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Abstract Pyrazinecarboxylic acid and its derivatives show
biological properties (inter alia antimicrobial and antifun-
gal). In the frame of this work, the salts of 2-pyrazinecar-
boxylic and 2,3-pyrazinedicarboxylic acids with alkali
metal cations were synthesized as well as the spectroscopic
(IR, Raman, NMR), theoretical [density functional theory
(DFT)] and thermogravimetric studies of obtained com-
pounds were done. The FT-IR and FT-Raman spectra of
alkali metal 2-pyrazinecarboxylates and 2,3-pyrazinedi-
carboxylates were recorded and analyzed in the region of
4000400 cm™'. "H NMR and '>C NMR spectra of ana-
lyzed compounds have been registered and assigned. The
electronic charge distribution for the studied acids and their
salts with lithium, sodium and potassium was calculated.
All the calculations were done in the frame of DFT using
6-3114++G(d,p) basis set. The thermal decomposition of
the analyzed compounds was done.
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Introduction

Pyrazines, also known as p-diazines (or 1,4-diazines,
Scheme 1), are compounds containing a symmetrical (Dyy,)
aromatic heterocycle C4H4N,. In nature, there are many
substituted pyrazines that carry substituents at one or more
of the four ring carbon atoms. The substituents include
oxygenated functional groups like alkoxy groups and acyl
groups or sulfur-containing thiol or sulfide groups. Only
among alkylpyrazines (containing only carbon and hydro-
gen substituents) ca. 70 different compounds of that type
have been identified in nature [1, 2]. The diversity of
structures and roles pyrazine derivatives play in living
organisms began to arouse the interest of researchers. The
pyrazine derivatives have numerous prominent pharmaco-
logical effects: aspergillic acid, hydroxyaspergillic acid
and other antibiotics of similar structure possess antibac-
terial activities [1-5]. Emimycin (3-hydroxypyrazine N-
oxide), first isolated from Streptomyces, has been found a
potent and selective inhibitor of the growth and nucleic
acid synthesis in Toxoplasma gondii in human fibroblasts.
Sulfonamides with pyrazine moiety are known to have high
antibacterial activity [6]. Derivatives such as phenazine are
well known for their antitumor, antibiotic and diuretic
activities. Synthetic pyrazine derivatives exhibit a wide
variety of pharmacological properties, including hypo-
glycemic [7-10] and diuretic [11-13] action. Pyrazinamide
and its morpholino-methylene derivative act as tuberculo-
static agents [14, 15]. Structural modifications of the pyr-
azine ring substituents in these compounds cause
modulation in their biological activity [12, 16-20]. Nico-
tinic and isonicotinic amidrazones are also reported in the
literature as antibacterial agents [16, 21]. They also act as
diuretic [22] and antimycotic [23]. Tetramethylpyrazine
(also known as ligustrazine) is reported to scavenge
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Scheme 1 General structure of diazines

superoxide anion and decrease nitric oxide production in
human leukocytes [24]. For its active cardiovascular
properties such as anti-platelet activity and free radical
scavenging [25-27], ligustrazine has been used for the
treatment of cardiovascular diseases (CVDs) in the clinic
[28-30].

Pyrazines, synthesised chemically or biologically, are
also used as flavoring additives. The pyrazine motif is
observed in a large number of compounds that are respon-
sible for the unique flavor and aroma of several foodstuffs
and wines [31, 32]. Orally administered substituted pyrazi-
nes are rapidly absorbed from the gastrointestinal tract and
excreted [33]. It is reported in the literature that absorption of
pyrazine derivatives is optimal at intestinal pH (ca. 6-7)
[3, 5]. The high incidence of pyrazine derivatives from the
flavors of food systems and their effectiveness at very low
concentrations has aroused a great interest in perfume
industry [34]. Pyrazine ring is present in condensed azine
dyes, for example, eurhodines, indulenes and safranines [35].
Nowadays, the pyrazine ring is a part of many polycyclic
compounds of biological and/or industrial significance;
examples are quinoxalines, phenazines and bio-luminescent
natural products pteridines, flavins and their derivatives.

Compounds containing the quinoxaline fragment, such
as Diquat, Propaquizafop and Quizalofop-ethyl, are very
useful herbicides and have been used to control aquatic
macrophytes [36]. While Diquat’s activity consists mostly
in its interaction with the photosystem I and via subsequent
formation of free radicals, the two latter were shown to
inhibit acetylCoA carboxylase [37, 38]. Nakamura et al.
[39] synthesized sixty-six  2,3-dicyano-5-substituted
pyrazines and measured their herbicidal activities against
barnyard grass in pot tests to clarify the relationship
between chemical structure and activity. The activity of 59
derivatives showed parabolic dependence on the
hydrophobic substituent parameter at the 5-position of the
pyrazine ring, indicating that the compounds should pass
through a number of lipoidal-aqueous interfaces to reach a
critical site for biological activity. It was found that the
moiety of 2,3-dicyanopyrazine is essential for herbic ideal
activity, and the 5-substituent on the pyrazine ring plays an
important role in determining the potency of this activity
and that para-substituted phenyl derivatives show unde-
sirable effects on the potency of the activity at the ultimate
site of herbicidal action. The results indicated that the
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structure of the substituted dicyanopyrazine moieties is an
important function for the herbicidal activity and that the
activity of these compounds is determined by the
hydrophobic and steric parameters of substituents at the
pyrazine ring. Similarly, Dolezal et al. [40] prepared a
series of substituted N-phenylpyrazine-2-carboxamides and
diazachalcones. The most effective herbicide from the
series was 6-chloro-N-(5-chloro-2-hydroxyphenyl)-pyr-
azine-2-carboxamide (ICso = 8 pmol). The inhibitory
activity of ortho-hydroxyl substituted derivatives was
greater than that of their para-hydroxyl substituted iso-
mers. An important lesson from the above mentioned
studies comes from the fact that even subtle modifications
of the studied pyrazine analogues have a high impact on the
biological activity of a given compound. It is the time to
conduct further studies aimed at rationalizing the biological
activities found in order to develop more effective and
clinically interesting compounds.

