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Abstract The Na(I), Zn(II) and Ni(II) complexes with

quercetin have been synthesized. The composition of these

compounds was established by means of elemental and

thermogravimetric analyses. To study the molecular

structure of synthesized compounds, many miscellaneous

analytical methods, which complement one another, were

used: infrared (FT-IR), Raman (FT-Raman) and electronic

absorption UV/VIS spectroscopy. For studying the cyto-

toxic and genotoxic activity of synthesized compounds,

bioreporter strain of Escherichia coli K-12 recA::gfpmut2

has been used.
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Introduction

Quercetin (3, 30, 40, 5, 7-pentahydroxyflavone) is a major

flavonoid in human diet such as fruits, vegetables, spices,

red wine and tea [1]. Estimated mean intake of total

flavonoids in Europe was 428 ± 49 mg/day, and

136 ± 14 mg/day of the total values was monomeric

compounds [2]. In Japan, the average quercetin intakes

were 16.2 mg/day [3]. The antibacterial [4], antiviral [5],

antiallergic [6], anticarcinogenic [7, 8] and antioxidant [9,

10] properties of quercetin were widely studied and

described. Moreover, quercetin can effectively chelate

metal ions. Recently, the quercetin–metal complexes

arouse much interest because of their higher antioxidant

and anticancer properties than quercetin alone. Tan et al.

[11] revealed that quercetin–nickel (II) complex success-

fully promotes the cleavage of plasmid DNA, producing

single and double DNA strand breaks. In other study, the

same authors showed that quercetin–copper(II) complex

promoted the cleavage of plasmid DNA, producing single

and double DNA strand breaks, and intercalated into the

stacked base pairs of DNA. Moreover, the complex showed

pro-oxidative properties and induced oxidative DNA

damage involving generation of reactive oxygen species

such (H2O2 and CuOOH) [12]. Other study of Tan et al.

showed that antitumor activity of quercetin zinc(II) com-

plex might be related to its intercalation into DNA [13].

Metal chelators can affect the bioavailability, speciation

and toxicity of different metals. For example, the toxicity

of aluminum was linked to many neurological and bone

illness [14], and the complexation of quercetin with Al(III)

can reduce the concentration of aluminum in diet [15].

Certain water-insoluble nickel compounds exhibit potent

carcinogenic activity possibly by mutagenesis, chromo-

some damage, formation of Z-DNA, inhibition of DNA

excision repair or epigenetic mechanisms [16, 17]. The

formation of quercetin–nickel, quercetin–chromium or

quercetin–copper complexes could as well decrease the

toxic effect of these metals. The chelating properties of

quercetin are determined by its chemical structure, i.e., the

presence of two aromatic rings (benzoyl A ring and
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cinnamoyl B ring) substituted by hydroxyl groups and

