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Abstract TG/FTIR/QMS-coupled method to study the

thermal behavior along with the evolution of volatile

decomposition products and thus the decomposition

mechanism under inert conditions of some starch-g-

poly(benzyl acrylate) copolymers was applied. Starch-g-

poly(benzyl acrylate) copolymers under K2S2O8-initiated

copolymerization process of benzyl acrylate monomer with

gelatinized potato starch were prepared. The ATR-FTIR

and 13C CP/MAS NMR confirmed the successful formation

of grafted polymers with different grafting parameters such

as grafting percent (%G) and grafting efficiency (%GE).

The evolution of some physicochemical properties such as

swelling, moisture resistance and chemical resistance

allowed certifying that the copolymers obtained were more

resistant toward polar solvents, moisture and acidic med-

ium due to the incorporation of more hydrophobic chains

into starch backbone as compared to unmodified potato

starch. The TG/FTIR/QMS studies confirmed their similar

thermal stability, two stage decomposition process but

different and more complex decomposition mechanism

under the second decomposition stage as compared to the

previously presented starch-g-poly(benzyl methacrylate)

copolymers.

Keywords Potato starch � Benzyl acrylate � Graft

copolymerization � TG/FTIR/QMS

Introduction

The physical and chemical modification of naturally

occurring polymers are the promising methods in order to

prepare more environmentally friendly, inexpensive,

biodegradable materials with improved or new properties

as compared to unmodified materials [1–6]. The chemical

modification methods allow modifying both physical and

chemical properties of natural polymers [7–9].

Among various chemical modification methods, grafting

is the method which is intensively studied and applied for

the modification of carbohydrate structure from many

years. It resulted in the preparation of novel materials

where to the main polymer carbohydrate chain, one or

more side chains through covalent bonds are connected.

Depending on the applications of the graft copolymers,

varying degree of hydrophilic- and hydrophobic-type vinyl

monomers can be incorporated into polysaccharide matrix

[10–13]. Generally, the graft copolymerization process

starts in the formation of active sites on the polysaccharide

backbone which are the result of abstraction of a hydrogen

atom from hydroxyl groups leading to the production the

polymer radicals which then participate in the grafting of

vinyl monomers. Various initiating systems in order to

produce polymer radicals can be applied in the grafting

process. Generally, radical initiators such as ceric salts,

persulfates, redox systems or others are used. In addition,

besides chemical methods of initiations, free radicals on

the polysaccharide backbone can be formed with ultravi-

olet, electron beam irradiation or 60Co [14–20]. Depending

on the used initiating system, monomer type and its reac-

tivity, polysaccharide type and other reaction conditions,

the graft copolymers with different grafting parameters,

various structure and thus various unique properties which

can have a tremendous industrial potential as flocculants,
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supersorbents, sizing agents, thickeners and others can be

prepared [21–26].

The present paper is the second part of our earlier

studies [27]. The main objective of this paper was to study

the thermal behavior, the type of volatile decomposition

products, decomposition mechanism in inert atmosphere by

applying TG/FTIR/QMS-coupled method of novel starch-

g-poly(benzyl acrylate) copolymers obtained under

K2S2O8-initiated grafting process of benzyl acrylate

monomer onto gelatinized potato starch using the same

synthesis conditions as previously applied, its structure by

ATR-FTIR and 13C CP/MAS NMR, evaluation of their

some physicochemical properties and comparison of the

results obtained to those presented in Ref. [27].

Experimental

Materials

The starch-g-poly(benzyl acrylate) copolymers under

potassium persulfate (Merck, Germany)-initiated copoly-

merization process of gelatinized potato starch (Melvit

S.A., Poland) and benzyl acrylate monomer (obtained

according to Ref. [28]) in the presence of nitrogen as an

inert atmosphere according to the procedure described

elsewhere [27] have been obtained.