A renewed interest in the chemistry of pyrazine
derivatives can be largely attributed to the major advances
of chemotherapy, where heterocycles have been particu-
larly prominent. Among the pyrazine-derived anticancer
drugs, an epitome is a dipeptide Bortezomib, [(1R)-3-
methyl-1-({(2S)-3-phenyl-2-[(pyrazin-2-ylcarbonyl)amino]
propanoyl }amino)butyl] boronic acid, a 20S proteasome
complex inhibitor that acts by disrupting various cell sig-
naling pathways, thereby leading to cell cycle arrest,
apoptosis and inhibition of angiogenesis. The hallmark of
bortezomib action is the inhibition of NF-xB, thereby
interfering with NF-xB-mediated cell survival, tumor
growth and angiogenesis [41] and has been applied in the
treatment of cancer [42]. In the study of Kamal et al. [43], a
series of oxindole derivatives of imidazo[l,5-a]pyrazines
were prepared and evaluated for their anticancer activity
against a panel of 52 human tumor cell lines derived from
nine different cancer types: leukemia, lung, colon, CNS,
melanoma, ovarian, renal, prostate and breast. Among them
one compound, namely 3-(E)-1-[3-(2-Fluorophenyl)imi-
dazo[1,5-a]pyridin-1-ylJmethylidene-2-indolinone, showed
significant anticancer activity with Glsq values ranging from
1.54 to 13.0 uM. A series of fifty-one pyrazinyl derivatives
have been synthesized by Rodrigues et al. [44] and evalu-
ated for their activity against four cancer cell lines,
exhibiting good cytotoxicity (ICsy ranging from 1.1 to
5.6 ug mL™"). Structure—activity relationship (SAR) analy-
sis indicated that the hydroxyl group located in ortho posi-
tion is critical for the biological activity of these compounds.
The presence of hydroxyl groups on benzene ring plays an
important role in the anticancer activity of this series, feature
especially observed in disubstituted derivatives. The men-
tioned instances on new pyrazine-derived drug development
give a clear notion, how important for the successful
research is understanding of the SAR analysis approach.
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In the frame of our previous works, we studied the effect
of over 40 metal cations on the electronic system,
physicochemical and biological properties of different
ligands—derivatives of benzoic [45-49] acids. The com-
plexations of aromatic carboxylic acids by metal cations
change the electronic charge distribution within the aro-
matic ring and the carboxylate anion. So far, our studies
showed that the effect of metal cation on the electronic
structure of pyridine ring of pyridinecarboxylic acids
depends on the position of nitrogen atom within the car-
boxylic acid structure. In this work, the effect of alkali
metal cations on the electronic structure of derivatives of
pyrazine was studied. We have studied the salts of pyrazine
2-carboxylic acid (2PCA) and pyrazine 2,3-dicarboxylic
acid (2,3PDCA) alkali metal salts. A range of comple-
mentary methods were used to determine the effect of
alkali metals on the changes in the distribution of elec-
tronic charge in the pyrazine ring of the analyzed acids. As
part of the work, we also investigated the impact of alkali
metals on the (thermal stabilization) of the 2-pyrazinecar-
boxylic and 2,3-pyrazinedicarboxylic acids. These studies
also allowed, along with the elementary analysis, to
determine the degree of hydration of the tested salts.

Experimental and theoretical calculations
Sample preparation

The alkali metal salt of 2-pyrazinecarboxylic (2PCA) and 2,3-
pyrazinedicarboxylic acids (2,3PDCA) was prepared by dis-
solving appropriate weighed amount of particular acids in hot
aqueous solution of alkali metal hydroxides in a stoichio-
metric ratio ligand/metal—1:1 for 2-pyrazinecarboxylates
and 1:2 for 2,3-pyrazinedicarboxylates. To 1 mmol of 2-PCA
10 cm® of 0.1 mol/L alkali metal hydroxide solution in water
was added. The solutions were than heated in a shaker to ca
80°C for 1 h. Then, the solutions were left at RT for 24 h.
Next, they were evaporated and dried at 50°C for 24 h. In
order to obtain alkali metal salts with 2,3-pyrazinedicar-
boxylic acid, 0.1 mmol of acid was diluted in 20 mL of cor-
responding metal hydroxide (0.1 mol L™"). Salts of 2,3-
pyrazinedicarboxylate acid were prepared analogically.