linked together by O-heterocycle. The possible chelating

sites are as follows: 3-hydroxychromone, 5-hydroxy-

chromone and 30,40-dihydroxyl groups (Fig. 1). Many

studies are devoted to explain the chelating site between

quercetin and different metals. For example, it was found

that Al(III) could form two complexes of stoichiometry of

Al(III)/quercetin 1:2 or 2:1 and the first site involved in the

metal chelation was the 3-hydroxychromone and the sec-

ond one was the 30,40-dihydroxyl group [18]. The study of

Bukhari et al. [19, 20] showed that Cu(II), Co(II) formed

complexes with quercetin where the metal/ligand ratio was

2:1; the 3-hydroxychromone and the 30,40-dihydroxyl

groups were engaged in chelation. According to

Torreggiani et al. [21] quercetin chelates Cu(II) ions

through the 30,40-dihydroxyl groups (metal/ligand ratio

0.5:1), in the excess of metal ions, the C=O group was also

involved in metal chelation and the stoichiometry of

Cu(II)/quercetin was 2:1. The complexes of Fe(II), Ni(II),

Co(II) and Zn(II) with quercetin possessed metal/ligand

stoichiometries 2:1, and the 5-hydroxychromone moieties

were involved in metal coordination [22]. Moreover, the

composition of Cd(II) [23], Ni(II), Co(II), Pd(II) [24],

Cu(II) [25], Ca(II) and Mg(II) [26] complexes with quer-

cetin was established as 1:1 in different pH from 5 to 11. In

the case of Ca(II) and Mg(II) complexes, the metals were

coordinated through a bidentate ligand (through the cate-

chol moiety on the B ring) [26]. Due to the discrepancy in

chelation of metal ions by quercetin, it is important to carry

out studies that may confirm the exact chelating sites in

quercetin molecule.

In this work, the quercetin sodium (I), zinc (II) and

nickel (II) compounds were synthesized. Their composition

was established on the basis of elemental and thermo-

gravimetric analyses. The molecular structure of quercetin

and obtained compounds was studied by IR, Raman and

UV/VIS spectra. The studies relying on the synthesis of

new derivatives of biologically important phenolic com-

pounds are very important, because as a result the new

compounds with the enhanced desirable biological

properties, i.e., antimicrobial, antioxidant and anticancer

[27, 28], might be obtained. Many studies revealed that

complexation with copper (II) or chromium (III) improves

antioxidant properties of metal complexes comparing with

the free ligand [19, 29] or complexation with rare earth

metals (III) increases the antitumor activity of ligand [30].

Experiment

Sample preparation

Zn(II) and Ni(II) complexes with quercetin were synthe-

sized by the following method. To the 0.01 mol of quer-

cetin dissolved in CH3OH (20 mL), the 0.02 mol of ZnCl2
or NiCl2 was added. By adding NaOH, the pH of the

mixture was about 10. After 1.5 h of stirring, the dark

yellow precipitates were filtered, washed with the mixture

methanol–water 3:1 and dried in room temperature for

3 days. In order to synthesize sodium salt, 0.01 mol of

quercetin was dissolved in CH3OH (20 mL), and then, the

0.01 mol of NaOH was added. The obtained solution was

stirred at room temperature for 1.5 h. After stirring, the

reaction mixture was filtered and the filtrate was evapo-

rated slowly at room temperature. The resulting dark yel-

low product was washed with t-butanol and dried in a

desiccator.

Measurement

The FT-IR spectra were recorded with an Alfa (Bruker)

spectrometer within the range of 400–4000 cm-1. Samples

in the solid state were measured in KBr matrix pellets. FT-

Raman spectra of solid samples were recorded in the range

of 100–4000 cm-1 with a MultiRam (Bruker) spectrome-

ter. The resolution of the spectrometer was 1 cm-1. Ele-

mental analysis for the mass percentages of carbon and

hydrogen was done with Perkin–Elmer 240 equipment. The

UV/VIS spectra were registered in the range of

200–800 nm using Agilent Cary UV/VIS spectropho-

tometer. The thermal stability and decomposition of quer-

cetin complexes were examined using a Setsys 16/18

(Setaram) thermal analyzer recording the TG/DSC/DTG

curves. The samples (8–9 mg) were heated in a ceramic

crucible in the range 30–1000 �C in flowing air atmosphere

with a heating rate of 5 �C/min. The products of dehy-

dration and decomposition processes were established on

the basis of the TG curves.

The cytotoxic studies of quercetin and its complexes

with Na(I), Ni(II) and Zn(II) were conducted with use of

Escherichia coli K-12 strain. The dynamic of the growth of

bacteria strain within 3-h treatment with quercetin (Q),

quercetin sodium salt (Q-Na), quercetin with Zn (II) and
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quercetin with Ni (II) was monitored by the use of standard

spectrophotometer analysis of optical density (OD)

(GloMax�, Multi Detection System, Promega) values at

the wavelength of 600 nm. The detailed methodology was

described in [31].

