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Abstract In this study, 2,4,6-trichlorophenyl methacrylate

(TClPhMA) was synthesized by the reaction of methacry-

loyl chloride with 2,4,6-trichlorophenol in the ice bath

condition. The obtained monomer was extracted by chlo-

roform and purified on a chromatography column. In order

to confirm the chemical structure of the new compound,

spectroscopic studies (ATR-FTIR, 1H NMR, 13C NMR and

GC–MS) were undertaken. The obtained TClPhMA was

copolymerized with commercially available monomers

such as methyl methacrylate, styrene, 1,4-divinylbenzene

and 2-hydroxymethyl methacrylate. The copolymers were

obtained by bulk polymerization in which benzoyl perox-

ide was used as a free radical initiator. The thermal prop-

erties of the copolymers were investigated by differential

scanning calorimetry and thermogravimetry.

Keywords Copolymers � Spectroscopic studies � Thermal

properties � Bulk polymerization

Introduction

Poly(methyl methacrylate) (PMMA) is used in various

applications, e.g., immobilization materials, nanocompos-

ites, and sensors [1–4]. PMMA provides excellent

resistance to both chemical and weather corrosion and

demonstrates high light transmittance [5]. PMMA is a

commercially available polymer which is mostly used in

optical fiber technology. Polymer optical fiber (POF) has

beneficial properties such as low cost, high ductility, large

core diameter, and easy handling characteristics. These

infer great potential for their implementation instead of

traditional silica glass-based optical fibers for short-length

applications. However, a relatively low glass transition

temperature (Tg) (around 100 �C) and high water absorp-

tion are the main disadvantages of PMMA [6–8]. POF

applications of PMMA are limited by high losses in the

visible and near-infrared region which are dominated by

the combinations of stretch and deformation vibrations of

C–H bonds [9, 10]. Replacing the hydrogen atoms in C–H

bond with deuterium and fluorine atoms leads to the min-

imization of the absorption band because of the decrease in

the band vibration energy [11]. According to

Imamura et al., the substitution of deuterium for hydrogen

improves the transparency at 1.3 lm [12]. In the range of

telecommunication wavelengths (1500–1600 nm), the

transparency is increased by the replacement of a part of

C–H bonds by C–F bonds [13], also providing refractive

index tunability and a decrease in PMMAs sensitivity to

moisture [14]. This problem can be solved by already-de-

signed polymers including deuterated fluoromethacrylates

or polysiloxanes [12, 15], fluorinated polyimides [14, 16],

and perfluorocyclobutane aromatic ether polymers [17].

Unfortunately, these polymers are relatively expensive for

both consumer and end user.

In order to increase the optical properties of materials

used in optical fiber technology, dopants are applied

[18–24]. According to Sengupta et al., the polymers doped

with chlorinated dopants showed no absorption peak and

retained the broad windows around the source wavelength.
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As reported by Koike et al., DPT (diphenyl-p-tolylamine)-

doped polymers provided a lower refractive index and

higher Tg value. The addition of compounds with chlorine

or fluorine atoms influences the transparency and attenua-

tion [21, 24]. For this reason, the creation of new com-

pounds is needed and investigated.

In this study, a new monomer with chlorine atoms in

2,4,6 substitutes in phenolic derivative is considered. In

order to introduce vinyl functionalization, the reaction of

phenolic groups with methacrylic acid was carried out. In

this way, the new monomer 2,4,6-trichlorophenyl

methacrylate (TClPhMA) was obtained. Next, the copoly-

merization reactions of TClPhMA with commercially

available monomers such as methyl methacrylate (MMA),

styrene (ST), 1,4-divinylbenzene (DVB) and 2-hydrox-

ymethyl methacrylate (HEMA) were investigated.

The effect of different chemical structures of comono-

mers (aliphatic: MMA and HEMA and aromatic: DVB and

ST) on the physico-chemical properties of the obtained

copolymers was studied. Thermal properties of the

obtained copolymers were investigated using differential

scanning calorimetry and thermogravimetry.

Thermal stability of TClPhMA copolymers have not

been published, whereas information on properties of tri-

functional methacrylate monomers and their copolymers is

available [25]. It can be expected that such polymers will

be at least as stable as their analogues without chlorine. As

the obtained copolymers may be used in polymer optical

fiber technology, the refractive indices for liquid compo-

sitions were determined.