Measurement and calculation

The FT-IR spectra were recorded with an Alfa (Bruker)
spectrometer within the range of 400-4000 cm™'. Samples
in the solid state were measured in KBr matrix pellets and
ATR technique. FT-Raman spectra of solid samples were
recorded in the range of 400-4000 cm™' with a MultiRam
(Bruker) spectrometer. The resolution of the spectrometer
was 1 cm™'. The 'H and '*C NMR spectra of D,O solution of

studied compounds were recorded with a Bruker Avance II
400 MHz unit at room temperature. TMS was used as an
internal reference. To calculate optimized geometrical
structures of 2-pyrazinecarboxylic and 2,3-pyrazinecar-
boxylic acid and lithium, sodium and potassium salts,
quantum—mechanical method was used: density functional
(DFT) hybrid method B3LYP with non-local correlation
provided by Lee—Young—Parr expression. All calculations
were carried out with functional base 6-311++4+G(d,p).
Calculations were performed using the Gaussian(09 package
[50]. Experimental spectra were interpreted in terms of cal-
culated at DFT method in B3LYP/6-3114+4-G(d,p) level and
literature data [51]. Theoretical wavenumbers were scaled
according to the formula: vyeq = 0.98-Vearcutatea fOr
B3LYP/6-311++G(d,p) level method [52] Chemical shifts
(9;) were calculated by subtracting the appropriate isotopic
part of the shielding tensor (o;) from that of TMS (o1ums):
0; = orms — o; (ppm). The isotropic shielding constants for
TMS calculated using the DFT method at the same level of
theory were equal to 31.8201 ppm and 182.4485 ppm for the
'"H nuclei and the '*C nuclei, respectively. The electronic
charge distribution was calculated with natural bond orbital
(NBO) [53] at B3LYP/6-3114++G(d,p) level of theory. The
HOMA [54] and Bird I [55] aromaticity indices were cal-
culated for theoretical structures. The products of dehydra-
tion and decomposition processes were determined from the
TG curves. Thermogravimetric analysis (TG) was per-
formed on a Mettler Toledo Star TGA/DSC1 unit. Argon was
used as a purge gas (20 mL min~"). Samples between 2 and
4 mg were placed in aluminum pans and heated from 50 to

850 °C with a heating rate of 10 °C min~".

Results and discussion
Thermal study and elemental analysis

Alkali metal salts of the pyrazino 2-carboxylic acid 2,3-
pyrazine dicarboxylic acids were dried for 24 h at 50 °C.
The degree of hydration of the salt defined on the basis of
thermogravimetric and elemental analysis was limited.
Sodium, potassium and rubidium 2-pyrazinecarboxylates
and sodium 2,3-pyrazinecarboxylate were anhydrous. For
other salts, the degree of hydration ranged from 0.5 to 1.5
H,O per molecule (Tables 1, 2; Fig. 1). Dehydration of the
salts studied takes place in a single step (for all the
hydrated salts). The press of thermal decomposition of both
ligands is a single step press occurring at similar temper-
atures. 2,3-Pyrazinecarboxylic acid decomposes at about
210 °C, and 2-pyrazinecarboxylic acid at about 230 °C.
Thermal decomposition of the salts studied takes place in
several stages. The products of the first stage of the lithium
salts decomposition are lithium carbonates and organic
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Table 1 Elemental analysis and thermogravimetric analysis for lithium, sodium, potassium, rubidium and cesium 2-pyrazinecarboxylates

Compound?* Elemental analysis Range of decomposition  Mass loss/% Product decomposition
Content C/% Content H/% Content N/% Cale.  Exp.
Exp. Calc.  Exp. Calc.  Exp. Calc.
Li,L-0.75H,0  41.1 4179 3.3 2.90 1852 19.51 80-110 9591 96.70 LiL
350450 59.17 5750  LixCO3; + Copg
550-850 25775 2250 Li,COs
Na,L 41.13  41.07 195 2.05 18.89  19.16  230-330 6328 63.50 NayCOjz + Cgp
850< 36.27 - Na,CO3
KL 3648 3699 1.64 1.85 16.28  17.26  380-450 66.64 66.50 K,CO; + Cpy
450-850 42.60 44.00 K,CO;
Rb,L 28.10 2877 1.25 1.44 1226 1342  440-490 73.61 7250  RbyCO; + Copy
490-850 5536 5550 RbyCO3
Cs,L-0.5H,0 2326 2263 140 1.51 10.62 10.56  220-250 96.61 96.65 Cs,L
330430 7825 7850  Cs,CO;z + Copg

* L = 2PCA (ligand = 2-pyrazinecarboxylic acid)

Table 2 Elemental analysis and thermogravimetric analysis for lithium, sodium, potassium, rubidium and cesium 2,3-pyrazinedicarboxylates