Results and discussion

Thermogravimetric and elemental analyses

The results of elemental and thermogravimetric analyses

(Tables 1 and 2) allowed us to study the thermal stability as

well as the thermal decomposition of Na(I), Zn(II) and

Ni(II) complexes of quercetin. The results showed that

studied complexes of quercetin were hydrated. Thermo-

analytical curves of quercetin metal compounds (Figs. 2, 3,

4) indicated the stages of dehydration process and degra-

dation of organic ligand. The results of thermal analysis

data showed that the number of water molecules is in quite

good agreement with that defined by elemental analysis

[Na(C15H9O7)�1H2O; Ni(C15H8O7)�2.5H2O; Zn(C15H8O7)�
4H2O]. The metal percentages calculated from the metal

oxide residues were also in good agreement with the results

of elemental analysis (Table 1). The Na(C15H9O7)�1H2O

salt heated in the temperature range of 30–135 �C dehy-

drated and formed an anhydrous compound (Fig. 2). The

relative mass loss calculated from TG curve being equal to

5.77 % corresponded to the loss of one water molecule

(calculated value was 5.26 %). In the temperature range of

145–460 �C, the anhydrous sodium salt of quercetin was

finally decomposed to Na2CO3. The two and half hydrated

nickel(II) complex of quercetin heated in air was stable up

to 30 �C. Above this temperature, nickel compound was

dehydrated (Fig. 3). The observed mass loss for total

dehydration process was equal to 11.17 % (calc. 11.11 %).

The loss of all water molecules led to creation of anhydrous

compound, which gradually decomposes to NiO with for-

mation of intermediate, unstable compounds (195–560 �C).

The Zn(C15H8O7)�4H2O complex dehydrated at 190 �C
and forms an anhydrous quercetin complex (Fig. 4). The

relative mass loss calculated from TG curve was equal

to 16.44 % (calculated value was 16.42 %). In the

Table 1 Results of thermal decomposition of sodium salt and selected transition metal complexes with quercetin in air

Complex T1/�C Tendo Mass loss/% Anhydrous

form

T2/�C Texo Residue/% Residue

Exp. Calc. Exp. Calc.

Na(C15H9O7)�1H2O 30–135 80 5.77 5.26 Na(C15H9O7) 145–460 290 15.59 15.49 Na2CO3

365

395

Ni(C15H8O7)�2.5H2O 30–195 85 11.17 11.14 Ni(C15H8O7) 195–560 330 19.24 18.49 NiO

165 415

480

Zn(C15H8O7)�4H2O 30–190 95 16.44 16.45 Zn(C15H8O7) 190–480 420 18.15 18.60 ZnO

T1 Temperature range of dehydration

T2 Temperature range of degradation of anhydrous complexes to suitable oxides or Na2CO3

Tendo Peak top of endothermic effect

Texo Peak tops of exothermic effect

Table 2 The elemental analysis data of sodium and selected transi-

tion metal complexes with quercetin

Complex C/% H/% Metal/%

Exp. Calc. Exp. Calc. Exp. Calc.

Na(C15H9O7)�1H2O 51.46 52.59 3.07 3.21 6.78 6.72

Ni(C15H8O7)�2.5H2O 42.81 44.56 3.03 3.22 15.12 14.49

Zn(C15H8O7)�4H2O 39.92 41.13 3.66 3.66 14.58 14.91
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Fig. 2 The TG and DSC curves of sodium salt of quercetin
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temperature range of 190–480 �C, the anhydrous zinc

complex of quercetin was finally decomposed to ZnO.

According to the literature data, other metal complexes of

quercetin showed similar thermal behavior. The thermo-

gravimetric analysis of the sodium(I) salt and Fe(II) com-

plex of sulfonic derivative of quercetin revealed that these

compounds underwent one step dehydration in the tem-

perature range 20–150 �C for sodium salt (loss of four

water molecules) and 20–160 �C for the iron complex (loss

of 12 molecules of water) [32]. The increase of temperature

in the range of 150–560 �C caused the decomposition of

the anhydrous compounds. For the vanadyl complex of

quercetin (i.e., VO(OH)C15H10O7)(H2O)2), one step of

dehydration was established as well [33]. The loss of two

water molecules occurred in the temperature range

50–150 �C. The next steps were associated with the

oxidative degradation of organic ligand and oxidative

degradation of the remained intermediate that led to the

final product formation, i.e., V2O5.

