Skip to main content
Log in

Betulonic acid—cyclodextrins inclusion complexes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Betulonic acid (BA) is a pentacyclic lupane-type triterpenoid possessing valuable pharmacological activities, exhibiting very low water solubility. Inclusion complexes between the substance and cyclodextrins (CDs) were obtained in order to improve its solubility and consequently its bioavailability. The aim of this study was to investigate the guest–host interaction of BA with γ-cyclodextrin (γ-CD) and its derivative, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD), in solution and in solid state in order to prove the formation of inclusion complexes between the components. The kneading method was used for the inclusion complexes preparation, and different analytical techniques such as thermal analysis, powder X-ray diffractometry, universal attenuated total reflectance Fourier transform IR spectroscopy (UATR-FTIR) and UV spectroscopy were employed to investigate the interaction between substances. The stoichiometry of the inclusion complex BA/HP-γ-CD was found to be 1:1 by employing continuous variation method, and the apparent stability constant was calculated as 1855.55 M−1 using Benesi–Hildebrand equation. Structural studies of the inclusion complexes were carried out using molecular modeling techniques in order to explain the complexation mechanism. The results of this study confirm the formation of inclusion complexes between BA and cyclodextrins both in solution and in solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Gu J, Gui Y, Chen L, Yuan G, Lu H-Z, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE. 2013;8(4):e62839. https://doi.org/10.1371/journal.pone.0062839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newman DJ, Cragg G. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ledeţi I, Avram Ş, Bercean V, Vlase G, Vlase T, Ledeţi A, Zupko I, Mioc M, Şuta LM, Şoica C, Dehelean C. Solid-state characterization and biological activity of betulonic acid derivatives. Molecule. 2015;20(12):22691–702.

    Google Scholar 

  4. Yang SJ, Liu MC, Zhao Q, Hu DY, Xue W, Yang S. Sinthesis and biological evaluation of betulonic acid derivatives as antitumor agents. Eur J Med Chem. 2015;96:58–65.

    CAS  PubMed  Google Scholar 

  5. Dev S. Impact of natural products in modern drug development. Indian J Exp Biol. 2010;48(3):191–8.

    CAS  PubMed  Google Scholar 

  6. Shoeb M. Anticancer agents from medicinal plants. Bangl J. Pharmacol. 2006;1:35–41.

    Google Scholar 

  7. Newman DJ, Gragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep. 2000;17:215–34.

    CAS  PubMed  Google Scholar 

  8. Domingues RMA, Oliveir ELG, Freire CSR, Couto RM, Simoes PC, Neto CP, Silvestre AJD, Silva CM. Supercritical fluid extraction of Eucalyptus globules bark-A promising approach for triterpenoid production. Int J Mol Sci. 2012;13:7648–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lagunin A, Filimonov D, Poroikov V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr Pharm Des. 2010;16:1703–17.

    CAS  PubMed  Google Scholar 

  10. Jager S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants—rich sources for a new group of multi-potent plant extracts. Molecules. 2009;14:2016–31.

    PubMed  PubMed Central  Google Scholar 

  11. Yogeeswari P, Sriram D. Betulinic acid and its derivatives: a review on their biological properties. Curr Med Chem. 2005;12(6):657–66.

    CAS  PubMed  Google Scholar 

  12. Alakurtti S, Makela T, Koskimies S, Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci. 2006;29(1):1–13.

    CAS  PubMed  Google Scholar 

  13. Haque S, Nawrot DA, Alakurtti S, Ghemtio L, Yli-Kauhaluoma J, Tammela P. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS ONE. 2014;9(7):e102696. https://doi.org/10.1371/journal.pone.0102696.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Flekhter OB, Boreko EI, Nigmatullina LR, Tret’yakova EV, Pavlova NI, Baltina LA, Nikolaeva SN, Savinova OV, Eremin VF, Galin FZ, Tolstikov GA. Synthesis and antiviral activity of betulonic acid amides and conjugates with amino acids. Russ J Bioorg Chem. 2004;30:80–8.

    CAS  Google Scholar 

  15. Pavlova NI, Savinova OV, Nikolaeva SN, Boreko EI, Flekhter OB. Antiviral activity of betulin, betulinic and betulonic acids against some enveloped and non-enveloped viruses. Fitoterapia. 2003;74:489–92.