Compound* Elemental analysis Range of Mass loss/% Product
decomposition e — decomposition
Content C/% Content H/% Content N/% Calc. Exp.
Exp. Calc. Exp. Calc. Exp. Calc.
Li,L-0.75H,0 39.59 40.00 1.18 1.11 15.07 15.56 220-270 95.24 94.80 Li,L
350450 74.38 74.50 Li,CO3 + Corg
450-850 39.99 35.00 Li,CO3
Na,L 33.81 33.95 0.96 0.94 12.66 13.20 410-460 78.26 81.00 Na,CO3 + Cq
K,L-0.5H,0 27.40 28.42 0.97 1.18 9.72 10.05 50-100 96.58 96.85 KoL
350490 81.13 80.00 K>CO3 + Cyrg
490-800 54.56 55.00 K>CO3
Rb,L-H,O 19.33 20.27 1.11 1.13 7.46 7.88 90-120 94.93 94.70 Rb,L
350400 86.32 85.00 Rb,CO3 + Cope
400-700 64.63 - Rb,CO3
Cs,L-1.5H,0 15.44 15.68 0.93 1.09 5.18 7.61 110-180 94.12 94.40 Cs,L
340400 87.45 87.00 Cs,CO3 + Cyry
400-700 64.63 - Cs,CO;

* L = 2,3PDCA (ligand = 2,3-pyrazinedicarboxylic acid)

carbon residues formed during the decomposition of the
aromatic ring (Tables 1, 2; Figs. 1, 2). For both ligands,
press takes place at the same temperature of 350-450 °C.
Further heating of lithium salts leads to combustion of
organic carbon residue. The final product of this decom-
position step is lithium carbonate (at a temperature of about
850 °C for 2-pyrazinecarboxylate (Fig. 1) and 750 °C for
2,3-pyrazinedicarboxylate (Fig. 2). The sodium
2-pyrazinecarboxylic probably undergoes thermal decom-
position into sodium carbonate at a temperature higher than
850 °C (outside the test temperature range). Intermediate
product of this decomposition is a mixture of sodium
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carbonate and residual organic carbon from the decompo-
sition of the pyrazine ring (this product is formed in the
temperature range of 500-600 °C). Thermal decomposition
of sodium 2,3-pyrazinedicarboxylate yields a mixture of
sodium carbonate and organic carbon, which decompose to
sodium carbonate at a temperature above 850 °C. The final
decomposition product of potassium 2,3-pyrazinedicar-
boxylate is potassium carbonate (formed at a temperature
above 800 °C). The intermediate product is a mixture of
potassium carbonate and residual organic carbon from the
decomposition of the pyrazine ring (this product is formed
in the temperature range of 350-490 °C).
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Fig. 1 Curves of thermal decomposition (TG and DTG curves) of alkali metal salts with 2-pyrazinecarboxylic acid (2PCA)—left diagrams and
2,3-pyrazinedicarboxylic acid (2,3PDCA)—right diagrams

In the case of potassium 2-pyrazinecarboxylate, the final
product of degradation is potassium carbonate (at a tem-
perature of 850 °C). An intermediate product is a mixture
of potassium carbonate and organic carbon. The process of
thermal decomposition of 2-pyrazinecarboxylate rubidium

occurs in two stages. In the first stage taking place at a
temperature of from 340 to 390 °C, a mixture of rubidium
carbonate and organic carbon is formed (Fig. 1), and the
second step yields rubidium carbonate (at a temperature of
from 390 to 850 °C). The intermediate product of
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Fig. 2 Curves of thermal decomposition (TG and DTG curves) of alkali metal salts with 2,3-pyrazinedicarboxylic acid (2,3PDCA)

decomposition of rubidium 2,3-pyrazinedicarboxylate is a
mixture of rubidium carbonate and residual organic carbon
from the decomposition of the pyrazine ring (this product is
formed in the temperature range of 350—400 °C). Further
heating leads to unidentified products (Fig. 2).

The decomposition process of the cesium
2-pyrazinecarboxylate gives a mixture of cesium carbonate
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and carbon, which decomposes in the next step of heating,
yielding probably the cesium oxide, Cs,O.

Also, heating of cesium salt of 2,3-pyrazine dicarboxylic
acid also gave a mixture of cesium carbonate and organic car-
bon; nevertheless, further heating leads to the formation of other
products that could not be identified (unknown stable break-
down products—probably the cesium oxide, Cs,0).
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Comparing the curves of the thermal decomposition of
the alkali metal salt of either acid, we observed that salts of
2-pyrazinecarboxylic acid decomposed at a slightly higher
temperature than the salts of 2,3-pyrazinedicarboxylic acid.
For all of the alkali metal salts of both ligands, thermal
decomposition occurred yielding an intermediate product
that was a mixture of alkali metal carbonate and organic
carbon residues formed during decomposition of an aro-
matic acid. It was also observed that in the case of cesium
salt, the carbonates formed were unstable and underwent
further degradation at temperatures above 430 °C (2PCA
acid salt) and above 700 °C (salt of 2,3PDCA).

