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Abstract Nanopowders of lithium niobate (LiNbO3, LN)

were synthesized by a water-based modified Pechini

method, in which Li2CO3 and ammonium niobate (v) ox-

alate hydrate (C4H4NNbO9�xH2O) are used as the Li and

Nb source materials, respectively. The kinetics of forma-

tion of the intermediate gelatinous precursor was studied

by thermal gravimetry and differential scanning calorime-

try. The LN nanoparticles produced by calcining of the gel

at various temperatures were characterized by X-ray

diffraction and scanning electron microscopy. The effect of

the calcination temperature on the morphology and struc-

ture of LN nanoparticles produced is investigated. The

particle and crystallite sizes of the LN prepared could be

controlled in the range of 20–250 nm by changing the

calcination temperature of the gelatinous precursor.

Keywords Lithium niobate � Pechini method �
Ammonium niobate (v) oxalate hydrate � Nanoparticle

Introduction

Lithium niobate (LN), a well-known ferroelectric material,

has numerous applications in the electronic industry ranging

from waveguides to nonvolatile memory elements [1]. Usu-

ally, LN powder is synthesized by conventional solid-state

reaction using Li2CO3 and Nb2O5. This classical method of

fabrication often results in compositional inhomogeneity and

high agglomeration due to the loss of lithium at high calci-

nation temperatures which can be as high as 1200 �C [2].

Recently, numerous alternate approaches have beendescribed

for the preparation of LN powder, including sol–gel [3],

Pechini [4], hydrothermal [5, 6], combustion [7, 8],molten salt

[9, 10], and mechanochemical [11] methods.

The Pechini technique is a wet chemical method and is

based on the chelation of metallic ions using multifunctional

carboxylic acids such as citric acid, in the presence of

ethylene glycol. In this process, the polymerization of the

complex is stimulated by heating the transparent solution and

a uniform resin in which metal ions are homogeneously

dispersed at molecular level, which ultimately results in the

formation of LN [12, 13] or other lithium metal oxide [14]

nanoparticles with outstanding chemical uniformity. Fur-

thermore, it is pertinent to mention that the lack of Li loss is

ensured by the use of low-temperature methods resulting in

the control of chemical composition of the product [15, 16].

Other advantages of the Pechini method include the possi-

bility to work in aqueous solutions in which starting mate-

rials can be solved easily. Li2CO3 is easily soluble in water

and therefore commonly used as the Li source material for

the preparation of LN powder in Pechini method.

Despite the above-stated benefits, there are still some

difficulties with niobium source resources. Alkoxides of

niobium which have been most widely used as the Nb

source suffer from a drawback that they must be handled
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with great care since they are extremely sensitive to

moisture and many also to oxygen and therefore should be

handled in a highly dry inert atmosphere [2, 17]. Further-

more, alkoxides are very costly since their production

involves numerous chemical processes. In comparison with

alkoxides, chlorides are more cost-effective to be used as the

startingmaterial and also less sensitive to humidity, but often

result in residual chlorine as contamination in the ultimate

outcome [18]. Niobium oxide (Nb2O5) is an inexpensive

source compared to both alkoxides and chlorides, but the

exceptionally high chemical stability of Nb2O5 confines its

application in low-temperature reactions [2, 19]. Therefore,

the production of LNusingNb2O5 needs either hydrothermal

method [5] or molten salt [10] processing condition. It is

worthmentioning that hydrothermal preparation of LN using

Nb2O5 requires high temperature (240 �C) and extensive

processing time (72 h) [6]. Alternatively, hydrous niobium

oxide (Nb2O5�nH2O), often called as niobic acid, is fre-

quently used as highly reactive niobium precursor in the

Pechini process and other sol–gel methods [14, 19]. Never-

theless, the preparation of hydrous niobium oxide is chal-

lenging as Nb2O5 should first be dissolved into HF [20].

Furthermore, the subsequent processing stages, including

precipitation, are time consuming [21–24]. It should be noted

that although niobic acid is the most widely used Nb source

material in the production of alkali niobate, its compositional

heterogeneity is highly possible since several compounds

which promote the level of impurities are being used in the

preparation process.

Niobium (v) ammonium oxo-tris (oxalate) monohydrate

[(NH4)3NbO(C2O4)3�H2O] [25] or ammonium dihydrogen

tris(oxalato) oxoniobate(v) trihydrate, NH4H2[NbO(C2-

O4)3]�3H2O [26, 27], being soluble Nb salts, has been used

for the production of alkali niobates by using hydrothermal

synthesis [27], Pechini [28], thin-film preparation [29],

evaporative [26], and combustion [30] methods. Nb oxalate,

though soluble in water, has been used in different complex

forms in order to enhance its gel formation capability [31,

32]. Asai et al. [33] used NH4H2[NbO(C2O4)3]�3H2O for the

preparation of Nb citrate complex and synthesized SrBi2-
Nb2O9 by an aqueous solution route. Alternative Nb com-

plex, niobium (v) peroxo-citrate, was synthesized from

[(NH4)3NbO(C2O4)3�H2O] and used as precursor solution in

the preparation ofK0.5Na0.5NbO3 [25]. Recently, a novel and

low-cost Nb source, ammonium niobate (v) oxalate hydrate

(C4H4NNbO9�xH2O), has been effectively used to make

alkali niobates such as Na0.5K0.5NbO3 [34], Sr0.6Ba0.4Nb2-
O6, LN, and NaNbO3 [35] by the Pechini technique.