    CAS  PubMed  Google Scholar 

  16. Flekhter OB, Ashavina OY, Boreko EI, Karachurina LT, Pavlova NI, Kabalnova NN, Savinova OV, Galin FZ, Nikolaeva SN, Zarudii FS, Baltina L, Tolstikov G. Synthesis of 3-O-acetylbetulinic and betulonic aldehydes according to Svern and the pharmacological activity of related oximes. Pharm Chem J. 2002;36:303–6.

    CAS  Google Scholar 

  17. Govdi AI, Sorokina IV, Tolstikova TG, Vasilevsky SF, Tolstikov GA. Synthesis and biological activity of novel acetylene betulonic acid derivatives. Chem Sustain Dev. 2010;18:397–402.

    Google Scholar 

  18. Vasilevsky SF, Govdi AI, Shults EE, Shakirov MM, Sorokina IV, Tolstikova TG, Baev DS, Tolstikov GA, Alabugin IV. Efficient synthesis of the first betulonic acid-acetylene hybrids and their hepatoprotective and anti-inflammatory activity. Bioorg Med Chem. 2009;17:5164–9.

    CAS  PubMed  Google Scholar 

  19. Saxena BB, Zhu L, Hao M, Kisilis E, Katdare M, Oktem O, Bomshteyn A, Rathnam P. Boc-lysinated-betulonic acid: a potent, anti-prostate cancer agent. Bioorg Med Chem. 2006;14:6349–58.

    CAS  PubMed  Google Scholar 

  20. Semenov DE, Zhukova NA, Ivanova EP, Sorokina IV, Baiev DS, Nepomnyashchikh GI, Tolstikova TG, Biryukova MS. Hepatoprotective properties of betulonic acid amide and heptral in toxic liver injury induced by carbon tetrachloride in combination with ethanol. Bull Exp Biol Med. 2015;158(3):336–41.

    CAS  PubMed  Google Scholar 

  21. Dinh Ngoc T, Moons N, Kim Y, De Borggraeve W, Mashentseva A, Andrei G, Snoeck R, Balzarini J, Dehaen W. Synthesis of triterpenoid triazine derivatives from allobetulone and betulonic acid with biological activities. Bioorg Med Chem. 2014;22(13):3292–300.

    PubMed  Google Scholar 

  22. Haque Shafiul, Nawrot Dorota A, Alakurtti Sami, Ghemtio Leo, Yli-Kauhaluoma Jari, Tammela Päivi. Screening and characterisation of antimicrobial properties of semisynthetic betulin derivatives. PLoS ONE. 2014;9(7):e102696. https://doi.org/10.1371/journal.pone.0102696.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anikina LV, Tolmacheva IA, Vikharev YuB, Grishko VV. The immunotropic activity of lupane and oleanane 2,3-seco-triterpenoids. Russ J Bioorg Chem. 2010;36:240–4.

    CAS  Google Scholar 

  24. Sorokina IV, Tolstikova TG, Zhukova NA, Petrenko NI, Schults EE, Uzenkova NV, Grek OR, Pozdnyakova SV, Tolstikov GA. Betulonic acid and derivatives, a new group of agents reducing side effects of cytostatics. Dokl Biol Sci. 2004;339:434–7.

    Google Scholar 

  25. Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2:335–51.

    CAS  PubMed  Google Scholar 

  26. D’Aria F, Serri C, Niccoli M, Mayol L, Quagliariello V, Iaffaioli RV, Biondi M, Giancola C. Host–guest inclusion complex of quercetin and hydroxypropyl-β-cyclodextrin. J Therm Anal Calorim. 2017;130:451–6.

    Google Scholar 

  27. Garcia A, Leonardi D, Salazar MO, Lamas MC. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization. PLoS One. 2014;9(2):e88234. https://doi.org/10.1371/journal.pone.0088234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sbârcea L, Udrescu L, Ledeţi I, Szabadai Z, Fuliaş A, Sbârcea C. β-cyclodextrin inclusion complexes of lisinopril and zofenopril. Physicochemical characterization and compatibility study of lisnopril-β-cyclodextrin with lactose. J Therm Anal Calorim. 2016;123:2377–90.

    Google Scholar 

  29. Sbârcea L, Udrescu L, Drăgan L, Trandafirescu C, Szabadai Z, Bojiţă M. Fosinopril–cyclodextrin inclusion complexes: phase solubility and physicochemical analysis. Pharmazie. 2011;66:584–9.