Characterization of starch-g-poly(benzyl acrylate)

copolymers

The grafting parameters such as grafting percent (%G) and

grafting efficiency (%GE) were calculated using the

equations given elsewhere [27, 29–31].

The ATR-FTIR spectra were carried out using a Fourier

transform infrared (FTIR) spectrometer equipped with a

diamond crystal (Tensor 27, Bruker, Germany). Each

spectrum was gathered from 600 to 4000 cm-1 with a

resolution of 4 cm-1.
13C CP/MAS NMR were collected with applying Bruker

Avance 300MSL apparatus (Germany). All the spectra

were gathered at the frequency of 75.5 MHz.

The swellability coefficients (B) of copolymers in polar

(water, ethanol, butanol) and nonpolar (toluene, CCl4,

hexane) solvents were determined by equilibrium swelling

of the materials. B values were evaluated based on Eq. 1:

B ¼ Vs � Vd

Vd

� 100 ð1Þ

where Vs—the volume of the copolymer after swelling,

Vd—the volume of the dry copolymer [27, 32, 33].

Percent moisture absorbance (%M) of copolymers was

studied in an exsiccator where the 100 mg of dried samples

was exposure to the water vapor at 25 �C for 24 h. %M was

calculated from:

%M ¼ me � mi

mi

� 100 ð2Þ

where me—the final mass of the sample, mi—the initial

mass of the sample [27, 33, 34].

The ca. 100 mg of the copolymers was treated with 1 M

HCl and 1 M NaOH until a constant mass of the sample

was reached. After filtration, washing with distilled water

and drying at 60 �C, the residual was weighted and the

chemical resistance toward basic and acidic media was

calculated according to Eq. 3.

%WL ¼ m1 � m2

m1

� 100 ð3Þ

where m1—the initial mass of the sample, m2—the final

mass of the sample [27, 35]. TG/FTIR/QMS-coupled

method (STA 449 Jupiter F1, Netzsch coupled with TGA

585 Bruker spectrometer, Germany and QMS 403C Aëolos

spectrometer, Germany) was applied in order to study the

thermal properties of copolymers along with the evolution

of volatile decomposition products and thus the decom-

position mechanism of copolymers. In a typical procedure,

ca. 10 mg of the sample was heated from 40 up to 750 �C
with a heating rate of 10 �C min-1 in open Al2O3 crucible

under inert conditions (helium, flow rate 40 mL min-1).

The FTIR spectra of volatile decomposition products

emitted under heating the copolymers, from 600 to

4000 cm-1 wave number with a resolution of 4 cm-1 were

gathered. The QMS spectra in the range from 10 to

150 amu were collected.

Results and discussion

Characterization of starch-g-poly(benzyl acrylate)

copolymers

The grafting parameters of the copolymerization process of

benzyl acrylate monomer onto gelatinized potato starch

backbone in the presence of K2S2O8 as an initiator in Table 1

are shown. According to the data presented, one can see that

under changing the starch to monomer ratio from 1:0.25 to

1:1.5, the copolymers with different grafting percent (%G)

can be prepared. As the starch to monomer ratio is increased

from 1:0.25 up to 1:1.25, the grafting percent (%G) and

grafting efficiency (%GE) are increased and then decreased

imperceptibly. The results are in accordance with other

previous study [27, 33] and confirmed that in order to prepare

the starch-g-poly(benzyl acrylate) copolymers with high

grafting parameters, the starch to monomer ratio should be

above 1:1.
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The ATR-FTIR and 13C CP/MAS NMR analyses were

applied to confirm the grafting process of benzyl acrylate

monomer onto starch backbone. The ATR-FTIR spectra of

the example copolymer (copolymer 5) and non-modified

potato starch are presented in Fig. 1. All the absorption

signals responsible for the vibrations of atom groups which

are present in the structure of non-modified potato starch

(–OH, C–H, C–O stretching and C–H deformation) are

clearly observed from the ATR-FTIR spectra [27, 33, 36].