According to the results of thermal and elemental

analyses, the proposed possible place of metal coordination

was the 30,40-dihydroxyl groups in the B ring with g2

chelating catecholate group (Fig. 5) [34]. Although

generally the chelating properties of flavonoids have been

attributed to the presence of the 3- and 5-hydroxychromone

moieties, there were studies revealing the catechol moiety

as well [18, 26, 35]. For example, in the paper of Conrad

and Merlin describing the Al(III) complex of quercetin, in

the alkaline medium one of the complex form was

Al(III)/quercetin 1:1 where the complexing site was cate-

chol group [18]. In the acidic solution, the ortho-dihy-

droxyl group was not involved in Al(III) complexation. In

the alkaline medium, the previous studies [18, 36] showed

that the 30,40-dihydroxyl group possessed strong chelating

properties in comparison with the 3- and 5-hydroxy-

chromone group.

Infrared and Raman analysis

The assignments of the wavenumbers of selected bands

from the FT-IR and FT-Raman spectra of quercetin and its

sodium salt and complexes with Zn(II) and Ni(II) are

gathered in Table 3 and shown in Figs. 6 and 7 (additional

spectra in the Electronic Supplementary Material). The

assignment was done on the basis of the literature data [19–

21]. In the spectral range of 3390–3250 cm-1 bands

assigned to the stretching vibrations of the -OH groups

appeared. Strong band derived from the stretches of the

C=O in quercetin molecule was present at 1672 cm-1. The

stretching m(OH), m(C=O) and deforming b(C–OH) vibra-

tions were moved toward lower wavenumbers due to the

breakdown of the hydrogen bonds in favor of the metal

chelation. The formation of metal complexes affected as

well the electronic charge distribution in the whole mole-

cules what can be seen via the decrease in the wavenum-

bers of the aromatic ring vibrations, increase in the

wavenumbers of m(C–O–C) and occurrence in the spectra

of complex bands assigned to the m(C–O) of the catechol

group engaged in metal coordination. The presence of the

stretching metal–O vibrations proved the metal

coordination.

UV/VIS analysis

In Table 4, the maximum of bands from the UV/VIS

spectra of quercetin and sodium(I), zinc(II) and nickel(II)

compounds is shown. The bands were related to the

p ? p* transition within the aromatic rings of ligand. The

band I (at about 256 nm) corresponded to A ring absorp-

tion, whereas band II (at *370 nm) was associated with

the B ring absorption. The band I was shifted toward higher

and lower wavelengths only in the case of spectra of Zn(II)

complex registered in the methanolic and aqueous solution,

respectively. The band II, however, was moved to higher

wavelengths (bathochromic shift) for spectra registered for

both Ni(II) and Zn(II) complexes in both methanolic and
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Fig. 3 The TG and DSC curves of nickel (II) complex of quercetin
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Fig. 4 The TG and DSC curves of zinc complex of quercetin
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aqueous solutions. It can be explained by the extension of

the conjugated system as a result of metal complexation.

The very distinct bathochromic shift of band II might

confirm the participation of the B ring in metal chelation.

Moreover, there were evident differences between the

value of the shift in the spectra of sodium salt and transition

metal complexes, what could be explained by different

type of metal–ligand bonding, i.e., ionic in the sodium

compound and covalent in the Ni(II) and Zn(II) complexes

of quercetin.

Cytotoxic study

The results of the cytotoxic study are shown in Fig. 8.

Monitoring of the bacteria culture growth of E. coli K-12

strain after 3 h of incubation with chemicals indicated a

significant decrease in the optical (OD) of bacteria culture

incubated with quercetin and Ni(II) complex at the con-

centration of 0.001 mg mL-1 in comparison with the

control sample. There were no statistical differences for

OD values in the case of the other tested chemicals.

