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Abstract
The simultaneous thermal studies (TG/DTG/DSC) coupled with the FTIR analysis of the gaseous decomposition products

created under oxidative heating of starch-g-poly(neryl acrylate) and starch-g-poly(geranyl acrylate) copolymers have been

presented. To these studies, the copolymers with the following grafting percents (G) were selected: starch-g-poly(neryl

acrylate) copolymers: 36.6 ± 0.3%, 40.3 ± 0.4%, 42.8 ± 0.4% and starch-g-poly(geranyl acrylate) copolymers:

28.9 ± 0.2%, 32.4 ± 0.6%, 35.6 ± 0.4%. The performed tests proved that the thermal resistance of the copolymers was

strongly dependent on their G values, despite a small difference in the G values between the samples. The slight increase

(ca. 6.2–6.7%) in the G value caused the significant drop of the thermal stability of all the studied materials. The TG/DTG/

DSC studies confirmed at least three-stage decomposition mechanism of the copolymers where simultaneous pyrolysis,

oxidation, dehydration and decarboxylation processes took place. The TG/FTIR analyses showed the emission of various

structure fragments; among them, one can mention the creation of some organic fragments such as aldehyde, acid, alkene,

alkane, furan fragments, CH4 and inorganic species (CO2, CO, H2O) as a result of the oxidative decomposition processes of

the studied copolymers. In addition, the conducted studies demonstrated similar decomposition course and mechanism for

both types of the copolymers, regardless of the monomer type used to the graft process.
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Introduction

The synthesis and the properties of starch graft copolymers

obtained using various structure vinyl and meth(acryl)

monomers have been extensively studied. Chemical mod-

ification of starch under the graft copolymerization pro-

cesses allows achieving a large variety of novel, more

environmentally-friendly materials with improved or

modified properties than a raw starch which can be prac-

tically employed as plastics, stabilizers, compatibilizers,

excipients for a drug delivery system, flocculants, heavy

metal ion removal, waste water treatment, etc. Several

examples which, however, do not exhaust the biblio-

graphical references regarding the preparation of the starch

graft copolymers are highlighted below. Çankaya has

reported the preparation of the graft copolymers obtained

from starch methacrylate and N-cyclohexyl acrylamide or

methyl methacrylate which may be applied for fabrication

of optoelectronic devices [1]. Meshram et al. [2] have

described the starch graft copolymers synthesized from the

mixture of monomers such as styrene/methyl methacrylate

or styrene/butyl acrylate suitable textiles application. Sev-

eral authors have presented the synthesis and the properties

of starch-g-polyacrylonitrile copolymers [3–9]. The studies

on the starch-g-poly(methyl methacrylate) are widely

described [10–15]. Also, the properties of starch-g-poly(-

vinyl acetate) are presented [16–19]. Starch/lactic acid

graft copolymers [20–22], maleated thermoplastic starch-g-

polylactic acid [23], esterified maleic anhydride starch-g-

polylactic acid [24], hydroxyethyl starch-grafted-polylac-

tide [25], starch-g-poly(vinyl alcohol) [26], starch-g-

poly(n-vinylimidazole) [27], carboxymethyl starch-g-

poly(N-vinylimidazole) [28, 29] copolymers have been

precisely studied. In addition, the copolymers received
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from potato starch and aromatic type meth(acrylate)

monomers [30–36] and more, environmentally-friendly

starch-g-poly(citronellyl acrylate) [37] and starch-g-

poly(citronellyl methacrylate) copolymers [38, 39] under

the free radical copolymerization have been presented.

One of the most important properties of any new,

received materials are the thermal stability because it

determines the application of the novel materials in the

appropriate section of an industry. Generally, the thermal

stability and the decomposition course of various origins

materials are tested by the thermogravimetric analysis.

This method permits the evaluation of initial decomposi-

tion temperatures, the maximum decomposition tempera-

tures, the mass losses in each decomposition stage, residual

mass, the amount of the residue, etc. It is a simple and fast

method in order to verify the thermal properties of the

studied compounds. This method is often connected with

the spectroscopic methods which make it possible to

specify the type of the volatiles emitted under decompo-

sition of the heated compounds and thus their potential

decomposition mechanism [40–47].