However, after chemical modification of potato starch, the

appearance of new absorption bands: two bands at 3034

and at 3067 cm-1 (CAr-H stretching), at 1728 (C=O

stretching), two bands at 1452 and at 1496 cm-1 (aromatic

C=C stretching) and two bands at 694 and 735 cm-1 (CAr-

H out-of-plane deformation) [36] which directly confirmed

the grafting of benzyl acrylate onto potato starch backbone

is observed.

In addition, the structure of copolymers was identified

based on 13C CP/MAS NMR spectra (Fig. 2). The solid-

state NMR spectrum shows the resonance signals for all

carbon atoms present in the structure of starch, at

94.2–100.5 ppm (C1), at 81.5 ppm (C4), at 72.3 ppm (C

2,3,5) and at 61.7 ppm (C6) [37–39]. Meanwhile, on the

solid-state NMR spectra for copolymers, new, additional

resonance signals centered at 40.8 ppm (C at –CH–CH2–)n
groups), at 128.5–136.4 ppm (C in aromatic rings) and at

175.2 ppm (C in C=O) are appeared. When we are com-

paring, the 13C CP/MAS NMR spectra before and after

chemical modification of potato starch, it is worth noticing

that the fall in the intensity of the C2, C3 and C6 carbon

signals after grafting process is observed. It can be testified

that both, primary and secondary hydroxyl groups of starch

participate in the grafting process [37]. In addition, also,

the changes in the intensity for C4 and C1 carbon signals

for starch which may be due to the partial hydrolysis of

glycosidic bonds under the preparation of copolymers were

indicated [40].

Properties of starch-g-poly(benzyl acrylate)

copolymers

The starch-g-poly(benzyl acrylate) copolymers are insol-

uble materials in available organic solvents. However, due

to their variable hydrophilic-hydrophobic properties, the

copolymers demonstrate various swelling in polar and

nonpolar solvents, Fig. 3. According to Fig. 3, the

copolymers are the materials which swelling is restricted in

polar solvents such as water, ethanol and butanol as com-

pared to non-modified potato starch. However, their swel-

ling in nonpolar solvents (toluene, CCl4, hexane) is higher

as compared to non-modified potato starch. Such behavior

is connected with the modification of potato starch back-

bone by hydrophobic poly(benzyl acrylate) chains and is in

accordance with our previous studies [27, 33]. In addition,

due to the lower amount of hydroxyl groups in the structure

of copolymers, the copolymers are more moisture restricted

than potato starch. The percent moisture absorption chan-

ges from 40 up to 20 % as the grafting percent is increased

[27, 33] (Fig. 4).

The chemical resistance studies demonstrated that

starch-g-poly(benzyl acrylate) copolymers were not resis-

tant to basic environment. All the copolymers are fully

gelated in 1 M NaOH medium. However, the copolymers

prepared were more restricted to the acidic environment.

The mass loss in 1 M HCl medium ranges from 31 to

34 %, and it was almost independent on the grafting per-

cent (Table 2).

Thermal properties of copolymers

The characteristic TG/DTG curves of starch-g-poly(benzyl

acrylate) copolymers are presented in Fig. 5. The Tmax, mass

loss (Dm) and residual mass at 740 �C (rm) are collected in

Table 3. Thermogravimetric analysis of copolymers

revealed two major, non-well separated decomposition

Table 1 Starch to monomer ratio and the grafting parameters

Sample Starch to monomer ratio GE/% G/%

Copolymer 1 1:0.25 55.6 ± 0.4 18.5 ± 0.6

Copolymer 2 1:0.5 58.9 ± 0.3 24.8 ± 0.5

Copolymer 3 1:0.75 63.2 ± 0.5 35.9 ± 0.7

Copolymer 4 1:1 74.1 ± 0.6 41.5 ± 0.4

Copolymer 5 1:1.25 77.8 ± 0.4 49.8 ± 0.5

Copolymer 6 1:1.5 72.2 ± 0.5 45.2 ± 0.6

Reaction parameters: temperature -80 �C, time—2 h, 300 rmp,

K2S2O8—1 mass%
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Fig. 1 ATR-FTIR spectra for potato starch and copolymer (copoly-

mer 5)
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stages between temperatures of ca. 200 �C up to ca. 560 �C.