Zn2+
Zn+ Zn2+

η2 chelating
catecholate

    chelating
semiquinonate

    syn monodentate
           terminal

    syn–syn didentate
           bridging

    anti–anti didentate
           bridging

η2:η1 didentate
bridging

O O O O O OH

O

O
O O O O

Zn2+ Zn2+ Zn2+ Zn2+

Zn2+

Zn2+

Fig. 5 Different types of metal

ion coordination by the ortho-

dihydroxyl group [34]

Table 3 The wavenumbers and intensity of selected bands from the FT-IR and FT-Raman spectra of studied compounds

Bands Quercetin Na(I)–Q salt Zn(II)–Q complex Ni(II)–Q complex

IR Int Raman Int IR Int IR Int IR Int

m(OH)* 3390–3250 s 3390–3250 s 3390–3250 s 3390–3250 s

m(C=O) 1672 s 1652 s 1651 m 1651 s

m ring 1616 vs 1615 s 1601 s 1614 vs 1601 vs

m ring 1512 vs 1512 s 1508 s 1505 vs 1503 s

m(C–O) catechol group 1462 m

m ring 1429 s 1430 s 1444 s

m(C–O) catechol group 1402 s 1421 s

b(C–OH) 1362 vs 1353 s 1362 m 1344 s 1346 s

b(CH) 1317 s 1314 s 1319 s 1319 s

m(C–O–C) 1244 vs 1243 s 1256 s 1250 1246 s

b(OH) 1211 vs 1212 s 1209 s 1211 s 1210 s

m(C–CO–C) ? b(C–CO–C) 1165 vs 1162 s 1167 m 1169 s 1167 s

m(metal–O) 463 m 453 vs 443 s

* Symbols denote: m stretching vibrations, b deforming in-plane vibrations; int intensity, m medium, s strong, vs very strong
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Fig. 6 The FT-IR spectra of quercetin
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Fig. 7 The FT-IR spectra of zinc(II) complex of quercetin

Table 4 The maximum of absorption from the UV/VIS spectra of aqueous and methanolic solutions of quercetin and its metal compounds

Compound Aqueous solution Methanolic solution

Band I/nm Band II/nm Band I/nm Band II/nm

Quercetin 256 370 256 374

Na(I)–Q salt 256 370 256 374

Zn(II)–Q

complex

250 427 268 430

Ni(II)–Q complex 256 426 257 429
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The obtained results indicated the cytostatic ability of

quercetin and its complex with Ni (II) in relation to

E. coli living cells. The details of this study are presented

in [31].

Conclusions

The sodium(I) salt and zin(II) and nickel(II) complexes of

quercetin were obtained in the solid state. The composition

of these compounds was established by means of thermo-

gravimetric and elemental analyses. The general formula of

the obtained compounds were Na(C15H9O7)�1H2O,

Ni(C15H8O7)�2.5H2O and Zn(C15H8O7)�4H2O. The quer-

cetin complexes dehydrated in the range of temperature

about 30–195 �C (in the case of Zn(II) and Ni(II) com-

pounds) and 30–135 �C (sodium salt of quercetin). These

compounds totally decomposed in the temperature range

145–460 �C (Na salt), 195–560 �C (Ni complex) and

190–480 �C (Zn complex). In the alkaline medium, Zn(II)

and Ni(II) ions were chelated by the 30,40-dihydroxyl

groups in the B ring of quercetin. The changes in the FT-IR

and UV/VIS spectra of complexes comparing with the

spectra of quercetin resulted from metal cation coordina-

tion and alternation in the electronic charge distribution in

ligand. Mostly affected were bands assigned to the ring and

C–OH vibrations. Metal ion coordination through the

hydroxyl group caused an appearance of new bands

assigned to m(C–O) in the FT-IR spectra of complexes. The

cytotoxic study showed that E. coli K-12 strain is sensitive

to quercetin and Ni(II) complex of quercetin at the con-

centration of 0.001 mg mL-1.
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