The present paper describes the oxidative thermal

properties and the decomposition course of starch-g-

copolymers prepared from two terpene acrylate monomers

obtained from two geometric isomers of terpene alcohol:

cis-3,7-dimethyl-2,6-octadien-1-ol (nerol) and trans-3,7-

dimethyl-2,6-octadien-1-ol (geraniol) which are evaluated

using the TG/DTG/DSC/FTIR-coupled method. The effect

of the grafting percent and the structure of the copolymers

on their thermal resistance, decomposition course and

decomposition mechanism was specified.

Experimental

Materials

Starch-g-copolymers were prepared from potato starch and

two terpene acrylate monomers under the graft copoly-

merization process applying the ‘‘grafting from’’ method.

Terpene acrylate monomers were obtained from two geo-

metric isomers of naturally occurring terpene alcohol:

geraniol and nerol according to the method described in

Refs. [33, 34, 38]. Potato starch (purity 97%) was extracted

and purified from potato flour produced by Melvit S.A.,

Poland, according to the procedure described elsewhere

[48]. It was composed of amylopectin (83%) and amylose

(17%) which was determined by the technique described in

Ref. [49]. To the thermal studies, the materials prepared

during the listed below graft reaction conditions were

selected, Table 1. Their structures were affirmed by the

spectroscopic methods.

Starch-g-poly(geranyl acrylate) copolymers: FTIR (KBr

disk, cm-1): 3315 (m OH), 3010 (m =C–H), 2950 (m C–H),

2915 (m C–H), 2845 (m C–H), 1730 (m C=O), 1630

(moisture), 1437 (d C–H), 1375 (d C–H), 1147 (m C–O),

1051 (m C–O), 1008 (m C–O), 925 (m C–O), 835 (c =CH),

760 (c =CH); 13C CP/MAS NMR (75 MHz, d ppm):174.1

(C=O), 141.5 (=C), 135.7 (=C), 122.5 (=CH), 117.5 (=CH),

100.7 (CH–O), 93.8 (CH–O), 80.2 (CH–O), 72.3 (C–O),

61.1 (CH2-O), 38.3–28.7 (CH2), 25.2 (CH3), 23.6 (C–CH2),

17.7 (CH3).

Starch-g-poly(neryl acrylate) copolymers: FTIR (KBr

disk, cm-1): 3310 (m OH), 3010 (m =C–H), 2947 (m C–H),

2912 (m C–H), 2846 (m C–H), 1729 (m C=O), 1630

(moisture), 1435 (d C–H), 1371 (d C–H), 1147 (m C–O),

1053 (m C–O), 1008 (m C–O), 924 (m C–O), 835 (c =CH),

758 (c =CH); 13C CP/MAS NMR (75 MHz, d ppm):174.3

(C=O), 141.6 (=C), 135.9 (=C), 122.6 (=CH), 117.2 (=CH),

100.6 (CH–O), 93.8 (CH–O), 80.5 (CH–O), 72.4 (C–O),

61.2 (CH2–O), 38.4–28.6 (CH2), 25.3 (CH3), 23.5 (C–

CH2), 17.6 (CH3).

Methods

The FTIR spectra of the prepared materials in the

wavenumber region from 600 to 4000 cm-1 and 4 cm-1

resolution using KBr disk technique and the absorption

mode on a FTIR Tensor 27, Bruker spectrometer, were

gathered.

The 13C CP/MAS NMR spectra of the copolymers at the

resonance frequency of 75.5 MHz on a Bruker Avance 300

MSL apparatus were collected.

