Skip to main content
Log in

Influence of lime-containing additives on the thermal behaviour of ammonium nitrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ammonium nitrate (AN) is one of the main nitrogen fertilizers used in fertilization programs. However, AN has some serious disadvantages — being well soluble in water hardly 50% of the N-species contained are assimilated by plants. The second disadvantage of AN is associated with its explosive properties. The aim of this paper was to clarify the influence of different lime-containing substances — mainly Estonian limestone and dolomite — as internal additives on thermal behaviour of AN.

Commercial fertilizer grade AN was under investigation. The amount of additives used was 5, 10 or 20 mass%, or calculated on the mole ratio of AN/(CaO, MgO)=2:1 in the blends. Experiments were carried out under dynamic heating condition up to 900°C (10°C min−1) in a stream of dry air or N2 by using Setaram Labsys 2000 equipment coupled to Fourier transform infrared spectrometer (FTIR).

The results of analyses of the gaseous compounds evolved at thermal treatment of neat AN indicated some differences in the decomposition of AN in air or in N2. At the thermal treatment of AN’s blends with CaCO3, MgCO3, limestone and dolomite samples the decomposition of AN proceeds through a completely different mechanism — depending on the origin and the content of additives, partially or completely, through the formation of Mg(NO3)2 and Ca(NO3)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Fertilizer Industry Association’s Public Statistics 2005 (http://www.fertilizer.org/ifa/statistics.asp).

  2. How to make nutrients work effectively, Fertilizer International, 388 (2002) 390.

  3. C. Carranca, A. de Varrannes and D. E. Rolstone, Eur. J. Agron., 11 (1999) 145.

    Article  Google Scholar 

  4. R. P. Udawatta, P. P. Motavalli, H. E. Garrett and J. J. Krstansky, Agric. Ecosys. Environ., 117 (2006) 39.

    Article  CAS  Google Scholar 

  5. R. Antikainen, R. Lemola, J. I. Nousianen, L. Sokka, M. Esala, P Huhtanen and S. Rekolainen, Agric. Ecosys. Environ., 107 (2005) 287.

    Article  CAS  Google Scholar 

  6. H. Koponen, C. Escudé-Duran, M. Maljanen, J. Hytönen and P. J. Martikainen, Soil Biol. Biochem., 38 (2006) 1779.

    Article  CAS  Google Scholar 

  7. K. Lampe, K. Dittert, B. Sattelmacher, M. Wachendorf, R. Loges and F. Taube, Soil Biol. Biochem., 38 (2006) 2602.

    Article  CAS  Google Scholar 

  8. M. Maeda, B. Zhao, Y. Ozaki and T. Yoneyama, Environ. Pollut., 121 (2003) 477.

    Article  CAS  Google Scholar 

  9. R. Fernádes-Escobar, M. Benlloch, E. Herrera and J. M. Garcia-Novelo, Hort. Sci. 101 (2004) 39.

    Article  Google Scholar 

  10. G. Kutra and R. Aksomaitiene, Eur. J. Agron., 20 (2003) 127.

    Article  Google Scholar 

  11. S. S. Mahli, M. Nyborg and J. T. Harapik, Soil Till. Res., 48 (1998) 91.

    Article  Google Scholar 

  12. J. C. Oxley, J. L. Smith, E. Rogers and Ming Yu, Thermochim. Acta, 384 (2002) 23.

    Article  CAS  Google Scholar 

  13. J. Sun, Z. Sun, Q. Wang, H. Ding, T. Wang and C. Jiang, J. Hazard. Mater., 127 (2005) 204.

    Article  CAS  Google Scholar 

  14. E. Kestilä, M. E. E. Harju and J. Valkonen, Thermochim. Acta, 214 (1993) 67.

    Article  Google Scholar 

  15. J. C. Oxley, S. M. Kauchik and N. S. Gilson, Thermochim. Acta, 153 (1989) 269.

    Article  CAS  Google Scholar 

  16. M. Olszak-Humienik, Thermochim. Acta, 378 (2001) 107.

    Article  CAS  Google Scholar 

  17. S. Zeman, P. Kohlíćek and A. Maranda, Thermochim. Acta, 398 (2003) 185.

    Article  CAS  Google Scholar 

  18. P. N. Simőes. L. M. Pedroso, A. A. Portugal and J. L. Campos, Thermochim. Acta, 319 (1998) 55.

    Article  Google Scholar 

  19. A. O. Remya Sudhakar and S. Mathew, Thermochim. Acta, 451 (2006) 5.

    Article  Google Scholar 

  20. K. R. Brower, J. C. Oxley and M. Tewari, J. Phys. Chem., 93 (1989) 1029.

    Article  Google Scholar 

  21. J. Madarász, P. P. Varga and G. Pokol, J. Anal. Appl. Pyrolysis, 79 (2007) 475.

    Article  Google Scholar 

  22. C. Ettarh and A. K. Galwey, Thermochim. Acta, 288 (1996) 203.

    Article  CAS  Google Scholar 

  23. NIST Chemistry Webbook Standard Reference Database, No. 69, June 2005 Release (hhtp://www.webbook.nist.gov/chemistry).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kaljuvee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaljuvee, T., Edro, E. & Kuusik, R. Influence of lime-containing additives on the thermal behaviour of ammonium nitrate. J Therm Anal Calorim 92, 215–221 (2008). https://doi.org/10.1007/s10973-007-8769-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8769-1

Keywords

Navigation