm-1 domain in transmittance mode. The sen-

sitivity of measurements was 4 cm-1, and 64 scans were

accumulated per spectrum. The XRD patterns were recor-

ded by a PANalytical X’pert Pro MPD X-ray diffrac-

tometer using Cu Ka irradiation.

Results and discussion

TG/DTA–MS measurements were carried out to study how

the TiO2 precursor, TiBALDH, affects the decomposition

of PVP and the formation of TiO2. Figure 2 shows that the
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1 According to the Safety Information the hazard statement of

TiBALDH is H226-H319.
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decomposition of TiBALDH is continuous showing two

DTG maxima to 550 �C, while the decomposition of PVP

takes place in practically one step between 340 and 468 �C
without residue [33, 34]. The decomposition of the fiber

with 50 mass% TiBALDH and 20% PVP is also continuous

with three DTG maxima up to 550 �C. The decomposition

of the fiber and both of its components is practically fin-

ished around 550 �C. In the temperature range up to about

100 �C, the evaporation of the solvents is expected.

The DTG–MS data are shown in Fig. 3a–f. In the

samples of PVP (Fig. 3a) and the fiber of PVP/50 mass%

TiBALDH (Fig. 3e), at first, water evaporation was
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detected. In addition, in TiBALDH, the appearance of

fragments with 14–18 and 29–46 m/z ratio indicates a

partial decomposition of the TiO2 precursor even below

100 �C (Fig. 3c, d). This is not surprising taking into

account the hazard statements of TiBALDH. Above

100 �C, in the DTG curve of the composite fiber, the peaks

characteristic for both of PVP and of TiBALDH was

observed. However, the DTG maxima appeared at lower

temperatures than in the pure components.

The most intense MS signals of PVP are those with m/

z = 18 and 17. The intensity ratio of the peaks below

100 �C agrees with that of water. At higher temperatures,

the intensity ratio changes as a result of the evolution of

fragments NH3
? and NH4

?. The intensity of the signals of

the fragments with m/z = 14, 15 and 16 is about ten times

less than of fragments m/z = 18 and 17. Besides these, low-

intensity signals with a higher m/z ratio were also detected

(Fig. 3b). The courses of the m/z signals follow well the

course of the DTG signal. Since the decomposition was

recorded in flowing argon using TG/DTA-MS, relative

intense signals of H? and H2
? (m/z = 1, 2) and C3

? (m/

z = 36) were detected due to the reduction of the polymer

(Fig. 4a). The molecular fragment of the PVP monomer

with m/z = 111 was not found. The fragment with the

highest m/z was detected at 112 (Fig. 4b) which most

probably originates from the recombination of the fragment

with m/z = 56 (see Fig. 4b). Besides, a low-intensity signal

in PVP was detected at m/z = 68. The appearance of these

Table 1 As-spun and annealed

fiber diameters and composition

of annealed fibers

TiBALDH/mass% As-spun fibers d/nm Annealed fibers d/nm Atomic/%

Ti O

50 617–800 131–168 35.8 64.2

30 487–608 61–82 38.9 61.1

25 425–453 41–68 35.5 64.5

10 309–375 20–57 34.5 65.5

Fig. 6 SEM images of a as-spun fibers 50 mass% TiBALDH, b as-

spun fibers 30 mass% TiBALDH, c as-spun fibers 25 mass%

TiBALDH, d as-spun fibers 10 mass% TiBALDH, e annealed fibers

50 mass% TiBALDH, e annealed fibers 30 mass% TiBALDH,

f annealed fibers 25 mass% TiBALDH, g annealed fibers 10 mass%

TiBALDH
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signals is most probably a result of the fragmentation of the

pyrrolidone ring (e.g., C2H2NO and C3H2NO).

During the decomposition of TiBALDH, only signals up

to m/z = 46 ratio were detected (Fig. 3c, d). Fragments

with m/z = 18, 29 and 31 had the most intense signals.

These could be attributed to H2O
?, C2H5

? and C2H2OH
?

formed during the decomposition of TiBALDH

(C6H18N2O8Ti).

The difference in the fragmentation of the as-spun fiber

compared to the fragmentation of the components used for

its preparation is that in the mixture all the detected signals

were below m/z = 32 (Fig. 3f). This means that in the

preparation of the TiO2 fibers TiBALDH catalyzes the

decomposition of PVP.

Due to the very small differences in the molar masses of

the expected CO2
?, N2O

?, NOx
? fragments, their identifi-

cation by this way was not possible. Based on the TGA

measurements, the as-spun fibers should be annealed to

600 �C to obtain TiO2 fibers.