Table 1 The grafting percent (%G) and grafting efficiency (%GE) of

the selected materials

Copolymer no/starch to monomer ratios GE/% G/%

Geranyl acrylate

Copolymer 1/1:0.25 72.5 ± 0.6 28.9 ± 0.2

Copolymer 2/1:0.75 76.9 ± 0.7 32.4 ± 0.6

Copolymer 3/1:1 79.0 ± 0.6 35.6 ± 0.4

Neryl acrylate

Copolymer 4/1:0.25 94.4 ± 0.8 36.6 ± 0.3

Copolymer 5/1:1 90.2 ± 0.6 40.3 ± 0.4

Copolymer 6/1:1.5 90.7 ± 0.8 42.8 ± 0.4

The graft reaction conditions: starch-g-poly(geranyl acrylate)

copolymers: the reaction temperature of 70 �C, the reaction time of

210 min, initiator (potassium persulfate) concentration of 2.5 mass%,

rmp 300

Starch-g-poly(neryl acrylate) copolymers: the reaction temperature of

70 �C, the reaction time of 180 min, initiator (potassium persulfate)

concentration of 2.0 mass%, rmp 300
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The thermal studies (TG–DTG–DSC) of the obtained

starch-g-copolymers on a STA 449 Jupiter F1 Netzsch

(Germany) apparatus have been made. The analyses in

open Al2O3 crucibles using sample mass ca. 10 mg under

synthetic air atmosphere (flow rate 100 mL min-1) and at

temperatures between 40 and 700 �C have been performed.

The heating rate was 10 �C min-1. Each experiment was

repeated three times. The TG–DSC instrument was cali-

brated with standard weights according to the manufacturer

proceedings (temperature and sensitivity calibrations) and

checked with calcium oxalate monohydrate. The Netzsch

Proteus Thermal Analysis (version 5.2.) software was used

to analyze the data.

The identification of the type of gaseous products

emitted under the heating of the copolymers by a FTIR

spectrometer Bruker TGA 585 (Germany) coupled with a

STA instrument has been made. The FTIR spectra for the

volatiles at the wave range of 600–4000 cm-1 and 4 cm-1

resolution were gathered.

Results and discussion

The course of the TG/DTG/DSC curves is presented in

Figs. 1 and 2. However, the data read from the thermal

curves are placed in Table 2. As it is well seen, similar

course of the thermal curves for both types of starch-g-

copolymers is observed. Generally, on the TG/DTG curves,

four ranges of the mass loss are clearly indicated. First

range of the mass loss with a mass loss below 8%, from

40 �C to ca. 150 �C with Tmax0 from 77 to 110 �C is

appeared. On the DSC curves, only one endothermic signal

is visible at this temperature range. This low-temperature

signal as it is confirmed based on the gaseous FTIR spectra,

as shown in Figs. 3 and 4, is due to the evaporation of the

moisture from the studied materials. On the gaseous FTIR

spectra, only the absorption bands characteristic for water

vapor at the range of 1400–1800 cm-1 and

3500–3900 cm-1 are observed.

The heating of the copolymers above 200 �C in oxida-

tive conditions causes their decomposition. For all the

studied materials, the first decomposition stage composed

of at least two steps at the temperature range between ca.

200 �C and ca. 420 �C and with Tmax1 from 277 to 283 �C
is detected. The mass loss in this stage is comparable for all

the studied materials and amounts from 62.2 to 66.3%.

Moreover, as the %G increases, the copolymers are char-

acterized by a less thermal stability as it is confirmed by

their initial decomposition temperatures marked as 5% of

the mass loss (IDT). For starch-g-poly(geranyl acrylate)

copolymers, the initial decomposition temperatures for

growing the %G are as follows: 266 �C, 250 �C and

231 �C. However, for starch-g-poly(neryl acrylate)

copolymers, the corresponding IDT values are 256 �C,

248 �C and 210 �C, respectively. The differences in the

%G are not dramatically high, but there are influenced

considerably on the thermal resistance of the obtained

materials. As it is visible, enhancement the %G values only

ca. 6% causes the significant drop of IDT values. In the

case of starch-g-poly(geranyl acrylate), the IDT values are

ca. 35 �C lower for the %G which amounts to ca. 35.6%

than those observed for the %G ca. 28.9%. On the contrary,
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the IDT values are ca. 46 �C lower for starch-g-poly(neryl

