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Abstract Two series of multiblock terpolymers, terpoly(ester-

b-ether-b-amide) and terpoly(estersoft-b-ether-b-amide),

with the same type of oligoamide (oligolaurolactam (PA12))

hard block and oligoether (oligooxytetramethylene diol soft

block were obtained. Oligo (butylene sebacate) was used as

oligoester soft block in the first series and oligo (butylene

dilinoleate) soft block in the second one. The influence of

changes in chemical composition of ester block on the

thermal of the terpolymers have been determined by dif-

ferential scanning calorimetry and dynamic mechanical

thermal analyses.

Keywords Thermoplastic elastomers � Thermal analysis �
DSC � DMTA �Mutual miscibility of soft and hard blocks �
Phase structure

Introduction

A part of multiblock terpolymers of the –(AxByCz)n– type

which have the heterophase structure are classified to a

group of thermoplastic elastomers (TPE). A macromole-

cule of the block elastomers consists of flexible and hard

blocks distributed alternately. These blocks differ consid-

erably in the physical and chemical properties. The flexible

blocks are capable of formation of matrix (soft phase). The

hard blocks, as a result of aggregation form the domains of

these blocks, constituting the hard phase [1–3].

Such heterophase systems are unique in that the dispersed

domain structures are thermodynamically stable in the dis-

persed state. The phase separation in block copolymers is

restricted to molecular dimensions as a consequence of the

incompatible block components being joined together, thus

preventing gross physical separation of the two components

as would occur with their simple mixtures [4, 5].

Two series of multiblock terpolymers—terpoly(ester-

b-ether-b-amide) (TEEA) with the same type of oligoa-

mide (oligolaurolactam (PA12)) hard block and oligoether

(oligooxytetramethylene diol (PTMO) soft block were obtained.

Oligo (butylene sebacinate) was used as oligoester block in

the first series and oligo (butylene dilinoleate) soft block in

the second one.

The influence of changes in chemical composition of

ester block on the structure and thermal and mechanical

properties of the terpolymers have been determined by

differential scanning calorimetry (DSC) and other standard

physical methods.

Subject of examinations

Purpose of paper was to indicate, how a small modification

in the chemical structure of only one of the blocks can

influence on the thermal, mechanical properties and

structure of the multiblock terpolymers. The following

terpolymers were selected for such assumed studies:

• I series: poly(butylene sebacate-b-oxytetramethylene-

b-laurolactam) –(BS-b-PTMO-b-PA12)n–,

• II series: poly(butylene dilinoleate -b-oxytetramethyl-

ene-b-laurolactam) –(BDL-b-PTMO-b-PA12)n–.

Two series of multiblock terpolymers, TEEA –(BS-b-

PTMO-b-PA12)n– and –(BDL-b-PTMO-b-PA12)n–, with the
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same type of oligoamide—oligolaurolactam (PA12)—hard

block and oligoether—oligooxytetramethylene diol (PTMO)—

soft block and different oligoester blocks were obtained.

In the first series, oligo(butylene sebacate) was used

as oligoester block (BS) prepared by esterification reaction

of sebacic acid (SA) with 1,4-butanediol (BD-1,4) and

oligo(butylene dilinoleate)(BDL) block derived from sat-

urated dilinoleic acid (DLA) and 1,4-butanediol (BD-1,4)

in the second one.

The influence of changes in chemical composition of

ester blocks on the thermal properties of the terpolymers

have been determined by DSC and other standard physical

methods. Syntheses of the oligoamide PA12 blocks and

terpolymers –(BS-b-PTMO-b-PA12)n–, –(BDL-b-PTMO-

b-PA12)n– were previously described in details [6, 7].

Methods

The differential calorimetric method was recorded on a

DSC-910 (DU Pont Instruments) apparatus. The samples

were examined in a triple cycle (heating–cooling–heating)

in the temperature range from -100 to ?220 �C. The

heating and cooling rates were 10 �C min-1.

The dynamical mechanical analysis (DMA) was per-

formed on a DMA Q-800 modulus (TA-Instruments) in the

temperature range from -100 to ?125 �C at 35 Hz. The

storage modulus E0, loss modulus E00, and loss tangent tan d
were determined.

Hardness (H) measurements were performed on a Shore

D apparatus (Zwick, type 3100) according to standard DIN

53505 (ISO 863, PN-80/C- 04238).

The limiting viscosity number ([g], LVN) of the poly[-

ether-b-ester-b-amide] terpolymers in phenol-trichloroeth-

ylene (50:50 vol%.) was determined by an Ubbelohde

viscometer IIA at 30 �C.

Results and discussion

Description and properties of terpolymers is summarized in

Table 1.