Figure 5 shows the comparison of various composite

fibers in nitrogen and that the decomposition is continuous.

The endothermic peaks in the DTA peaks are not sharp,

because the precursor and the polymer components of the

fibers decomposed without combustion. The decomposition

occurred in three stages as discussed earlier. The mass of

the residues was consistent with the increasing concentra-

tion of the precursor. The percentage yield for the TiO2

fibers varied depending on the concentration of the pre-

cursor, 50 mass% TiBALDH was 13.1%, 30 mass%

TiBALDH was 10.7%, 25 mass% TiBALDH was 10.4%

and 10 mass% TiBALDH was 9.4%.

The as-spun PVP/TiBALDH fibers had diameters

between 310 and 800 nm depending on the concentration

of TiBALDH. The fibers were annealed in air at a heating

rate of 1 �C min-1 up to 600 �C. The slow heating rate was

used to avoid disintegration of the oxide fibers [22]. The

diameter of the as-spun and annealed fibers was larger

when the concentration of TiBALDH was higher. After

annealing, diameter of the fibers decreased significantly

after annealing to 20–170 nm, as shown in Table 1.

From the SEM image of annealed fibers shown in Fig. 6,

the fibers formed from 50 mass% and 30 mass% TiBALDH

were smooth, while the fibers from 25 mass% and

10 mass% TiBALDH had some beads.

Results of EDX analysis are shown in Fig. 7. They

confirmed the presence of titanium and oxygen in the

annealed fibers. Ti peak was observed at 4.5 kV [35, 36].

The elemental composition in the annealed fibers is as

shown in Table 1.

The results for the FTIR measurements of pure

TiBALDH, PVP, as-spun and annealed composite fibers

are shown in Fig. 8. The broadband around 3600 cm-1 can

be assigned to O–H stretching vibration while the peak

around and 3200 cm-1 can be due to N–H stretching

vibrations in TiBALDH. The C–H asymmetric vibrations

of the methyl group in TiBALDH and PVP were observed

around 2980 cm-1. The sharp absorption bands around

1639 cm-1 can be assigned to C=O in the amide group in

0
0 Ti
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Fig. 7 EDX spectra of annealed fibers a 50 mass% TiBALDH, b 30 mass% TiBALDH, c 25 mass% TiBALDH and d 10 mass% TiBALDH
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PVP. The peak around 1440 cm-1 can be assigned to O–H

bending vibrations. The C–N stretching vibration absorp-

tion peaks in PVP were observed around 1290 cm-1

[33, 37, 38]. These absorption bands were also observed in

the as-spun fibers. For the annealed samples, the absorption

band around 630 cm-1 can be assigned to the Ti–O–Ti

bonds [37]. The FTIR measurements of the annealed fibers

confirmed that the polymer and the precursor were

decomposed during annealing.

Figure 9 shows the XRD pattern of the annealed fibers.

The fibers were crystalline with tetragonal structures. The

XRD patterns exhibited strong diffraction peaks at 25� and
48� indicating TiO2 in anatase phase [35, 39]. The annealed

fibers were indexed to ICDD 04-016-2837.

Conclusions

Anatase TiO2 nanofibers of diameter between 20–170 nm

were synthesized by electrospinning using a water-soluble

Ti-precursor. Polyvinylpyrrolidone and different concen-

trations of TiBALDH were dissolved in a mixture of water,

ethyl alcohol and acetic acid followed by electrospinning at

20 kV to obtain nanofibers. The as-spun fibers were studied

by TG/DTA-MS to establish annealing temperatures. The

data of TGA-MS measurements revealed that TiBALDH

catalyzes the decomposition of the as-spun fibers. During

its decomposition, only fragments with m/z\ 32 evolved.

The fibers were annealed at 1 �C min-1 until 600 �C to

form anatase TiO2 nanofibers. 50 mass% and 30 mass%

TiBALDH concentrations formed smooth fibers.
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Academy of Sciences and an ÚNKP-18-4-BME-238 New National

Excellence Program of the Ministry of Human Capacities, Hungary.

A GINOP-2.2.1-15-2017-00084, an NRDI K 124212 and an NRDI

TNN_16 123631 grants are acknowledged. The research within pro-

ject No. VEKOP-2.3.2-16-2017-00013 was supported by the Euro-

pean Union and the State of Hungary, co-financed by the European

Regional Development Fund. The research reported in this paper was

supported by the Higher Education Excellence Program of the Min-

istry of Human Capacities in the frame of Nanotechnology and

Materials Science research area of Budapest University of Technol-

ogy (BME FIKP-NAT) and Stipendium Hungaricum scholarship
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