Experimental

Materials

2,4,6-trichlorophenol, triethyleneamine, methacryloyl

chloride, methyl methacrylate, 2-hydroxyethyl methacry-

late and dibenzoyl peroxide were purchased from Aldrich.

Styrene, magnesium sulfate, and chloroform were obtained

from POCh. 1,4-divinylbenzene was purchased from

Merck.

Preparation of trichlorophenyl methacrylate

(TClPhMA)

In a 500-cm3 round bottomed flask equipped with a

mechanical stirrer, a thermometer, and a dropper, 0.2 mol of

2,4,6-trichlorophenol was placed with 35 mL of triethyle-

neamine and 0.22 mol of methacryloyl chloride in the ice

bath and stirred for 5 h (Fig. 1). To remove the water from

the product, 0.035 mol magnesium sulfate was added. The

obtained trichlorophenyl methacrylate was extracted by

chloroform and purified on a chromatography column.

Copolymerization

Copolymerization of TClPhMA with MMA, ST, DVB, and

HEMA was carried out in glass form (Fig. 2a–d). Com-

position mass ratio was always 1:10, with 1 % (w/w)

benzoyl peroxide (BPO) used as an initiator. The same

amount of BPO was applied for all compositions.

Copolymers were obtained after 3 steps of polymerization

in a water bath and heater chamber. All compositions were

kept in a water bath at 70 �C for 24 h to initiate poly-

merization. After this, all copolymers were transferred to a

heater chamber and heated at 45 �C for 24 h. Then, the

temperature was increased to 120 �C and heating continued

for 3 h to crosslink the residual double bound inside the

copolymers. All copolymers were kept in the heater

chamber until the chamber cooled to room temperature.

Characterization

ATR-FTIR spectra were recorded on a Brucker TENSOR

27 apparatus (Germany), equipped with diamond crystal.

The spectra were gathered from 600 to 4000 cm-1.
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Proton nuclear magnetic resonance (1H NMR) spectra

were obtained by Brucker 300 MSL instrument (Brucker,

Germany) operating at the 1H resonance frequency of

300 MHz. Chemical shifts were performed with deuterated

chloroform (CDCl3) serving as an internal standard. 13C

NMR spectrum of the newly obtained monomer in CDCl3
was obtained using the same apparatus.

Gas chromatography–mass spectroscopy (GC–MS)

result was obtained by a Thermo-Finnigan DSQ spec-

trometer (Finnigan, USA) hyphenated with a gas chro-

matograph Trace GC-Ultra equipped with a fused-silica

Equity-5 capillary column (20 m 9 0.18 mm I.D., film

thickness 0.20 lm). The conditions were as follows:

injector PTV-split 1:20; program temperature 50–320 �C
with the rate 15 �C min-1; MS electron ionization at

70 eV; temperature of ion volume 220 �C.

Differential scanning calorimetry (DSC) curves were

obtained with the use of a DSC Netzsch 204 calorimeter

(Netzsch, Günzbung, Germany) with the sample mass of

*5–10 mg in close aluminum crucible under nitrogen

atmosphere (30 mL min-1). Dynamic scans were

performed at a heating rate of 10 �C min-1 in temperature

range 20–550 �C.

Thermogravimetry (TG) studies were performed on

STA 449 Jupiter F1 instrument, Netzsch (Germany), with

the sample mass of *5–10 mg in open porcelain crucible

in both oxidative and inert atmospheres (20 mL min-1). In

the argon atmosphere, the temperature range was

20–550 �C, whereas in the air the range was 20–600 �C.

The loss mass temperatures (T5%, T20%, T50%), and first,

second, and third decomposition temperatures (T1, T2, T3)

were determined.

Results and discussion

Properties of the liquid compositions

Properties of the compositions such as refractive index and

density are presented in Table 1. All of the liquid com-

positions have densities close to methyl methacrylate, but

their refractive indices are higher than that of commercial

methyl methacrylate. This property of the obtained poly-

mers allows them to be used as a core material. Among

them, TClPhMA-ST has the lowest refractive index and

density. This result shows that these copolymers can be

useful as a core material for POF.