Meanwhile, the mass loss of copolymers ranges from ca.

0.5 % to ca. 1.7 % at temperatures below 200 �C which was

directly connected with the evaporation of moisture from

copolymers under heating. However, the first decomposition

stage of copolymers occurs at temperatures from ca. 200 �C
to ca. 335 �C with Tmax1 288–292 �C and corresponds to a

mass loss from 45.7 up to 33.7 % of the mass initially pre-

sent. The second decomposition stage between ca. 335 and

560 �C with Tmax2 388–395 �C and mass loss from 25.5 to

46.1 % was happened. In addition, regarding to our previous

study [27], the same relationship between grafting percent

and mass loss under the first and second decomposition

stages was indicated. Higher grafting percent was resulted in

lower mass loss under the first decomposition stage but

40.8
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Fig. 2 13C CP/MAS NMR

spectra for potato starch and

copolymer (copolymer 5)
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Table 2 Chemical resistance of starch-g-poly(benzyl acrylate)

copolymers

Sample % WL

1 M NaOH 1 M HCl

Copolymer 1 g 33.6 ± 0.3

Copolymer 2 g 32.8 ± 0.4

Copolymer 3 g 31.5 ± 0.5

Copolymer 4 g 31.0 ± 0.5

Copolymer 5 g 31.0 ± 0.4

Copolymer 6 g 34.0 ± 0.6

g—completely gelatinized
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higher mass loss under the second decomposition stage. The

heating of copolymers above temperature of 560 �C was

resulted in further slow mass loss without the appearance of

the DTG signal. The mass loss didn’t exceed 2.5 % in the

temperature range of 560–740 �C. The TG/DTG studies

confirmed that the decomposition process of copolymers

under inert conditions was not full. After heating of the

materials up to 740 �C, the residual mass corresponded to

25–15.5 % of the initial sample mass was indicated.

TG/FTIR/QMS studies

TG/FTIR/QMS-coupled method was applied to describe

and evaluate the degradation mechanism of starch-g-

poly(benzyl acrylate) copolymers. The FTIR spectra of the

volatile decomposition products emitted under decompo-

sition of copolymers (from ca. 200 to 740 �C) in inert

conditions for copolymers with different grafting percent

are presented in Fig. 6.