The objective of this article is to present a simple and

direct Pechini-type method which is capable of synthesizing

high-purity crystalline LN nanoparticles with the desired

size and composition. LN was synthesized from aqueous

precursor solutions of ammonium niobate(v) oxalate

hydrate and lithium carbonate in citric acid. The structural

and microstructural properties of the synthesized powders at

different calcination temperatures have been studied.

Experimental

The procedure employed for the preparation of LN is sum-

marized in Fig. 1. The starting materials for the preparation

of the precursor gel were lithium carbonate (Li2CO3,

99.99 %), ammonium niobate (v) oxalate hydrate (C4H4-

NNbO9�xH2O (ANO), 99.99 %, melting point 122 �C), and
ethylene glycol (HOCH2CH2OH, 99.8 %) purchased from

Sigma-Aldrich and citric acid [HOC(COOH)(CH2COOH)2,

99.5 %] from Fisher Scientific, UK. For this, the stoichio-

metric amount of lithium carbonate and ammonium niobate

(v) oxalate hydrate were separately dissolved in citric acid

solution. After stirring of both solutions for about 15 min,

ammonium niobate (v) oxalate solutionwas added to lithium

carbonate solution and the resultant transparent mixture

obtained was heated to 80 �C. Then, ethylene glycol was

added to the clear solutionwhilemaintaining the temperature

at 80 �C, in order to obtain the citric acid/ethylene glycol

molar ratio of 2:10. The clear transparent Li–Nb precursor

solution obtainedwas kept at the same temperature for 6 h to

produce a gelatinous precursor. It was found that the

appropriate drying temperature depends on the dwell time.

The precursor obtained was then calcined at different tem-

peratures for 4 h in air to form nanoparticles of LN.

The thermal decomposition behavior of the gelati-

nous precursor, including thermogravimetric (TG) and

Li2CO3 +
Citric Acid +

H2O

Mixing

 Gelatinous
LN precursor

Calcination

Addition of ethylene glycol

LN nanoparticles

ANO +
Citric Acid +

H2O

Mixing

Fig. 1 Flowchart for the preparation of LiNbO3 by the modified

Pechini method
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differential scanning calorimetry (DSC), was studied by a

thermal analyzer model SDT-Q600, equipped with alumina

crucibles. For this purpose, 20-mg gelatinous precursor was

heated to 1000 �C at a heating rate of 20 �C min-1 under a

constant air flow rate of 100 mL min-1. The phase com-

position of the heat-treated powders was identified by using

a Bruker D8 X-ray diffractometer (XRD) with Cu-Ka

radiation, operated at 40 kV and 40 mA. The step size and

dwell time were 0.03� 2h and 3 s, respectively. The

diffractograms were then analyzed using the X’Pert

Highscore Plus program. Moreover, the crystallite size of

the LN nanoparticles obtained was determined using the

Scherrer’s formula [36],

C ¼ 0:9k=bCosh ð1Þ

where C is the crystal size, k is the wavelength of Cu-Ka, b
is the full width at half maximum (FWHM) intensity, and h
is Bragg’ s angle. A JEOL 6340F field emission high-res-

olution scanning electron microscopy (SEM) was used for

electron microscopy evaluations.

Results and discussion

The gelatinous LN precursor was prepared according to the

procedure illustrated in Fig. 1. The thermal decomposition

of the precursor obtained is shown in Fig. 2. A major mass

loss of 70 % is observed in the TG curve at a wide tem-

perature range extending from 120 to 220 �C. This event

which is accompanied by an endothermic peak in the DSC

curve at about 180 �C is attributed to the loss of free or

bound water in the gelatinous structure [37, 38] as well as

the elimination of excess ethylene glycol [39, 40].

The second major peak in the DSC curve of Fig. 2 is an

exothermic peak at 560 �C which is accompanied by a mass

loss of 17 % at a temperature range of 400–625 �C, as indi-
cated in the TG curve. The exothermic peak can be attributed

to the decomposition and hence elimination of the organic

materials. Cho et al. [41] suggested that the most polyester

chains are broken during the annealing treatments at temper-

atures higher than 400 �C when the Pechini method is used.

