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Abstract In the previous study, we showed that butyltin

complexes with 2-sulfobenzoic acid (commonly referred to

as BTsbz) exhibit a very wide biological activity. The

BTsbz in vitro are very active cytotoxic agents against

tumor cells—more effective than cisplatin and carboplatin

(traditional anticancer drugs). These complexes are

antibacterial agents against gram-positive and gram-nega-

tive bacteria, as well. The aim of the present study was to

investigate the influence of BTsbz on the thermotropic

phase behavior of dipalmitoylphosphatidylcholine (DPPC)

model membranes. The effect of this compound on the

multilamellar liposomes was studied mainly by the means

of differential scanning calorimetry and additionally by the

steady-state fluorimetry and infrared spectroscopy. All

investigated butyltin complexes with 2-sulfobenzoic acid

change the thermotropic properties of lipid model mem-

branes: The temperature of the main phase transition of

DPPC is slightly decreased, and the transition’s coopera-

tivity of the peak is very much reduced. With increasing

concentration, all investigated compounds abolished the

pretransition. The results suggest that BTsbz are very

active in the hydrophilic area of DPPC bilayer and at the

same time have an effect on membrane fluidity.

Keywords Phase transition � DSC � Fluidity �
Spectroscopy � DPPC � Butyltin complexes with

2-sulfobenzoic acid

Introduction

Platinum compounds such as carboplatin and cis-platin are

used in cancer chemotherapy to treat testicular, ovarian and

bladder cancer. In addition to platinum compounds,

derivatives of other transition metals are being investigated

for their anti-tumor properties [1]. Many di- and triorgan-

otin compounds have had been synthesized and tested for

their anti-tumor activity against a variety of tumor. Some

of organotin(IV) complexes were found to have much

better activity in vitro than traditional anticancer drugs

[1–9]. From this point of view, newly synthesized butyltin

complexes with 2-sulfobenzoic acid (commonly referred to as

BTsbz): [Sn(C4H9)2{O3SC6H4COO-2}(H2O)]�(C2H5OH)

(DBTsbz), [Sn(C4H9)3{O3SC6H4COOH-2}] (TBTsbz) and

[Sn2(C4H9)6{l-O3SC6H4COO-2}] (DTBTsbz) seem to be

very promising. In the previous study, we showed that these

complexes exhibit not only the antibacterial activity against

gram-positive and gram-negative bacteria, but also are very

active cytostatic agents against tumor cells line—more

effective than cis-platin [7] and carboplatin [10]. We have

analyzed cytotoxic activity of butyltin complexes against

following tumor cell lines: Jurkat (T cell leukemia), CL-1 (T-

lymphoblastoid cell line), GL-1 (B cell lymphoma cell line)

and D-17 (canine osteosarcoma) and normal cell lines:

J774.E (murine macrophages), D10.G4.1 (murine lym-

phoblasts) [10]. In comparison with carboplatin, all inves-

tigated compounds showed significantly lower value of IC50

against D-17 cell line. DBTsbz compound seems to be the

most interesting among those which were investigated

because it is much more active than carboplatin (about

100 times smaller doses are needed to yield similar effect)

and at the same time it was the least toxic against normal cell

lines [10].
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We plan to continue the research by investigating lipid-

BTsbz formulations and in particular—check effectiveness of

such formulations as anticancer agents. In vitro and in vivo

investigation of cisplatin and carboplatin shows that lipid–

compound formulations are more toxic against tumor cell

lines than against healthy ones. Data on mouse model suggest

that liposomes containing dipalmitoylphosphatidylcholine

(DPPC) formulation of tested compound significantly

decreased tumor size and increased survival probability

compared with cisplatin [11, 12]. In [12] authors conclude that

DPPC liposome, the main phase transition of which is nearly

close to the body temperature, improves drug retention in

blood circulation and is therefore extravasated through per-

meable microvasculature where it remains confined to the

extracellular fluid of the tumor. Temperature-sensitive lipo-

somes are particularly promising option, as tumors can be

heated in a controlled and predictable manner with external

energy sources. Traditional thermosensitive liposomes are

composed of lipids that undergo a gel-to-liquid phase transi-

tion at several degrees above physiological temperature [13].