    PubMed  Google Scholar 

  30. Cȋrcioban D, Ledeţi A, Vlase G, Coricovac D, Moaca A, Farcaş C, Vlase T, Ledeţi I, Dehelean C. Guest–host interactions and complex formation for artemisinin with cyclodextrins: instrumental analysis and evaluation of biological activity. J Therm Anal Calorim. 2018;134:1375–84.

    Google Scholar 

  31. Brusnikina M, Silyukov O, Chislov M, Volkova T, Proshin A, Mazur A, Tolstoy P, Terekhova I. Effect of cyclodextrin complexation on solubility of novel anti-Alzheimer 1,2,4-thiadiazole derivative. J Therm Anal Calorim. 2017;130:443–50.

    CAS  Google Scholar 

  32. Sbârcea L, Udrescu L, Drăgan L, Trandafirescu C, Sasca V, Barvinschi P, Bojiţă M. Characterization of fosinopril natrium-hydroxypropil-β-cyclodextrin inclusion complex. Rev Chim Buchar. 2011;62(3):349–51.

    Google Scholar 

  33. Ikeda H, Fukushige Y, Matsubara T, Inenaga M, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H. Improving water solubility of nateglinide by complexation of β-cyclodextrin. J Therm Anal Calorim. 2016;123:1847–50.

    CAS  Google Scholar 

  34. Sbârcea L, Ledeţi I, Drăgan L, Kurunczi L, Fuliaş A, Udrescu L. Fosinopril sodium–Hydroxypropyl-β-cyclodextrin inclusion complex. Thermal decomposition kinetics and compatibility studies. J Therm Anal Calorim. 2015;120:981–90.

    Google Scholar 

  35. Stella VJ, He Q. Cyclodextrins. Toxicol Pathol. 2008;36:30–42.

    CAS  PubMed  Google Scholar 

  36. Laza-Knoerr AL, Gref R, Couvreur P. Cyclodextrin for drug delivery. J Drug Target. 2010;18:645–56.

    CAS  PubMed  Google Scholar 

  37. Brusnikina M, Silyukov O, Chislov M, Volkova T, Proshin A, Terekhova I. New water-soluble dosage forms of 1,2,4-thiadiazole derivative on the basis of inclusion complexes with cyclodextrins. J Therm Anal Calorim. 2017;127:1815–24.

    CAS  Google Scholar 

  38. Fontanay S, Kedzierewicz F, Duval RE, Clarot I. Physicochemical and thermodynamic characterization of hydroxyl pentacyclic triterpenoid acid/γ-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem. 2012;73(1):341–7.

    Google Scholar 

  39. Şoica CM, Danciu C, Săvoiu-Balint G, Borcan F, Ambrus R, Zupko I, Bojin F, Coricovac D, Ciurlea S, Avram Ş, Dehelean CA, Olariu T, Matusz P. Betulinic acid in complex with a gamma-cyclodextrin derivative decreases proliferation and in vivo tumor development of non-metastatic and metastatic B164A5 Cells. Int J Mol Sci. 2014;15(5):8235–55.

    PubMed  PubMed Central  Google Scholar 

  40. Zong W, Bi SM. The preparation and characterization of inclusion complex of ursolic acid with γ-cyclodextrin. Adv Mater Res. 2012;403–408:712–6.

    Google Scholar 

  41. Ren Y, Liu Y, Yang Z, Niu R, Gao K, Yang B, Liao X, Zhang J. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): preparation, characterization, water solubility and anticancer activity. Mater Sci Eng C. 2016;69:68–76.

    CAS  Google Scholar 

  42. Şoica CM, Peev CI, Ciurlea S, Ambrus R, Dehelean CA. Physico-chemical and toxicological evaluations of betulin and betulinic acid interactions with hydrophilic cyclodextrins. Farmacia. 2010;58(5):611–9.

    Google Scholar 

  43. Dehelean CA, Şoica CM, Peev CI, Gruia AT, Şeclaman E. Physico-chemical and molecular analysis of antitumoral pentacyclic triterpenes in complexation with gamma-cyclodextrin. Rev Chim Buchar. 2008;59:887–90.

    CAS  Google Scholar 

  44. Claude B, Morin Ph, Lafosse M, Andre P. Evaluation of apparent formation constants of pentacyclic triterpene acids complexes with derivatized β- and γ-cyclodextrins by reversed phase liquid chromatography. J Chromatogr A. 2004;1049:37–42.