No furthermass losswas observed at temperatures higher than

625 �C in TG curve, demonstrating the completion of the

reactions leading to the formation of the final product.
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Fig. 2 TG and DSC curves of the LN precursor gel heated at the

heating rate of 20 �C min-1 under a constant air flow rate of

100 mL min-1
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Fig. 3 X-ray diffraction patterns of the precursor calcined at a 450,

b 500, c 600, d 700 and e 800 �C in air for 2 h
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The LN precursor gel was calcined in air at different

temperatures from 450 to 800 �C, and the LiNbO3 powders

formed were subjected to structural and microstructural

evolution analysis. Figure 3 shows XRD patterns of the

products formed by the calcination of the precursor gel at

different temperatures. As it can be seen from Fig. 3a, the

powder calcined at 450 �C is amorphous in structure, char-

acterized by a single broadX-ray peak. Partial crystallization

of Li–Nb precursor gel has occurred during the annealing at

500 �C as confirmed by Fig. 3b. However, a reaction tem-

perature above 600 �C was necessary for the synthesis of

well-crystallized LN powder (Fig. 3c–e) which is consistent

with the thermal analysis results obtained. All the diffraction

peaks observed in Fig. 3 are assigned to crystalline LiNbO3

without any indication of other crystalline phases such as

Li3NbO4 [7] or LiNb3O8 [10] at the calcination temperatures

higher than 600 �C, demonstrating the preparation of pure LN.

It can be seen from Fig. 3 that the intensity of LN peaks

increases with increasing the calcination temperature,

while the diffraction peaks become sharper and narrower,

resulting in a decrease in the values of FWHM and hence

the increase in the mean crystallite size values. The mean

crystallite size of LN crystals formed at 500 �C was

determined [using Eq. (2)] to be 20 nm, which is smaller

than those obtained by Popa et al. [4] who synthesized LN

powders with a mean crystallite size of 40–60 nm using

Fig. 4 SEM micrographs of LN

nanoparticles obtained by

calcination of the precursor at

a 500 �C, b 600 �C, c 700 �C
and d 800 �C in air for 2 h
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Nb–ammonium complex (NH4 [NbO(C2O4)3H2]�3H2O) via

the Pechini method. The mean crystallite size of the LN

powders obtained at 600, 700, and 800 �C was determined

to be 70, 120, and 230 nm, respectively.

The morphology of the LN powders synthesized at dif-

ferent temperatures is shown in Fig. 4. The SEM micro-

graph of the sample prepared at 500 �C reveals the

agglomerates of nanoparticles of about 20 nm in size. It can

be clearly seen that the size of the LN nanoparticles

increases with increasing the calcination temperature. The

LN nanoparticles synthesized at 600, 700, and 800 �C can

be found to have a mean particle size of about 80, 100, and

250 nm, respectively. SEM micrographs presented in Fig. 4

are in excellent agreement with the XRD analysis results.

It is worth mentioning that LiNO3 rhombohedral crystal

structure can exist in a range of chemical compositions

around the stoichiometric composition consisting equal

mole fraction of Li2O and Nb2O5, according to the phase

diagram shown in Fig. 5.

The Li2O content of LN can be calculated from the

following equation [43].

CLi ¼ 19:149þ 2:557� 10�2TC ð2Þ

where CLi is the crystal composition in mol% Li2O and TC
is the Curie temperature. The DSC curve of LN

nanocrystals obtained by the calcination of the precursor at

800 �C is shown in Fig. 6, according to which the Curie

temperature and the melting point of the product can be

identified to be 1164 and 1245 �C, respectively. Based on

the Curie temperature measured, the Li2O content of the

LN nanocrystals prepared can be calculated to be

48.9 mol%. The estimated position of the LN produced is

shown in red in Fig. 5. As it can be seen, the melting point

and the chemical composition of the product are in a rea-

sonable agreement with the phase diagram.

From the results obtained, it can be concluded that the

modified Pechini polymeric precursor method discussed in

this paper can provide control over the chemical com-

position and morphology of the product, enabling one to

prepare pure LiNbO3 phase with desired particle sizes.

This method offers a significant benefit over the con-

ventionally used solid-state method which is based on the

prolonged heating of Nb2O5 and Li2CO3, leading to the

loss of stoichiometry by Li2O evaporation and thus the

formation of undesired compounds such as Li3NbO4 and

LiNb3O8 [44].

It should be mentioned that molten salt methods can

efficiently produce LN [10] and other functional oxides

[45, 46]. In these methods, however, the control of particle

sizes is usually difficult due to the high diffusion coeffi-

cients of the involved species. In the method discussed in

this paper, a range of particle sizes from 20 to 250 nm

could be achieve by calcining the precursor over a wide

temperature range of 500–800 �C, demonstrating the high

capability of this method for controlling the particle sizes.

Conclusions

A modified Pechini route for the preparation of LiNbO3

nanoparticles was introduced. This method uses lithium

carbonate and ammonium niobate (v) oxalate hydrate as

the Li and Nb source materials, respectively, and provides

an excellent control over size uniformity and chemical

composition. It was found that the calcination of the gel

precursor at 500 �C leads to the formation of LN

nanoparticles of 20 nm in diameter. Increasing the calci-

nation temperature leads to the increase in both the particle

and crystallite sizes to about 250 nm at 800 �C.
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