It is well known that drugs can be encapsulated in the water

area of liposomes or alternatively can be incorporated directly

in the lipid bilayer—depending on the hydrophilicity of a given

substance. Therefore, the objective of the research summarized

in this paper was to check not only where the butyltin com-

plexes with 2-sulfobenzoic acid locate in the lipid bilayer but

also, what’s more important, how BTsbz influence the ther-

motropic phase behavior of DPPC model membranes. For this

lipid-BTsbz interaction was studied in the temperature range

from 20 to 60 �C, i.e., in the gel and fluid phases of DPPC lipid

bilayers. Thermal parameters that were monitored include the

temperature at the pretransition (Tp) and the main transition

peak (Tm), the half-width (DT1/2) and change of the enthalpy

(DH) of the main transition on DPPC.

The effect of the BTsbz on the lipid bilayer phase transition

was examined mainly by the differential scanning calorimetry

(DSC)—a method useful for studying the nature of biological

systems such as lipids or proteins [14–17], and additionally by

fluorescence and infrared spectroscopy. The above-men-

tioned methods have been employed to systematically mon-

itor the influence of the BTsbz on different membrane regions.

The degree of packing order of the hydrophilic phase of the

lipid bilayer was determined by the Laurdan, Prodan and

MC540 fluorescence probes, whereas the fluorescence ani-

sotropy of the hydrophobic phase—with the DPH probe.

Materials and methods

Chemicals

The compounds [Sn(C4H9)2{O3SC6H4COO-2}(H2O)]�
(C2H5OH) (DBTsbz), [Sn(C4H9)3{O3SC6H4COOH-2}]

(TBTsbz) and [Sn2(C4H9)6{l-O3SC6H4COO-2}] (DTBTsbz)

were prepared by procedures reported earlier [5]. The sche-

matic structures of compounds in solutions are presented in

Figs. 1–3.

The 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine

(DPPC) lipid and Merocyanine (MC540) were purchased

from Sigma Aldrich, Steinheim, Germany. The fluorescent

probes: 6-dodecanoyl-2-dimethylaminonaphthalene (Laur-

dan), 6-propionyl-2-dimethylaminonaphthalene (Prodan),

1,6-diphenyl-1,3,5-hexatriene (DPH) were purchased from

Molecular Probes, Eugene, Oregon, USA.

Differential scanning calorimetry

DSC studies were performed as described previously [17].

Samples for DSC were prepared from multilamellar lipo-

somes (MLVs) of DPPC. The final concentration of lipids

was 25 mg cm-3. Pure lecithin MLVs (control sample) and

lecithin with BTsbz were placed in Mettler Toledo standard

aluminum crucibles of 40 ll capacity. Tightly closed ves-

sels were incubated for 2 days at 4 �C. Measurements were

performed with Mettler Toledo Thermal Analysis System

D.S.C. 821e, operated at a heating rate of 2 �C min-1 from

20 to 60 �C. Thermal cycles were repeated three times. The

experimental error in temperature and thermal response

was ±0.2 �C and ±5 %, respectively. Data were analyzed

using original software provided by Mettler Toledo.
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Fluorescence spectroscopy

Samples for steady-state fluorimetry consisted of DPPC

MLVs with BTsbz. MLVs were prepared identically as for

DSC measurements. The DPPC, compounds and

fluorescence probes (Laurdan, Prodan, MC540 and DPH)

were dissolved in chloroform and in ethanol, respectively.

Chloroform and ethanol were very carefully evaporated to

dryness under nitrogen and thin film was formed on the

flask wall, after which distilled water was added. The lipid

film was dispersed by agitating the flask on a vortex mixer

to give a milky suspension of liposomes at a temperature

above the main phase transition of DPPC. Samples were

incubated for 30 min in darkness at room temperature.