IR and Raman study

Table 3 shows the wavenumbers and intensities of the bands
present in IR spectra registered in the KBr matrix by ATR
technique and as well those theoretically calculated by DFT
(B3LYP-6-3114++4G**) and Raman spectra  of
2-pyrazinecarboxylate and its salts with alkali metals.
Table 4, in turn, shows the registered and calculated
wavenumbers and intensities of the IR bands as well as the
Raman spectra of 2,3-pyrazinedicarboxylate and alkali metal
salts thereof. The experimental spectra were interpreted based
on theoretical calculations and data presented in the literature
[51]. The normal ring vibrations of aromatic acids and salts
were assigned according to the Varsanyi numbering [56].
Figure 3 shows the experimental spectrum recorded in KBr
matrix and the Raman spectrum of 2-pyrazinecarboxylic acid
and the chosen salt (of sodium). In the spectra of the salts, the
characteristic vibrational bands of the carboxylate anion can
be observed. These include asymmetric stretching vibration
band of the carboxylate anion v, COO™ and symmetric
stretching vibration band v,COO™. For the salts of
2-pyrazinecarboxylate upon the coordination of the carboxyl
group the alkali metal cation, there appears a single band of
vo,sCOO™ vibration, present in the studied salts in the
wavenumber range: 1619-1615 cm ™! (IRkgy),
1631-1613 cm™! (IRstr) and 1646-1617 cm™!' (Raman)
and a single band of v;COO™ vibration present in the range of
1389-1381 cm™ ! (IRkg,), 1385-1369 cm™' (IRyrr) and
1393-1382 cm™ ! (Raman). There was also observed some
single asymmetric and symmetric bending vibrations in the
plane of the carboxylate anion [,,COO~ and B,COO™
respectively at wavenumbers: 538-516 em™! (IRggy),
548-517 cm™! (IRAtr) and 547-512 cm ™! (Raman) and
855-848 cm™! (IRkp,), 854-840 cm™! (IRyrr) and
859-842 cm ™. In the spectra of alkali metal 2-pyrazinecar-
boxylates, there were also observed the symmetrical out-of-
plane bending vibrations of the carboxylate anion y,COO™ in
the ranges of: 807-795 cm ™' (IRkg,), 797786 cm™ ' (IR A1)
and 799-786 cm ™! (Raman). The coordination of the alkali
metal atom by the carboxyl group induces the formation of the

carboxylate anion and the change in electron charge distri-
bution within that group. Along with the change in an alkali
metal atom in the salt (in the series Li-Na—K-Rb—Cs) the
charge distribution and the degree of metal-ligand binding as
manifested by changes in wavenumbers bands derived from
the carboxylate anion vibration vCOO™~ and v,,COO.
Change in the ionic character of bond is associated with the
increase or decrease in the disparity of vyCOO™ and v,;COO™
band wavenumbers in the spectra of salt in the test series
(parameter Av = v,COO — v,COO™).

We observed a decrease in the Av the IR spectra are
IRATR, IRKkB;, Raman spectra in the studied salts in the
series Li—-Na—K—Rb-Cs. In the case of the IRkp, spectra,
these changes were irregular in the studied series of metal
salts. A similar effect was observed earlier in the case of
alkali metal salts of other ligands, including
2-pyridinecarboxylic acid [57, 58]. We also observed the
dependencies between some parameters of metals (in-
cluding metal ion potential) and the values of the
wavenumbers of carboxylate anion vibrations in the salts of
the given metals with different ligands.

In the studied 2,3-pyrazinedicarboxylate alkali metal
salts, the ratio of ligand to metal is 1:2. Both carboxyl groups
of the ligand are substituted with an alkali metal. The spectra
of these salts comprise each the two bands derived from
symmetric stretching vibration vCOO™ carboxylate anion
and two bands derived from asymmetric stretching vibration
carboxylate anion v,;COO™ (Fig. 4; Table 4). v,,COO™
vibration bands appear at wavenumbers: 1641-1613 and
1600-1588 cm ™' (IRkg,), 1641-1612 and 1595-1585 cm ™"
(IRAtR) and 1631-1604 and 1604-1586 cm™! (Raman).
v;COO™ vibration bands appear at wavenumbers:
1398-1388 and 1361-1351 cm™' (IRkg,), 1399-1389 and
1361-1351 ecm™!  (IRsrr) and  1401-1388  and
13661357 cm ™' (Raman). In the spectra of 2,3-pyrazin-
odicarboksylates of alkali metals, one can also observe two
strands coming from asymmetric and symmetric in the plane
bending vibrations of the carboxylate anion B,,COO™ and
BsCOO™ and two symmetrical out-of-plane bending vibra-
tion bands of the carboxylate anion y;,COO™ (Table 4). The
wavenumbers of bands coming from the carboxylate anion
vibrations change irregularly in the studied series of metal
salts. The observed changes in the parameter Av = v,
COO — v,COO™ for a series of 2,3-pyrazinedicarboxylates
(Li-Na—K-Rb-Cs) are also irregular.

Analyzing the values of wavenumbers and intensities of
the bands derived from the vibration of the aromatic ring in
the salts of 2PCA and 2,3PDCA acids, one can find a
number of characteristic differences as compared to the
spectra of ligands. Some of the bands present in the spectra
of acids disappear for salts. Wavenumbers and intensities
of most of the bands decrease in the salts in relation to the
ligand. The disappearance of the bands, decrease in the
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Fig. 3 IRgp, (a, b) and Raman (¢, d) spectra for 2-pyrazinecar-
boxylic acid (a, d) and sodium 2-pyrazinecarboxylate (b, c)

intensity of the bands derived from the aromatic system
and its shift toward lower wavenumbers in the IR and
Raman spectra of the salts, compared to the spectrum of
acid result from the decreased force constants and polar-
ization of C—H and C—C chemical bonds in the ring. This is
related to the perturbation of the electron charge distribu-
tion in the aromatic ring of the ligand upon the interaction
of the alkali metal with the carboxyl group. From our
previous works [57, 59, 60], it follows that the alkali metals
disturb the electron system of the aromatic ring in a number
of ligands, e.g., benzoic, salicylic and pyridinecarboxylic
acids, as well as acids containing five-membered hetero-
cyclic rings.