The FTIR spectra gathered at the temperature range

200–330 �C (first decomposition stage) are a typical

spectra for the volatile decomposition products which are

created under decomposition of starch from starch-g-

poly(benzyl acrylate) copolymers which is in accordance

with other studies [33, 41–43]. It confirmed that starch is a

less thermally stable polymer as compared to benzyl

acrylate chains grafted and decomposed mainly through the

cleavage of glycosidic bonds, strong bonds and thermal

dehydration processes forming as main gaseous decom-

position products CO, CO2, H2O, aldehydes, alcohols,

acids, aliphatics and furanes fragments [33, 41–43]. Thus,

the thermal decomposition of starch from starch-g-

copolymers results in the liberation of the polymer grafted

from the copolymers which needs higher temperature in

order to decompose. On the FTIR spectra collected at

temperature range 330–460 �C (second decomposition

stage), it is well visible the presence of the absorption

bands characteristic for the stretching vibrations of –OH

(3570–3730 cm-1), the stretching vibrations of CAr-H and

=C–H (3037–3070 cm-1), the stretching vibrations of C–H

in –CH2– (sym 2873 and asym 2931 cm-1), the stretching

vibrations of C–H in O=C–H (2720 and 2780 cm-1), the

stretching vibrations of C=O (1733 cm-1 with a shoulder

at 1780 cm-1), the stretching vibrations of aromatic C=C

(1492 and 1594 cm-1), the deformation vibrations of C–H

(1378–1446 cm-1), the stretching vibrations of C–O

(1012–1280 cm-1) and out-of-plane deformation vibra-

tions of =C–H and CAr-H (694–902 cm-1). Besides those

above bands, the bands responsible for the vibrations of CO

(2000–2200 cm-1), CO2 (670 and 2330–2365 cm-1) and

H2O (above 3500 cm-1) [42, 43] are well documented on

the FTIR spectra. Regarding the occurrence of the char-

acteristic absorption signals on the FTIR spectra under the

second decomposition stage and the structure of

poly(benzyl acrylate), it can be suspected that the main

decomposition processes are the result of the both random
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Table 3 TG/DTG data for starch-g-poly(benzyl acrylate) copolymers

material Tmax0/�C Dm0/% Tmax1/�C Dm1/% Tmax2/�C Dm2/% Dm3/% rm/%

Copolymer 1 130 1.7 288 45.7 390 25.5 2.1 25.0

Copolymer 2 133 1.7 288 43.2 395 35.5 1.1 18.5

Copolymer 3 117 1.2 290 41.7 392 36.6 1.5 19.0

Copolymer 4 118 1.2 288 36.8 391 43.6 1.1 17.3

Copolymer 5 115 0.6 292 36.5 390 46.1 1.3 15.5

Copolymer 6 112 0.5 290 33.7 388 45.0 1.0 19.5
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main-chain scissors and side-chain scissors [44, 45], as it is

presented in Scheme 1. As a result the mixture of organic

and inorganic volatile decomposition products is emitted

under the second decomposition stage. Among them, the

most feasible organic volatile decomposition products are

alkene, aromatic, alcohol, aldehyde, acid or cyclic ketone
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fragments and benzyl acrylate monomer as it is shown in

Scheme 1.

The further heating of the residue formed above 460 �C
resulted in the emission of CH4 (3014 cm-1), CO

(2000–2200 cm-1), H2O (above 3500 cm-1) [42, 43, 46–49]

and some of the other less volatile organic fragments.

According to the FTIR spectra gathered at temperatures

higher than 460 �C, the appearance of the small intensity

signals responsible for the stretching vibrations of CAr-H and

=C–H (3037–3070 cm-1), the stretching vibrations of C–H

(2873–2931 cm-1), the stretching vibrations of C=O

(1733 cm-1), the deformation vibrations of C–H

(1378–1446 cm-1), the stretching vibrations of C–O

(1012–1280 cm-1) and out-of-plane deformation vibrations

of =C–H and CAr-H (694–902 cm-1) which can be due to the

emission of mainly alkene, aromatic, alcohol or ketone

fragments is observed. The type of the decomposition prod-

ucts emitted at higher temperatures may indicate on the further

secondary reactions between the decomposition products and/

or residue formed [27].

Additionally performed QMS analysis directly con-

firmed the FTIR results. Due to the same volatile decom-

position products emitted under heating of all copolymers

studied, the exemplary QMS spectra gathered at the first

decomposition stage (200–330 �C), at the second decom-

position stage (330–460 �C) and above 460 �C are pre-

sented in Fig. 7. The appearance of m/z ions typical for the

gaseous products evolved under decomposition of potato

starch from the copolymers studied under the first

decomposition stage was indicated. One can clearly see the

presence of m/z ions characteristic for CO2 (44), CO (28),

H2O (18,17,16) and organic fragments: furanes (50, 51, 52,

53, 68, 69, 82, 95, 96), aldehydes (15, 26, 28, 29, 30, 41,

42, 43), alcohols (31, 45, 29, 27, 46, 43, 26, 30), acids (13,

28, 29, 30, 41, 42, 43, 45, 46) and aliphatics (30, 29, 28, 27,

26) [50]. However, on the QMS spectra for copolymers

gathered at the second decomposition stage, the formation

of organic fragments such as benzaldehyde (m/z: 77, 106,

105, 51, 50, 78, 52, 74, 107, 39), benzyl alcohol (m/z: 79,

108, 107, 77, 51, 91, 78, 50, 39, 80), cyclobutanone (m/z:

42, 70, 41, 39, 27, 26, 43, 14, 38, 28), glutaric anhydride

(m/z: 42, 70, 44, 41, 27, 39, 26, 43, 40, 29), glutaric acid

(m/z: 86, 42, 45, 55, 60, 41, 58, 39, 43, 114), dienes (m/z:

79, 80, 77, 39, 51, 78, 50, 52, 27, 38), benzyl acrylate (m/z:

91, 55, 117, 90, 107, 79, 77, 65) and inorganic species

(CO2, CO, H2O) indicated mainly on the decomposition

process of poly(benzyl acrylate) from the copolymers. The

heating of copolymers above the temperature of 460 �C
resulted in the emission of CH4 (16, 15, 14, 13), CO (28),

H2O (16, 17, 18) and some amount of organic products,

among them the most feasible were aromatic fragments:

(m/z: 77, 79, 106, 105, 51, 50, 78, 80, 91, 108, 52, 74, 107,

39), dienes (m/z: 79, 80, 77, 39, 51, 78, 50, 52, 27, 38) and

ketones (m/z: 42, 70, 41, 39, 27, 26, 43, 14, 38, 28) [50].

The TG/FTIR/QMS data confirmed that the decompo-

sition mechanism of starch-g-poly(benzyl acrylate)

copolymers was completely different and more complex as

compared to the decomposition mechanism of the previ-

ously studied starch-g-poly(benzyl methacrylate) copoly-

mers [27].

Conclusions

The ATR-FTIR and 13C CP/MAS NMR analyses con-

firmed the successful preparation of starch-g-poly(benzyl

acrylate) copolymers under the grafting process of benzyl

acrylate monomer onto gelatinized potato starch backbone

in the presence of K2S2O8 as an initiator. The copolymers
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Fig. 7 QMS spectra of volatile decomposition products emitted

under heating of copolymer 3
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obtained were characterized by lower swelling in polar

than in nonpolar solvents and higher moisture resistant than

non-modified potato starch. Their swelling and moisture

resistance were directly depended on the grafting percent

which was in accordance with our previous results. How-

ever, the chemical resistance of starch-g-poly(benzyl

acrylate) copolymers was completely different as com-

pared to previously described starch-g-poly(benzyl

methacrylate) copolymers. The starch-g-poly(benzyl acry-

late) copolymers were gelatinized completely when treated

with basic medium. In addition, their resistance toward

acidic medium was almost independent on the grafting

percent. The thermal stability and the decomposition

course of starch-g-poly(benzyl acrylate) and starch-g-

poly(benzyl methacrylate) copolymers were similar. The

first decomposition stage of copolymers was connected

with the cleavage of glycosidic bonds, strong bonds and

thermal dehydration processes of starch from copolymers

which resulted in the emission of the typical for starch

gaseous decomposition products such as CO, CO2, H2O,

aldehydes, alcohols, acids, aliphatics and furanes frag-

ments. Meanwhile, the second degradation stage of

copolymers was run through completely different and more

complex mechanism as compared to starch-g-poly(benzyl

methacrylate) copolymers as it was confirmed by applying

the TG/FTIR/QMS-coupled method. Under this decompo-

sition stage, random main-chain scissors and side-chain

scissors were happened which caused the formation of the

mixture of inorganic and organic species such as CO, CO2,

H2O, alkene, aromatic, alcohol, aldehyde, acid or cyclic

ketone fragments and benzyl acrylate monomer.
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47. Silva ACM, Gálico DA, Guerra RB, Perpétuo GL, Legendre AO,

Rinaldo D, Bannach G. Thermal stability and thermal decom-

position of the antihypertensive drug amlodipine besylate.

J Therm Anal Calorim. 2015;120:889–92.
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