Final lipids’ concentration in the samples was 450 lM,

molar ratio of BTsbz and lipids was 0.2, and the concen-

tration of fluorescence probes was 10 lM. Measurements

were made at different temperatures—above and below the

main phase transition of DPPC. Thermal cycles (20–60 �C)

were repeated three times.

Measurements were conducted with a CARY Eclipse of

VARIAN fluorimeter equipped with a DBS Peltier tem-

perature controller (temp. accuracy ±0.1 �C). The excita-

tion and emission wavelengths for DPH probe were

kex = 360 nm and kem = 425 nm. The excitation wave-

length for Laurdan and Prodan was 360 nm, and the

emitted fluorescence was recorded at two wavelengths: 440

and 490 nm. The excitation and emission wavelengths for

MC540 probes were kex = 540 nm and kem = 585 nm,

respectively.

Fluorescence anisotropy (A) for DPH probes was cal-

culated using the formula A = (III - GI\)/(III ? GI\),

where III and I\ are fluorescence intensities observed in the

direction parallel and perpendicular to the polarization

direction of the exciting wave. G is an apparatus constant

dependent on the emission wavelength [20]. Changes in the

polar group packing arrangement of the hydrophilic part of

the membrane were investigated using Laurdan and Prodan

probes, on the basis of generalized polarization (GP), and

were calculated with the formula GP = (Ig - Il)/(Ig ? Il),

where Ig and Il are the fluorescence intensities at the gel

and the fluid phase, respectively [18, 19].

Attenuated total reflectance Fourier transform

infrared spectroscopy

The method was applied as described earlier [14, 20] with a

few modifications. Mixtures of DPPC dissolved in chlo-

roform (1 mg) and butyltin complexes dissolved in ethanol

were placed on ZnSe crystal and were dried under nitrogen

for a few minutes and under vacuum for 24 h. The dried

films of DPPC or BTsbz/DPPC were hydrated in distilled

water above the main phase transition of DPPC for 4 h.

Molar ratio of BTsbz/DPPC was 0.2. Measurements were

performed using Thermo Nicolet 6700 MCT spectrometer

(Thermo Fisher Scientific, Waltham, MA) with ZnSe

crystal at a heating cycle from 20 to 50 �C. Each single

spectrum was obtained from 128 records at 2 cm-1
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resolution in the range of 700–4000 cm-1. Preliminary

elaboration of a spectrum was done using the EZ OMNIC v

8.0 program, also by Thermo Nicolet. After filtering the

noise out of the extract spectrum, the spectrum of the water

solution was removed, and the baseline corrected.

Results and discussion

The influence of butyltin complexes with 2-sulfobenzoic

acid with thermotropic parameters of lipid membranes was

investigated by the means of differential scanning

calorimetry and additionally by spectroscopy methods. The

molecular model membranes are multilamellar liposomes

formed from DPPC. Phospholipids show thermotropic and

lyotropic phase behavior. When dispersed in excess water,

these lipids form hydrated bimolecular lamellar phases, in

which the lipid molecules either are packed in a quasi-

crystalline structure, the so-called gel phase, or remain in

lamellar arrangement but show higher two-dimensional

fluidity, i.e., the liquid-crystalline phase (La). Transition

between these phases, called the main phase transition, can

be induced by a temperature change, changes in hydration

or pH changes [21]. DPPC molecules show more compli-

cated phase behavior as at least two different gel phases are

observed: so-called intermediate Pb0 phase, in which the

surface of the bilayer is distorted by a periodic ripple, and

Lb0 phase in which the molecules are tilted at an angle of

about 30o relative to bilayer normal. With the help of DSC,

the heat signal associated with the transition from Lb0 to Pb0

and from Pb0 to La was examined. The influence of

TBTsbz, DBTsbz and DTBTsbz on the thermotropic phase

behavior of DPPC liposomes is compared in Figs. 1–3,

respectively. For pure DPPC, a broad pretransition can be

observed at Tp = 35 �C which corresponds to the transition

from the lamellar gel phase to the ripple gel phase and

then—a sharp and symmetric main phase transition peak at

Tm = 41.2 �C that corresponds to the transition from the

ripple gel phase to the lamellar liquid phase. The measured

transition temperatures and enthalpies for pure DPPC are

summarized in Table 1; these are in good agreement with

literature values [21].