acrylate) copolymers with the %G which equals ca. 42%

than those for the %G amounting to ca. 36.6%. Moreover,

taking into account the values of the IDT, one can see that

copolymers prepared from trans terpene acrylate isomer

are characterized by higher thermal stability than those

obtained from cis terpene acrylate isomer. It may be due to

higher energy needed in order to decompose the bonds in

the structure of the copolymers obtained from trans

monomer as compared to the energy required to break the

bonds in the structure of the copolymers prepared from cis

monomer. Moreover, the IDT values for the copolymers

are lower as compared to these values obtained for

unmodified potato starch (ca. 280 �C). This can be because

of higher energy is needed in order to break the glycosidic

bonds in starch macromolecule than the bonds in the

copolymer structure. What is interesting is that depending

on the %G values, the differences in the rate of the

decomposition of the copolymers are shown. The rate of

the decomposition increases as the %G values of the

copolymers decrease, as shown in Figs. 1 and 2. It means

that the copolymers with lower %G values and unmodified

potato starch decompose faster than these copolymers

characterized by higher %G values. As it is well seen, the

DSC curves show only exothermic signals at this temper-

ature range. It may be the evidence of some chemical

processes of the volatiles and residues with oxygen which

lead to obtain different structure gaseous fragments.

According to the gaseous FTIR spectra collected at Tmax1,

the emission of some organic fragments such as aldehyde,

acid, alkene, alkane and furan fragments as a result of the

oxidative decomposition of the copolymers is confirmed, as

shown in Figs. 3 and 4. On the FTIR spectra, one can

notice the absorption bands characteristic for the following

vibrations: the stretching vibrations of OH (above

3500 cm-1), the stretching vibrations of = C–H and CAr–H

(3072 cm-1), the stretching vibrations of C–H

(2720–2990 cm-1), the stretching vibrations of C=O

(1722–1790 cm-1), the stretching vibrations of C=C

(1656–1660 cm-1), the stretching vibrations of C=CAr

(1500 cm-1 and 1565 cm-1), the deformation vibrations of

C–H (1350–1450 cm-1), the stretching vibrations of C–O

(1074–1220 cm-1), the out-of-plane deformation vibra-

tions of =C–H and CAr–H (720-982 cm-1). In addition to

the above vibrations, the emission of CO, CO2 and H2O is

confirmed based on the presence of their characteristic

bands.

However, the gaseous FTIR spectra gathered at the

temperature (ca. 340 �C), where a small shoulder on the

DTG curves is noticed, indicate on the emission of dif-

ferent structure volatile fragments than those created at

Tmax1. One can see the following characteristic absorption

bands at wavelengths of approx. 2720 cm-1 (the stretching

vibrations of C–H in aldehyde groups), 2777–2952 cm-1

(the stretching vibrations of C–H), three non-well separated

bands at 1695 cm-1, 1756 cm-1 and 1790 cm-1 (the

stretching vibrations of C=O), 1357 cm-1 (the deformation

vibrations of C–H), 1072–1170 cm-1 (the stretching

vibrations of C–O), and 809–983 cm-1 (the out-of-plane

deformation vibrations of =C–H). It indicates on the

emission of aldehyde, alkane and alkene fragments under

oxidative conditions as a result of the decomposition pro-

cesses of poly(geranyl acrylate) and poly(neryl acrylate)
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chains. In addition, a high emission of CO2 (the bands at

670 cm-1 and at 2330–2365 cm-1), CO (the bands at

2000–2200 cm-1) and H2O (the bands above 3500 cm-1)

confirms the oxidation and decarboxylation processes of

the intermediate decomposition gaseous fragments, as

shown in Figs. 3 and 4.