The DSC 2nd heating and cooling scans for poly (oligo-

(butylene sebacate-b-oxytetramethylene-b- laurolactam)

-(BS-b-PTMO-b-PA12)n, and poly(butylene dilinoleate-b-

oxytetramethylene-b-laurolactam) –(BDL-b-PTMO-b-PA12)n–.

are shown in Figs. 1, 2, and the thermal properties of the

terpolymers of both series are given in Table 2.

The endotherms connected with melting transition of

PA12 (Tm3
) can be observed on DSC curves for first series

(Fig. 1), they decrease and flatten along with an increase of

degree of polymerization for butylene sebacate.

Crystalline structure of PA12 is disturbed, what can be

interpreted as a solution of this block in phase created by

other blocks. Similar situation can be observed for melting

temperature transition of oligoether segments (Tm1
), which

decreases with increasing oligoester content in polymer.

For terpolymer with DPBS = 7, melting transition tem-

peratures (Tm2
) appears on thermograms. Glass transition

temperature Tg increases with increase of soft oligoester

molecular weight, which can be connected with their sol-

ubility in oligoether phase. Effects of crystallization of

oligoamide (Tc3
), oligoester (Tc2

), and oligoether (Tc1
)

blocks are presented on cooling curves.

DSC curves of BDL series are present on Fig. 2. For

these polymers Tm3
connected with crystalline phase of

PA12 is almost constant for DPDLA = 2–7 and for

DPDLA = 9 immediately decrease. This phenomenon

appears distribution of crystalline phase block PA12 by

PTMO which solution in this phase in the same time

enthalpy decrease. Confirmation of this disappeared of Tm1

from PTMO. Analogous observations are presented on

cooling curves (Tc1
, Tc3

). Tm2
related with DLA is not

observed because this block is completely amorphous.

Table 1 Description and properties of –(BS-b-PTMO-b-PA12)n, and –(BDL-b-PTMO-b-PA12)n– terpolymers

Polymer sample Molar composition [g] dl/g H ShD DPBS Series

PTMO PA12 KS 1,4-butandiol

1 2 1 3 5 0.35 40.8 2 I

2 2 1 5 9 0.37 34.1 4 I

3 2 1 8 15 0.3 31.8 7 I

4 2 1 10 19 0.28 31 9 I

5 2 1 12 23 0.35 32.1 11 I

DLA DPBDL

6 2 1 3 5 0.227 21 2 II

7 2 1 5 9 0.228 11 4 II

8 2 1 8 15 0.206 14.7 7 II

9 2 1 10 19 0.172 14.3 9 II

Notations were explained in experimental part
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Glass transition temperature Tg decreased with increasing

of DPBDL (DLA content), which can indicate miscibility of

the both soft blocks (DLA and PTMO). Evidenced by the

increase in glass transition range and the associated

increase in heat capacity Dcp.

Changes of Tm3
of PA12 for both series are presented on

Fig. 3c. For BS series we can observe monotonic decrease

with increasing of BS content.

Terpolymers from series based on DLA have higher

melting temperatures Tm3
PA12 than series BS but only to

DP = 7 and after this value rapidly falls. BS is crystalline

and miscibility with PA12 crystalline (from DP = 2–11) in

whole range of composition, hence we can observe con-

stant decrease with increasing DPBS. Whereas DLA con-

tent promotes crystallization of oligoamide and the above

limiting value DP = 7 completely disorders crystalline

phase. Melting temperatures related with PTMO presented

on Fig. 3b are observed only for terpolymers to DP = 7 for

DLA series and to DP = 9 for BS series. For both series

Tm1
visibly decreases but for DLA series values are lower.

Interesting changes of Tg of soft phase are present on

Fig. 3a. Temperatures of ‘‘pure’’ substrates are BS is

-65 �C, DLA is -68 �C, and PTMO is -90 �C.

Tg for BS series increase from -64 to -44 �C because

amorphous parts of all components of terpolymers are

miscibility. With increasing DPBS relatively decrease

PTMO content and components with higher Tg start to play

a part. For DLA, Tg is resultant of amorphous phase

(Tg from -72 to 85 �C). Almost all PTMO for crystalline

phase come into amorphous phase that Tg decrease. PTMO

is dominant in soft phase [8, 9].

Figures 4, 5 show the results of dynamic mechanical

thermal analysis. The relaxation behavior of all samples

was studied by DMTA, measurements of the storage

modulus E0, the loss modulus E00, and the loss tangent tan d
as a function of the temperature.

Spectra of storage modulus E0 of terpolymers –(BS-b-

PTMO-b-PA12)n– (Fig. 4) characterize different tempera-

ture ranges, where values of E0 change with the change of

the degree of polymerization of BS hard block.
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In the temperature range from -100 to -50 �C func-

tions E00 = f (T) have a flat course, the modulus does not

change and –(BS-b-PTMO-b-PA12)n– is in the glassy state.