In the IRgkg;,, IRAatr and Raman spectra of
2-pyrazinecarboxylates, as compared with the acid, one
observes a disappearance of the band 7b associated with
the vibration of the CH groups of the aromatic ring. The
wavenumbers of several bands in the spectra of the salt
decrease. These are the bands numbered: 20b, 8a, 8b, 19a,
19b, 18b, 6b, 16b (in the IRkp; spectra), 20b, 8b, 19b, 5, 11,
6a, 6b (in the IR5Tr spectra) and 20a, 8a 8b, 19b, 11, 6b,
16b (in the Raman spectra). It was also observed that the
wavenumbers of some bands derived from the vibration of
the aromatic ring increase in the salts, compared to the
spectrum of the ligand. These bands are: 20a, 9a, 14, 13,
18a (in the IRkp, spectra), 20a, 13, 18a (in the IRATR
spectra) and 14, 18a (in the Raman spectra). The IRkg;,

@ Springer
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Fig. 4 IRkg, (a, b) and Raman (c, d) spectra for 2,3-pyrazinedicar-
boxylic acid (a, d) and sodium 2,3-pyrazinedicarboxylate (b, c)

IRATr and Raman spectra of the salts there occurred a
deformation vibration band of the aromatic ring (labeled
4), which was absent in the spectrum of the acid. In the
Raman spectra of the salts appeared bands marked with
numbers 19a and 6a, which were not observed in the
spectrum of the acid.

In the studied series of the alkali metal salts of
2-pyrazinecarboxylate, wavenumbers of many aromatic
ring bands decrease regularly in the order Li—-Na—K-Rb—
Cs. These include the bands 8a, 8b, 19a, 19b, 9a, 18a (in
the IRgg, and IR g spectra) and 8a, 19b, 18a (in the
Raman spectra). Based on the analysis of changes in the
wavenumber ranges of an aromatic ring of 2-pyrazinecar-
boxylate, and salts thereof it can be concluded that alkali
metals disturb the electronic system of the acid, and that
the degree of perturbation increases in the studied series in
the order Li—-Na—K-Rb—Cs.

As compared to the free acid, in the spectra of the salt of
2,3-pyrazinedicarboxylate multiple bands derived from the
vibration of the aromatic ring disappeared. These bands are
indicated by numbers: 20a, 8a, 8b, 19a, 6a, 18b, 5, 4 (in the
IRkg; spectra), 20a, 8a, 5, 4 (in the IR oTr spectra) and 20a,
8a, 4, 6 (in the Raman spectra). Observed was a decrease in
the wavenumbers of an aromatic ring vibration. These
bands are indicated by numbers: 9a, 18a, 1 (in the IRgg,
spectra), 8b, 19a, 9a, 18a, 14, 1 (in the IR tr spectra) and
20b, 8b, 19a, 18a, one (in the Raman spectra).
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Wavenumber of some vibrations of the aromatic ring
increased in salts with respect to the ligand (lane 13 and 11
present in the IRkg,, IRATr and Raman spectra).

Changes in the aromatic ring vibration wavenumbers in
the studied series of 2,3PDCA acid salts occur irregularly
in the direction Li—Cs. In general, in instances of salts with
monocarboxylic acids, these changes are regular in the
series Li—-Na—K-Rb-Cs (for example: 2-pyrazinecarboxy-
late [this work], 2-pyridinecarboxylates [48],
3-pyridinecarboxylates and 4-pyridinecarboxylates [47].
Based on changes in wavenumber and intensity of the
aromatic ring vibration bands in the salts as compared to
the ligand, it can be concluded that alkali metals disturb the
electron charge distribution in the aromatic ring of 2,3-
pyrazinedicarboxylic acid. The effect of alkali metals on
the electron charge distribution (decrease in the charge
distribution) in the pyrazine ring is much greater in the case
of a dicarboxylic acid salt (2PCA) than for the monecar-
boxylate acid (2,3PDCA).

NMR study

Chemical shifts of the proton signals in "H NMR spectra of
alkali metal 2-pyrazinecarboxylates (H2: 8.90-9.01, H3:
8.45-8.62, H4: 8.29-8.54) display lower values than those
for acids (values: H2: 9.19, H3: 8.84, H4: 8.79) (Table 5).
Pyrazine aromatic ring system is disturbed due to the
changes in the electron density around the protons of the
aromatic ring upon substituting the alkali metal atom to the
carboxyl group of the acid. Chemical shift values decrease
toward Li—-Na—-K-Rb. In the case of cesium salt, the
mentioned values are similar to those of the sodium salt. A
"H NMR spectrum was registered for 2,3-pyrazinedicar-
boxylate and its lithium salt. The spectra of the other salts
of 2,3-pyrazinedicarboxylate were not registered, due to
the very poor solubility of these salts in the available sol-
vents. A comparison of the spectra of 2,3-pyrazinedicar-
boxylate and its lithium salt implies that lithium disturbs
the aromatic ring charge distribution (Table 6). Proton