The second decomposition stage spreads from the tem-

perature ca. 400–ca. 610 �C. This decomposition stage is

described by one, symmetrical DTG signal which happens

at Tmax2 483–509 �C. The position of this signal depends

on the copolymer type and its %G. The mass loss in this

stage is comparable for all the studied materials and hesi-

tates from 25.7 to 30.1%. If one have a look at the DSC

curves, one can see only exothermic signals within this

decomposition stage. It could be an indication on further

reactions of the volatile fragments and/or residues with

oxygen at higher temperatures. It causes almost full

decomposition of the studied materials; only minor amount

Table 2 The data received from

the thermal curves
Sample Tmax0/�C Dm0/% Tmax1/�C Dm1/% Tmax2/�C Dm2/% rm/%

Copolymer 1 92 5.8 283 65.2 483 25.7 3.3

Copolymer 2 88 4.3 282 62.4 487 28.5 4.8

Copolymer 3 94 6.0 280 62.8 509 30.1 1.1

Copolymer 4 91 4.8 280 65.1 484 26.0 4.1

Copolymer 5 110 7.5 277 62.2 508 29.1 1.2

Copolymer 6 77 4.0 278 66.3 490 26.2 3.5

Potato starch 79 6.1 297/356 67.1 492 23.3 3.5
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Fig. 3 The gaseous FTIR spectra collected under oxidative decom-
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1, b copolymer 3
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of carbon residues is indicated (1.1–4.8%). As main gas-

eous products CO2, CO and H2O are created as it is con-

firmed from the gaseous FTIR spectra. The results indicate

on a complex decomposition mechanism of the studied

materials and prove that regardless of the type of monomer

(cis or trans), the decomposition course and decomposition

mechanism are similar.

Conclusions

In this paper, the studies on the thermal oxidative resis-

tance and oxidative decomposition mechanism of two

types of the copolymers prepared under the graft reaction

of potato starch and monomers synthesized from two

geometric isomers of naturally occurring terpene alcohols

(nerol—cis isomer and geraniol—trans isomer) and

methacryloyl chloride have been presented. The thermal

properties have been determined using the TG/DTG/DSC

method. The oxidative decomposition mechanism has been

evaluated involving the TG/FTIR-coupled method. The

copolymers with the following grafting percent values

(G) were selected to the above experiments: starch-g-

poly(neryl acrylate) copolymers 36.6 ± 0.3%,

40.3 ± 0.4%, 42.8 ± 0.4% and starch-g-poly(geranyl

acrylate) copolymers: 28.9 ± 0.2%, 32.4 ± 0.6%,

35.6 ± 0.4%, respectively. The conducted tests led to the

following observations and results:

• The differences in the G values between the samples

were little; however, the growth of the G values caused

the substantial fall of the oxidative thermal stability of

the copolymers. The thermal stability for starch-g-

poly(neryl acrylate) copolymers decreased by 46 �C for

the copolymer with the G value equal to 42.8 ± 0.4%

as compared with the thermal stability of the copolymer

with the G value equal to 36.6 ± 0.3%. Meanwhile, the

oxidative thermal resistance for starch-g-poly(geranyl

acrylate) copolymer with the G equal to 35.6 ± 0.4%

was ca. 35 �C lower than this observed for the

copolymer with the G equal to 28.9 ± 0.2%;

• Generally, all the studied copolymers decomposed at

least three stages under oxidative conditions;

• The first decomposition stage composed of at least two

steps happened between ca. 200 and ca. 420 �C. The

mass loss in this stage was significant (62.2–66.3%),

and it was connected with the emission of aldehyde,

acid, alkene, alkane, furan fragments, CO2, CO, and

H2O as a results of the simultaneous pyrolysis, oxida-

tion, dehydration and decarboxylation processes of

potato starch, poly(neryl acrylate) and poly(geranyl

acrylate) chains;

• The second decomposition stage was observed at the

temperature range of ca. 400–ca. 610 �C and the mass

loss from 25.7 to 30.1%. Mainly, the creation of

inorganic species such as CO2, CO, H2O and very small

amounts of CH4 was emitted which was due to the

oxidation processes of the formed volatiles and

residues.

It is therefore concluded that starch-g-poly(neryl acrylate)

copolymers were less thermally stable materials under the

heating in the presence of air atmosphere than starch-g-

poly(geranyl acrylate) copolymers. However, their thermal

decomposition course and decomposition mechanism were

almost similar.
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