ATR-FTIR spectroscopy

In order to confirm the chemical formula of the new

monomer, ATR-FTIR studies were performed. The ATR-

FTIR spectrum of the TClPhMA is presented in Fig. 3. In

the spectrum, absorption of C–O–C group gives strong

peak at 1128 cm-1. The aromatic skeletal absorption is

observed at 1440 and 1633 cm-1. The signal of C=O group

occurs at 1732 cm-1. The stretching vibrations band of

vinyl groups (C–H) are seen at 942 cm-1 and for methyl

groups (C–H) at 2924 cm-1. A C–H bands are observed at

1232 and 1319 cm-1, whereas the C–Cl group occurs at

796 cm-1.

NMR spectroscopy

In order to identify the structures of monomer, the 1H NMR

and 13C NMR spectra were recorded (Fig. 4a, b). In the 1H

NMR spectrum of the new obtained monomer, the signals

of –CH2, –CH3, and –CH groups were observed in 5.90 and

6.50, 2.10 and 7.40 ppm, respectively. In the 13C NMR

spectrum, the most important signal is shown at

165.0 ppm. The signal expresses the carbonyl group of

ester in the compound. Signals 2 and 3 refer to vinyl group,

whereas 5, 6, 7 refer to carbon atoms in aromatic ring.

Table 1 Properties of the liquid compositions

Mixture of monomers (1:10) Refractive index ND
20 Density/

g cm-3

Pure MMA 1.4142 0.94

TClPhMA-MMA 1.679 0.8549

TClPhMA-ST 1.676 0.8171

TClPhMA-DVB 1.692 0.8289

TClPhMA-HEMA 1.693 0.9824

5001000150020002500

Wavenumbers/cm–1

TClPhMA

Tr
an

sm
itt

an
ce

/%

300035004000
90

92

94

96

–CH3

–CH3

CH2=C

CH2=C

Aromatic
group

C=O C–O–C

C–Cl

98

100
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GC–MS

The chemical structure of TClPhMA was additionally

confirmed by GC–MS. As its spectrum was not available in

the literature, identification was achieved by analyzing

molecular and fragmentary ions. In the spectrum presented

in Fig. 5, molecular ion corresponding to the calculated

molecular weight of TClPhMA (264) is visible. A large

number of fragmentary ions are also noticeable.

Thermogravimetry and DSC analysis

The DSC curves of the copolymers are presented in Fig. 6.

The DSC analyses show the different thermal behaviors of

the studied copolymers. In the range of 100–280 �C for

MMA and HEMA copolymers, some endothermic effects

corresponding to the degradation of linear aliphatic frag-

ments are observed [26]. In the case of TClPhMA-DVB, a

small exothermic peak at 160 �C is visible, probably
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connected with the crosslinking effect of DVB. The

endothermic effects related to the thermal degradation of

the samples occur at above 360 �C for TClPhMA-HEMA,

at above 380 �C for TClPhMA-MMA, at above 420 �C
TClPhMA-ST and at above 440 �C for TClPhMA-DVB

polymeric samples. The highest degradation temperature of

TClPhMA-DVB is associated with the aromatic structure

and crosslinking character (two vinyl groups) of the DVB

comonomer.

Representative results of TG and DTG analyses

obtained in an inert condition. TG results are shown in

Fig. 7 and collected in Table 2. It can be seen that the 5 %

(w/w) mass loss of copolymer is in the range from
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196.6 �C for TClPhMA-MMA, to 345.1 �C for TClPhMA-

ST, 291.1 �C for TClPhMA-DVB, 223.9 �C for

TClPhMA-HEMA and 346 �C for commercial PMMA.

The highest thermal resistance exhibits the TClPhMA-ST

copolymer.

TG-FTIR measurements were taken in an inert con-

dition and presented in Fig. 8a–d. In the case of

TClPhMA-MMA, evaporation of unreacted MMA is

observed at 178 �C, whereas its depolymerization

occurred at 290–390 �C. Depolymerization of TClPhMA-

ST occurs at 346 �C, and degradation of the copolymer

starts at 400 �C. In the case of TClPhMA-DVB, evapo-

ration of unreacted TClPhMA occurs at 178 �C.