In the interval from -50 to -25 �C modulus decreases,

and in the macromolecules there is viscoelastic relaxation

processes connected with the glass transition of amorphous

phase of the PTMO soft block. This interval moves toward

higher temperatures with increasing degree of polymeri-

zation of DPBS. The third temperature range is a ‘‘flexi-

bility plateau’’, where the modulus in this interval is

constant. The fourth region observed in the temperature

range 0–25 �C is characterized by a further slight decrease

of the modulus associated with the melting of the crystal-

line phase transformation of the PTMO soft block.

With increasing degree of polymerization of the BS

block, the width of this range decreases and shifts toward

lower temperatures.

For the terpolymer with degree of polymerization

DPBS = 11 melting transition of the PTMO soft block is

not observed, which was confirmed in the DSC studies.

In the temperature range of 25–50 �C for the terpolymer

with a degree of polymerization 7, we can observe a slight

decrease of the modulus connected with the melting point

of a hard block of BS. The width of this range increases

with increasing concentration of BS in terpolymer and is

moving toward higher temperatures, which was also con-

firmed by results of DSC investigation. In the temperature

range of 80–130 �C terpolymers achieve the predominance

of viscous on elastic properties and their storage modulus is

rapidly declining.

Inflection on the curves related to this decrease determine

the temperature of polymer softening, and therefore also the
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upper temperature range of applicability decrease with the

increase of terpolymer DPBS. On the curves E00 = f (T) and

tan d = f (T) –(BS-b-PTMO-b-PA12)n–, there is a maximum

of a relaxation associated with glass transition temperature

of PTMO overlapping with the results of DSC. With the

increase of concentration of BS block these peaks flatten and

shift toward higher temperatures.

Spectra of storage modulus E0 terpolymers –(BDL-b-

PTMO-b-PA12)n– (Fig. 5) in comparison to terpolymers

–(BS-b-PTMO-b-PA12)n–, are characterized by lower values,

while also we can observe the influence of variable of the

degree of polymerization DPBDL on the range of temper-

ature intervals.

In the temperature range of -100 to -70 �C functions

E0 = f (T) have a flat course, the modulus does not change

and –(BDL-b-PTMO-b-PA12)n– is in the glassy state.

In the interval from -70 to -25 �C a decrease of modulus

follows, and in macromolecules viscoelastic relaxation pro-

cesses occur, which is related with the glass transition of

amorphous phase within the PTMO soft block. With increas-

ing degree of polymerization of BDL block, the width of this

interval increases and shifts toward lower temperatures. The

third temperature range is a ‘‘flexibility plateau,’’ the modulus

in this interval is constant. The fourth range observed in the

temperature range 0–25 �C is characterized by a further slight

decrease of modulus connected with melting transition of the

crystalline phase of the PTMO soft block. With increasing

degreeof polymerizationof BDL block, the width of this range

decreases and shifts toward lower temperatures. For the ter-

polymer with a degree of polymerization DPBS = 9 melting

transition of PTMO soft block is not observed, which was also

confirmed in the DSC results. In the temperature range from

-70 to 140 �C terpolymers achieve predominance viscous

over elastic properties and their modulus is rapidly decreasing.

Inflection on the curves related to this decrease determine the

polymer softening temperature, and therefore its upper tem-

perature range of applicability decrease with the increase in

terpolymer DPBDL.

On the curves E00 = f (T) and tan d = f (T) –(BDL-b-

PTMO-b-PA12)n– there is maximum of relaxation a
associated with PTMO glass transition temperature, over-

lapping with the results of DSC. With the increase of

concentration block BDL these maxima broaden and shift

toward lower temperatures. This is a confirmation of test

results obtained by DSC, where it was found to increase

amorphous phase associated with the miscibility of phases

derived from PTMO and DLA.

Conclusions

The results presented in this paper allow to relate the

properties of the three component multiblock elastomers

with the solubility of one component in the two remaining

components of the system.

The terpolymers –(BS-b-PTMO-b-PA12)n– comprise

the systems in which the oligo(butylene sebacate (BS)

component with DPBS from 2 to 11 dissolves both in the

phase of PA12 blocks (hard) and the phase of PTMO

blocks (soft). Structure phase in these systems is highly

disturbed. Amorphous BS and DLA are miscible with

amorphous PTMO while crystalline PTMO are not misci-

ble with crystalline PA12 and crystalline BS is miscible

with crystalline PA12.

The terpolymers –(BDL-b-PTMO-b-PA12)n– comprise

the systems in which the oligo (BDL) component with

DPBS from 2 to 9 are not miscible with crystalline PA12.

Using of two soft blocks in terpolymers deteriorates

mechanical properties because of increase of amorphous

phase and decay of crystalline phase.
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