As for the impact of individual compounds on cooper-

ativity of the main phase transition then for both TBTsbz

and DBTsbz for a molar ratio BTsbz/DPPC = 0.067, the

peak of the main phase transition became asymmetrical. At

higher concentrations of these complexes, the main phase

transition peak increasingly widened and two components

could be identified: the first (major) shifted toward lower

temperature and second (minor) corresponding to the Tm of

pure DPPC. These results may indicate formation of dif-

ferent domains consisting of different BTsbz/DPPC com-

positions and consequentlywith different Tm values. No

such effect was observed for DTBTsbz; however, this

compound caused the Tm to be decreased the most

(Table 1). For increasing concentration, all investigated

compounds abolished the pretransition and decreased Tm of

the main phase transition.

Supplementary methods of determining phase transition

temperatures of phospholipids that constitute liposomes are

spectroscopic methods, such as fluorescence spectroscopy

and attenuated total reflection Fourier transform infrared

spectroscopy (ATR-FTIR). These methods are applied in a

parallel with DSC to monitor the thermal properties of

biomolecules [22–26].

The infrared spectroscopy was used to check the influ-

ence of DBTsbz and DTBTsbz on phase transitions of

DPPC. The application of FTIR to the study of the phase

behavior of DPPC membranes allows monitoring of vari-

ous functional groups in order to obtain information about

lipid–compound interactions at the molecular level. The

infrared spectra of phospholipids can be divided into

spectral regions that originate from the molecular vibration

of the hydrocarbon tail, the interface region and the head

group. In the previous paper, we employed FTIR and NMR

methods to analyze molecular interactions between

Table 1 Temperature values of: (Tm) main phase transition, (DT1/2) peak half-width and enthalpy change (DH) of the main phase transition for

DPPC liposomes, in the presence of selected concentrations of butyltin complexes

TBTsbz DTBTsbz DBTsbz

Tm/�C DT1/2/�C DH/kJ mol-1 Tm/�C DT1/2/�C DH/kJ mol-1 Tm/�C DT1/2/�C DH/kJ mol-1

0.00 41.1 0.6 36.1 41.1 0.6 36.1 41.4 0.6 36.1

0.011 41.0 1.2 35.5 40.2 1.0 34.8 41.0 1.1 32.0

0.017 40.8 1.3 34.2 40.3 1.1 34.3 40.9 1.4 28.0

0.033 40.7 2.0 28.9 39.7 1.6 29.6 39.8 1.5 28.0

0.067 39.5 2.2 21.2 38.4 1.2 30.1 39.6 2.0 30.1

0.100 38.8 2.5 20.3 37.7 1.4 25.8 38.9 1.8 24.0

0.200 37.7 2.5 17.5 36.6 1.3 21.9 38.3 1.9 20.1
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investigated compounds and DPPC. FTIR measurements

were conducted at room temperatures for dry lipid films as

well as for lipids hydrated with deuterated water [10]. In

this paper, we analyze the influence of BTsbz on lipid

phase transitions focusing in particular on properties of

hydrophobic part of the DPPC-formed lipid bilayer because

the physical stability of liposomes has been found to be a

function of lipid acyl chain length [27]. The most intense

vibrations of lipid systems are caused by carbon–hydrogen

stretching vibrations and known as asymmetric and sym-

metric CH2 stretching modes in the spectral region of

3000–2800 cm-1. The frequencies of this group of alkyl

chains depend on mobility (fluidity) of the chains and

increase, e.g., with increasing temperature or during tran-

sition from the gel to the liquid-crystalline state. The

increase in the wave number of these bands testifies to an

increased liquidity of the hydrophobic part of the mem-

brane. The CH2 asymmetric stretching located at about

2920 cm-1 and symmetric located about at 2850 cm-1 are

strong lipid bands which are sensitive to conformational

changes. They respond to any difference occurred in the

trans/gauche ratio in acyl chain. Conformational changes

can also be detected by examining asymmetric CH3 at

2965 cm-1 and symmetric CH3 at 2872 cm-1 bands which

are stretching modes of the terminal methyl group (Fig. 4).