Table 5 Values of the chemical shifts [ppm] in the spectra of 'H and '>C NMR of 2-pyrazinecarboxylic acid (2-PCA) and its salts determined
experimentally and by a theoretical GIAO/B3LYP/6-3114+G** method

2PCA 2-Pyrazinecarboxylate
Lithium Sodium Potassium Rubidium Cesium
"HNMR
H2
Exp. 9.19 9.08 8.94 8.90 8.91 8.95
Theoret. 8.69 9.74 9.73 9.71 - -
H3
Exp. 8.84 8.62 8.48 8.45 8.47 8.50
Theoret. 8.71 8.75 8.68 8.63 - -
H4
Exp. 8.79 8.54 8.29 8.41 8.43 8.47
Theoret. 8.83 8.67 8.57 8.52 - -
BCNMR
Cl
Exp. 143.89 142.75 143.12 142.99 142.88 143.15
Theoret. 164.99 151.98 153.86 154.95 - -
Cc2
Exp. 145.52 145.18 144.94 144.85 144.84 144.96
Theoret. 171.40 153.54 153.76 153.41 - -
C3
Exp. 144.58 144.77 143.36 143.07 143.02 143.36
Theoret. 170.61 151.41 150.33 149.57 - -
Cc4
Exp. 147.68 151.05 153.37 153.97 154.12 153.23
Theoret. 165.89 148.87 148.63 148.24 - -
C5
Exp. 165.09 166.16 166.29 166.14 166.13 166.25
Theoret. 187.90 186.16 179.96 179.67 - -
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Table 6 Values of the chemical shifts [ppm] in the spectra of 'H and
3C NMR of 2-pyrazinedicarboxylic acid (2,3PDCA) and its salts
determined experimentally and by a theoretical GIAO/B3LYP/6-
3114++G** method

2,3PDCA 2,3-Pyrazinedicarboxylate
Lithium Sodium Potassium

'HNMR
H3

Exp. 8.85 8.27 - -

Theoret. 8.73 8.58 8.60 8.57
H4

Exp. 8.85 8.27

Theoret. 8.78 8.61 7.69 7.73
*CNMR
Cl1

Exp. 145.23 140.95 - -

Theoret. 144.42 165.91 151.56 154.06
C2

Exp. 145.23 140.95 - -

Theoret. 158.43 144.82 169.53 169.99
C3

Exp. 145.59 151.42 - -

Theoret. 158.87 145.28 151.17 150.37
C4

Exp. 145.59 151.42 - -

Theoret. 148.36 151.05 139.28 138.18
C5

Exp. 165.97 169.70 - -

Theoret. 169.86 182.66 169.61 171.51
Cé

Exp. 165.97 169.70 - -

Theoret. 170.42 187.43 179.91 178.70

chemical shift values (in experimental IHNMR spectra for
lithium 2,3-pyrazinedicarboxylate: H3, H4: 8.85) are lower
in salt than in acid (H3, H4: 8.27). Theoretical calculations
show that in the case of sodium and potassium salts
chemical shift values are also lower than the corresponding
chemical shifts for protons in the ligand. It is therefore
concluded that the alkali metals disturb the electron system
of the aromatic ring of 2,3-pyrazinedicarboxylate. Effect of
alkali metals on the electronic charge distribution is higher
in the case of 2,3-pyrazinecarboxylate. Changes in the
chemical shifts of protons in the salts of a ligand are greater
for 2,3-pyrazinedicarboxylates than 2-pyrazinecarboxy-
lates. This is evidenced both by chemical shift values that
were determined experimentally and those theoretically
calculated.

After substituting the alkali metal atom in the carboxyl
group of 2-pyrazinecarboxylate a slight increase can be
seen in chemical shifts of carbon of the carboxyl group in
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Fig. 5 Numbering of the atoms in the 2-pyrazinecarboxylic acid
(a) and 2,3-pyrazinedicarboxylic acid (b)

the '>C NMR spectra due to the decrease in the electron
density around the carbon atom of the carboxyl group.
Much more pronounced changes were observed in the
chemical shifts of atoms of an aromatic ring. In the
2-pyrazinecarboxylates, the electron density on the carbon
atoms numbered C1, C2, and C3 (Fig. 5a) increases in
relation to that of the ligand, what is observed as a decrease
in the chemical shifts in the spectra of '*C-NMR. The
electron density at the C4 atom decreases—an increase is
observed in '*C chemical shift values in the salts in relation
to the acid. Changes in chemical shifts of carbons for
2-pyrazinecarboxylates of alkali metals with respect to
2-pyrazinecarboxylic acid indicate that alkali metals dis-
turb the electron charge distribution in the aromatic ring of
the ligand. An increase in the perturbation of the electron
charge distribution was observed along the series Li—Na—
K-Rb. A comparison of the chemical shifts in the spectra
of '*C-NMR implies that the effect of cesium on the
electron charge distribution of 2-pyrazinecarboxylic acid is
similar to that of sodium (similar chemical shifts in the
salts of sodium and cesium), which was confirmed by the
proton spectra of the studied compounds.