    CAS  PubMed  Google Scholar 

  45. Ledeti I, Bosca CS, Cosma C, Badea V, Todea A, Bercean VN. Study on obtaining 3-oxolup-20(29)-en-28-oic acid (betulonic acid) from (3β)-lup-20(29)-en-3,28-diol (betulin). Rev Chim Buchar. 2014;65(11):1289–93.

    CAS  Google Scholar 

  46. Chislov M, Silyukov O, Kumeev R, Proshin A, Perlovich G, Terekhova I. Complex formation of cyclodextrins with some pharmacologically active 1,2,4-thiadiazole derivatives. J Therm Anal Calorim. 2017;127:1797–805.

    CAS  Google Scholar 

  47. Benesi HA, Hildebrand JH. A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc. 1949;71(8):2703–7.

    CAS  Google Scholar 

  48. Salústio J, Feio G, Figueirinhas JL, Pinto JF, Cabral Marques HM. The influence of the preparation methods on the inclusion of model drugs in a ß-cyclodextrin cavity. Eur J Pharm Biopharm. 2009;71:377–86.

    PubMed  Google Scholar 

  49. Protein Data Bank. http://www.pdb.org/pdb/home/home.do. Accessed 20 Oct 2018

  50. DeLano, W. L. PyMOL. DeLano Scientific, San Carlos, CA, 700, 2002.

  51. Job P. Formation and stability of inorganic complexes in solution. Ann Chim. 1928;9:113–203.

    CAS  Google Scholar 

  52. Udrescu L, Sbârcea L, Fuliaş A, Ledeţi I, Vlase G, Barvinschi P, Kurunczi L. Physicochemical analysis and molecular modeling of the Fosinopril β-cyclodextrin inclusion complex. J Spectrosc (Spetrosc-Int J 2014) (2014):748468

  53. Ledeţi I, Bercean V, Vlase G, Vlase T, Ledeţi A, Şuta L. Betulonic acid. Study of thermal degradation by kinetic approach. J Therm Anal Calorim. 2016;125:785–91.

    Google Scholar 

  54. Doile MM, Fortunato KA, Schműcker IC, Schucko SK, Silva MAS, Rodrigues PO. Physicochemical properties and dissolution studies of dexamethasone acetate- β-cyclodextrin inclusion complexes produced by different methods. AAPS Pharm Sci Tech. 2008;9:314–32.

    CAS  Google Scholar 

  55. Liu L, Zhu S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Pharm Biomed Anal. 2006;40:122–7.

    CAS  PubMed  Google Scholar 

  56. Cîntă-Pînzaru S, Dehelean CA, Soica C, Culea M, Borcan F. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS. Chem Cent J. 2012;6:67.

    PubMed  PubMed Central  Google Scholar 

  57. Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The handbook of infrared and raman characteristic frequencies of organic molecules. New York: Academic Press; 1991.

    Google Scholar 

  58. Negi JS, Singh S. Spectroscopic investigation on the inclusion complex formation between amisulpride and –cyclodextrin. Carbohydr Polym. 2013;92:1835–43.

    CAS  PubMed  Google Scholar 

  59. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ. Automated docking using a lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem. 1998;19:1639–62.

    CAS  Google Scholar 

  60. Ledeţi I, Murariu M, Vlase G, Vlase T, Doca N, Ledeţi A, Şuta L-M, Olariu T. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim. 2017;127(1):565–70.

    Google Scholar 

  61. Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.

    CAS  Google Scholar 

  62. Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, Ledeti I, Vlase T, Murariu M. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2017;131(2):1881–8.

    Google Scholar 

  63. Suta LM, Matusz P, Ledeti A, Ivan C, Murariu M, Sora MC, Ledeti I. Embedding of biliary calculi in plastic materials a viable solution for increasing their mechanical resistance during sampling. Mater Plast. 2016;53(1):19–22.

    Google Scholar 

  64. Ledeti A, Vlase G, Vlase T, Bercean V, Murariu MS, Ledeti I, Suta LM. Solid-state preformulation studies of amiodarone hydrochloride. J Therm Anal Calorim. 2016;126(1):181–7.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the “Victor Babeş” University of Medicine and Pharmacy Timisoara (Grant PIII-C1-CFI-2014/2015-03 to L.S., A.L., L.U. and I.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Ledeţi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbârcea, L., Ledeţi, A., Udrescu, L. et al. Betulonic acid—cyclodextrins inclusion complexes. J Therm Anal Calorim 138, 2787–2797 (2019). https://doi.org/10.1007/s10973-019-08359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08359-6

Keywords

Navigation