No changes in the methylene group frequencies were

observed for the investigated BTsbz/DPPC systems.

Dependence of the asymmetric and symmetric CH2

stretching vibration in pure DPPC and BTsbz/DPPC sys-

tems as a function of temperature is shown in Fig. 5a, b,

respectively. It is apparent that at a room temperature

(25 �C) investigated complexes do not significantly change

the ordering of hydrocarbon chains, which is in agreement

with earlier conclusions [10]. Significant changes start to

appear with increasing temperature: Both DTBTsbz and

DBTsbz compounds change the frequency of vibrations of
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Fig. 4 Infrared spectra of DPPC bilayer and DPPC with butyltin

compounds in the region between 3000 and 2800 cm-1 at the gel

(25 �C) and liquid-crystalline (48 �C) phases
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methylene groups of acyl chains of DPPC, however, in a

different way. The most pronounced changes of frequen-

cies of CH2 were observed in the presence of the DTBTsbz.

DTBTsbz causes an increase of the wave number for the

gel and liquid phase and also lowers the Tm (Fig. 5a, b).

DBTsbz also causes lowering Tm, except that in compar-

ison with DTBTsbz, the change is less pronounced and

different in character because DBTsbz slightly abolished

the sharp phase transition from the gel phase to the liquid

crystal phase (Fig. 5b). This is supported by the broadening

of the main transition peak observed in DSC measurements

for this compound.

In summary, FTIR and DSC results revealed that BTsbz

eliminate the pretransition and shift the main phase tran-

sition to lower temperatures as compounds concentrations

are increased. By monitoring the CH2 stretching vibrations

in infrared spectra, it was revealed that DTBTsbz increases

acyl chain flexibility, i.e., increases disorder of DPPC

bilayer in both the gel and liquid-crystalline phase.

In addition to IR methods, the impact of BTsbz on phase

transition and fluidity of multilamellar liposomes (MLVs)

formed with DPPC was examined with the help of the

steady-state fluorimetry. Fluorescence intensity was mea-

sured using four probes: Laurdan, Prodan, MC540 and

DPH. These fluorescent probes were used because each of

them incorporates in a different region of lipid bilayers

[20].

Laurdan is a membrane fluorescent probe that has the

unique advantage of being sensitive to the phospholipid

phase state. It is located in the hydrophilic–hydrophobic

interface of the bilayer with the lauric acid tail anchored in

the phospholipid acyl chain region [28]. Calculated values

of general polarization (GP) of the Laurdan probe for

MLVs formed from DPPC are presented in Fig. 6a. All

investigated compounds slightly lower the GP coefficient

values in the gel phase; however, DBTsbz induces bigger

change in the liquid-crystalline phase. Lower values of GP

for MLVs in the absence/presence of BTsbz, in comparison

with pure DPPC, may indicate slightly increasing disorder

of the polar heads of lipid bilayers, which would testify that

these compounds locate in the hydrophilic part of the

bilayer. Most probably, such location of compounds causes

slight lowering of Tm which can be observed in Fig. 6a.

Experiments performed with Prodan probe lead to similar

conclusions. Furthermore, as a result of its location in the

bilayer, Prodan should be also sensitive to the pretransition

occurring in the lipid polar head groups region [28]. In

Fig. 6b values of GP coefficients calculated on the basis of

fluorescence intensity measured at different temperatures

for the Prodan probe are presented. For DBTsbz, large

changes in GP values are observed in both gel and liquid

phases of the DPPC bilayer. The other two compounds:

TBTsbz and DTBTsbz cause slightly smaller changes of

GP in the gel phase. These results suggest that DBTsbz

strongly influences the gel state of the DPPC bilayer. All

compounds reduce the pretransition and slightly decrease

fluidity of hydrophilic part of bilayers—shift toward lower

temperatures of the main transition phase. Similar

20 25 30 35 40 45 50 55

Temperature/°C

–0.4

–0.2

0

0.2

0.4

G
P

DPPC
DTBTsbz
DBTsbz
TBTsbz

20 25 30 35 40 45 50 55

Temperature/°C

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

G
P

DPPC
DTBTsbz
TBTsbz
DBTsbz

(a) (b)

Fig. 6 Values of general polarization of Laurdan (a) and of Prodan (b) at different temperatures for DPPC liposomes with the tested BTsbz

(molar ratio BTsbz/DPPC = 0.2)

512 H. Pruchnik

123



conclusions can be drawn from studies with MC540 probe.

The negative charge of the MC540 probe determines its

location at or near the membrane interface slightly above

the domain of the glycerol backbone of phospholipid

liposomes [29]. The research results show that fluorescence

of MC540 increases in the presence of loosely packed

membrane when compared to that in the presence of lipid

in the gel phase [29, 30]. In the presence of BTsbz, the

fluorescence intensity of MC540 was increasing (Fig. 7a)

which suggests decreased organization of lipids, which in

turn would indicate increased membrane surface area

accessible for the binding of the dye due to the loss of lipid

packing [31]. All compounds also cause a slight decrease in

the Tm, which can be seen in Fig. 7a as a shift of the

maximum intensity toward lower temperatures. Hence, the

conclusion is that BTsbz interact mainly with the interfa-

cial and hydrophilic region of the lipid bilayer, which

confirms conclusions from our earlier research [10].

Finally, the effect of the BTsbz on the fluidity and the

main phase transition of the MLVs formed from DPPC was

studied on the basis of anisotropy measured with the DPH

probe. The fluorescence steady-state anisotropy is primar-

ily related to the restriction of the rotational motion of the

dye to the hydrocarbon chain packing order. Therefore,

decrease of the anisotropy parameter can be explained by

the structural perturbation of the bilayer hydrophobic

region due to incorporation of studied compounds. The

dependence of the DPH probe on temperature is presented

in Fig. 7b. BTsbz practically do not change fluorescence

anisotropy—we observed only slight decrease in the Tm.

These results suggest that BTsbz significantly influence the

fluidity in the hydrophobic region of the DPPC bilayers.

Conclusions

The aim of this work was to analyze the effect of newly

synthesized butyltin complexes with 2-sulfobenzoic acid

on thermotropic phase behavior of DPPC. In this study

were used calorimetric and spectroscopic methods to

monitor changes in the gel-to-liquid-crystalline transition

of DPPC, as this phase change is very sensitive to mole-

cules that interact with the membrane. Obtained results

show that all investigated compounds slightly decrease the

enthalpy and temperature of the main phase transition of

DPPC. TBTsbz and DBTsbz reduce the transition’s coop-

erativity of the peak. With increasing concentration of

compounds, the main phase transition gets significantly

broader and asymmetrical and at the same time—the pre-

transition disappears. These results may indicate the BTsbz

preferentially intercalate onto head group region and to

some extent—into polar–apolar region of the lipid bilayer.
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Pelińska I, Pruchnik FP. Butyltin(IV) 2-sulfobenzoates: synthesis,

structural characterization and their cytostatic and antibacterial

activities. J Inorg Biochem. 2012;111:25–32.

8. Casini A, Messori L, Orioli P, Gielen M, Kemmer M. Interactions

of two cytotoxic organotin(IV) compounds with calf thymus

DNA. J Inorg Biochem. 2001;85:297–300.

9. Nath M, Vats M, Roy P. Tri- and diorganotin(IV) complexes of

biologically important orotic acid: synthesis, spectroscopic stud-

ies, in vitro anti-cancer, DNA fragmentation, enzyme assays and

in vivo anti-inflammatory activities. Eur J Med Chem.

2013;59:310–21.

10. Pruchnik H, Kral T, Poradowski D, Pawlak A, Drynda A,
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