Decomposition of this copolymer-crosslinked network

starts at 320 �C and goes through 3 maxima (357, 457,

605 �C). As main volatile products, CO2, CO and H2O

Table 2 Thermal stabilities of the studied copolymers in inert condition

Copolymer (1:10) T5%/�C T50%/�C Tf/�C T1/�C T2/�C T3/�C

TClPhMA-MMA 197 302 550 164 285 377

TClPhMA-ST 345 388 550 367 419 –

TClPhMA-DVB 291 360 550 109 392 –

TClPhMA-HEMA 224 270 550 238 302 353

PMMA 346 380 426 335 – –

T5%, T50% the mass loss rates, T1, T2, T3 the decomposition temperatures, Tf the final decomposition temperature
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are observed. For TClPhMA-HEMA, evaporation of

moisture takes place at 100 �C. Its depolymerization is

observed at 230–380 �C.

The results of DTG measurements are presented in

Fig. 9. In the case of TClPhMA-MMA copolymer, the

DTG curve contains three separated degradation steps. The

first, second, and third decomposition peaks are observed in

the range 150–190, 260–290, and 380–390 �C, respec-

tively. A decomposition peak for TClPhMA-ST is

observed at 420 �C, whereas for TClPhMA-DVB in the

range 390–410 �C. For TClPhMA-HEMA, the decompo-

sition peak is observed in the range of 350–360 �C with the

maximum mass loss. The obtained TG/DTG results con-

firm the results obtained earlier by DSC analysis.

For overall study of copolymer thermal properties, TG–

DTG analyses in oxidative conditions were also carried

out. The obtained results are presented in Figs. 10 and 11,

as well as the datas are collected in Table 3. It can be seen

that the starting mass loss of copolymer ranges from

210 �C for the TClPhMA-HEMA, 280 �C for the

TClPhMA-DVB, TClPhMA-MMA and PMMA, to 340 �C
for the TClPhMA-ST. The final decomposition temperature

is in the range 360–550 �C.
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Table 3 Thermal stabilities of the studied copolymers in oxidative condition

Copolymer (1:10) T5%/�C T50%/�C Tf/�C T1/�C T2/�C T3/�C

TClPhMA-MMA 284 341 401 263 – –

TClPhMA-ST 300 432 550 273 458 –

TClPhMA-DVB 288 360 510 276 332 –

TClPhMA-HEMA 222 295 393 189 – –

PMMA 287 320 398 276 – –

T5%, T50% the mass loss rates, T1, T2, T3 the decomposition temperatures, Tf the final decomposition temperature
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Comparing the course of the curves obtained in the inert

and oxidative conditions, one can see that up to 180 �C the

studied copolymers are stable. As expected, their thermal

resistances in an oxidative condition are lower. The most

rapidly decomposed copolymer (TClPhMA-HEMA) pos-

sesses linear aliphatic fragments in its structure.

Conclusions

Synthesis of the TClPhMA, its copolymerization with

commercial compounds such as MMA, ST, DVB and

HEMA of different chemical structures and their physical

and thermal properties are presented. TClPhMA-ST and

TClPhMA-DVB copolymers due to their low refractive

indices have potential application in polymer optical fiber

technology. However, DVB as tetrafunctional monomer

leads to crosslinked polymer and therefore TClPhMA-

DVB cannot be used in POF technology.

Considering the conditions of POF drawing process,

TClPhMA-ST copolymer which additionally indicates the

highest thermal resistance is the most suitable for drawing

fibers. The obtained 2,4,6-trichlorophenyl methacrylate can

be used as a dopant compound that reduces fibers attenuation.
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26. Podkościelna B. Synthesis, spectroscopic and thermal character-

ization of the new photoluminescent monomer. J Therm Anal

Calorim. 2016;123:273–82.

Copolymerization and thermal study of the new methacrylate derivative of 2,4,6-trichlorophenol 2271

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Copolymerization and thermal study of the new methacrylate derivative of 2,4,6-trichlorophenol
	Abstract
	Introduction
	Experimental
	Materials
	Preparation of trichlorophenyl methacrylate (TClPhMA)
	Copolymerization
	Characterization

	Results and discussion
	Properties of the liquid compositions
	ATR-FTIR spectroscopy
	NMR spectroscopy
	GC--MS
	Thermogravimetry and DSC analysis

	Conclusions
	Acknowledgements
	References