Significant changes in the chemical shifts of carbons in
the '*C NMR spectrum were observed in the case of
lithium substitution to the carboxyl groups of 2,3-
pyrazinedicarboxylate. The values of the chemical shifts of
atoms indicated C1 and C2 (Fig. 5b) decrease (indicating
an increase in the electron density) and the remaining
atoms of the aromatic ring increase (decrease in electron
density). Changes in chemical shifts of carbons in the NMR
spectra of the salt with respect to the ligand calculated
theoretically are greater for alkali metal 2,3-pyrazinedi-
carboxylates than for 2-pyrazinecarboxylates.

Aromaticity and NBO analysis

Upon the substitution of the alkali metal atom to the car-
boxylic group of 2-pyrazinecarboxylic, and 2,3-
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Table 7 Aromaticity indices (HOMA, GEO, EN) and Bird’s index (Is) for 2PCA, 2,3PDCA and their salts (lithium, sodium, potassium)

(calculated for the structure optimized in B3LYP/6-311++G**)

Aromaticity indices 2PCA 2-Pyrazinecarboxylate 2,3PDCA 2,3-Pyrazinedicarboxylate

Li Na K Li Na K
HOMA 0.991 0.988 0.990 0.989 0.985 0.969 0.952 0.952
EN 0.003 0.005 0.004 0.004 0.003 0.007 0.010 0.015
GEO 0.006 0.007 0.006 0.007 0.013 0.024 0.039 0.033
Is 89.44 89.59 88.76 88.62 90.31 90.11 86.85 84.95

(2.489)

Fig. 6 Electron charge distribution calculated by NBO in B3LYP/6-3114++G** for 2-pyrazinecarboxylic (a) acid and lithium (b),

sodium (c) and potassium (d) 2-pyrazinecarboxylates

(8. 201 (e.2p2)

Fig. 7 Electron charge distribution calculated by NBO in B3LYP/6-3114++G** for 2,3-pyrazinedicarboxylic acid (a) and lithium (b),

sodium (c¢) and potassium (d) 2,3-pyrazinedicarboxylates

pyrazinedicarboxylic acids, the aromaticity of the pyrazine
ring decreased. Calculated HOMA aromaticity indices and
Bird’s I indices display the lower values for the salt in
comparison with the ligands (Table 7). Comparing the
ligand of Table 7, we found that alkali metals have much
greater impact on the aromaticity change (decrease in the
aromaticity index values) of 2,3-pyrazinedicarboxylic acid
than of the 2-pyrazinecarboxylic acid.

The values of the electronic charges in ligands (2PCA
and 2,3PDCA) and their salts of lithium, sodium and

potassium were calculated using NBO (natural bond orbital
method). Upon the substitution of the alkali metal atom in
the carboxyl group of 2PCA, a change in the charge dis-
tribution of electron on the carbon of the carboxyl group
and the aromatic ring occurred (Fig. 6). An increase in the
value of the electron charge with respect to the carboxylic
acid group occurred on the oxygen atoms in the carboxy-
late anion of salts. A small increase in the value of electron
charge was calculated by NBO (B3LYP/6-311++4G**), for
the nitrogen atoms in the pyrazine ring of 2PCA salts with
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respect to that of the ligand. The electronic charge on the
carbon atoms No C2, C3 and C4 increases, while it
decreases on the Cl atom. The changes in the charge
values occur along the 2PCA-Li—-Na—-K series. The elec-
tronic charge on aromatic protons of lithium, sodium and
potassium 2-pyrazinecarboxylates increases as compared
with the ligand. Similar changes were observed in the
experimental 'H-NMR spectra—chemical shifts were
reduced in a series 2PCA—Li—-Na—K—-Rb—Cs, which implies
the increasing values of electron density on the aromatic
protons.

The electronic charge on nitrogen atoms in the pyrazine
ring in lithium, sodium and potassium 2,3-pyrazinedicar-
boxylate increases significantly with respect to the ligand
(Fig. 7). The values of electronic charge on the aromatic
ring carbons of the 2,3PDCA salts also vary from the value
for the ligand. These changes in the alkali metal 2,3-
pyrazinedicarboxylates are greater than in the
2-pyrazinecarboxylates.

Conclusions

On the basis of experimental and theoretical calculations, it
was found that:

1. Comparing the curves of the thermal decomposition of
the alkali metal salt of studied acids one can conclude
that salts of 2-pyrazinecarboxylic acid have a higher
thermal  stability than the salts of 2,3-
pyrazinedicarboxylate.

2. Spectroscopic (IR, Raman and NMR) data showed that
alkali metals disturb the electronic system of the
aromatic ring of ligands, (of 2-pyrazinecarboxylate,
and 2,3-pyrazinedicarboxylate). The degree of pertur-
bation increases in the studied series salts in order: Li—
Na-K-Rb-Cs.

3. Experimental studies showed that alkali metals to
much greater extent impact on the electronic charge
distribution of 2,3-pyrazinedikarboxylic than of
2-pyrazinecarboxylic acid.

4. Theoretical calculations (aromaticity index values, the
charge distribution by NBO) performed for geometri-
cally optimized structures confirm the results of
experiments on the effect of alkali metals on the
electron charge distribution of ligand.
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