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Abstract
In this research, we successfully synthesized magnesium aluminate (MgAl2O4) spinel nanoparticles using a sol-gel process,
with stearic acid serving as a capping agent. The synthesis process involved calcination at 900 °C for 4 h, resulting in the
formation of nanoparticles with an average crystallite size of approximately 12 nm, as determined through Debye–Scherrer
analysis and X-ray diffraction (XRD) data. The optical band gap was measured as 2.84 eV using Diffuse Reflectance
Spectroscopy (DRS) analysis. Additionally, we found the mean pore size of the nanoparticles to be 20.2 nm through
Brunauer–Emmett–Teller (BET) analysis. We characterized the resulting powders using various techniques, including
Fourier Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), Energy-
Dispersive X-ray Spectroscopy (EDS), and Vibrating Sample Magnetometry (VSM). We conducted electrochemical
investigations utilizing the Chronopotentiometry (CP) technique. The electrochemical analysis demonstrated that MgAl2O4

spinel nanoparticles exhibit a noteworthy hydrogen storage capacity of 4000 mAh/g, highlighting their potential as
promising candidates for hydrogen storage applications. This comprehensive study underscores the successful synthesis,
thorough characterization, and exceptional electrochemical performance of MgAl2O4 spinel nanoparticles, firmly positioning
them as valuable materials for advancing hydrogen storage technologies.
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Highlight
● MgAl2O4 spinel nanoparticles were synthesized using the gel stearic acid method.
● The structural properties were studied by various microscopic and electrochemical methods.
● MgAl2O4 spinel nanoparticles showed an excellent hydrogen storage capacity of 4000 mAh/g.

1 Introduction

The rapid growth of fossil fuel consumption and the increase
in human society have led to a rise in environmental pol-
lution and heightened concerns about the future of the planet
[1]. Furthermore, the amount and type of energy used plays
a significant role in daily human activities and the future.
Therefore, one safe and effective way to reduce environ-
mental pollution is to utilize green energies, renewable
sources, and clean fuels like hydrogen [2]. To achieve this
goal, research is currently being conducted on the produc-
tion of hydrogen from renewable energy sources [3].
Hydrogen can serve as an energy carrier due to its char-
acteristics, such as renewability, high energy content, and
efficient energy conversion [4]. Hydrogen has the potential
for use in various industries, including steel production,
hybrid cars, engine fuel, and fuel cells [5, 6]. Notably,
hydrogen is the lightest and most abundant element in the
universe. When compared to other fossil fuels, such as
gasoline, hydrogen boasts a higher energy density by
volume and is typically stored in large tanks [7]. Hydrogen
must be stored efficiently, safely, and cost-effectively.
Hydrogen can be stored both chemically and physically.
Storing hydrogen in nanomaterials is often based on physical
absorption [8]. Several types of materials have been used to
store hydrogen, such as transition mixed metal oxides [9],
polymers [10], metal-organic frameworks (MOFs) [11], and
graphene nanocomposites [12]. Nanoparticles are superior to
other materials for hydrogen storage due to their high
surface-to-volume ratio, structural stability during physico-
chemical reactions, small size for absorbing and releasing
hydrogen molecules, and reversible storage potential [13].
Hydrogen storage in solid-state materials is one of the safest
and most effective methods for storage [14].

So far, many spinel oxides have been synthesized by
different methods like, NiCr2O4 [15], NiAl2O4 [16], and
MgCr2O4 [17]. Previous reports have proven that spinels,
such as BaAl2O4 and CoAl2O4 have been used in hydrogen
storage [18, 19]. Among the spinels, magnesium aluminate
spinel (MgAl2O4) has been the focus of researchers due to
its excellent physicochemical properties, such as electro-
chemical, dielectric, thermal, mechanical, and optical
properties. MgAl2O4 has been extensively studied in var-
ious forms, like nanocomposites and nanoparticles, for

applications in energy storage [20–22]. Furthermore, when
MgAl2O4 is combined with other materials, like metal
oxides, it leads to the formation of new nanostructures that
have the potential to be applied in hydrogen storage [23].
One of the best advantages of magnesium aluminate oxide
compared to other materials for hydrogen storage is its high
specific surface area and porous structure, which results in
the formation of numerous active sites for hydrogen
absorption [24]. Magnesium aluminate has a broad range of
applications such as hydrogen production [25], humidity
sensors [26], catalysts [27], and supercapacitors [21].
MgAl2O4 has been synthesized using various methods,
including sol-gel [28], Co-precipitation [29], hydrothermal
[27], solution combustion [30], and solid-state [31].

The sol-gel method for preparing magnesium aluminate
spinel (MgAl2O4) offers distinct advantages over alternative
methods. This method ensures high purity, employing pure
metallic precursors and minimizing impurities in the final
material. Additionally, sol-gel-derived MgAl2O4 typically
requires lower sintering temperatures, which enhances
energy efficiency and preserves material properties. The
technique also allows for precise dopant control, enabling
uniform incorporation of ions to tailor material properties
for specific applications [15, 32, 33].

In this work, MgAl2O4 spinel nanoparticles were syn-
thesized via a sol-gel process, using stearic acid as a capping
agent for the first time. Stearic Acid, with its long carbon
chain, effectively prevents nanoparticle agglomeration.
Magnesium aluminate was investigated by different techni-
ques such as XRD, FTIR, FESEM, EDS, DRS, VSM, and
BET. Hydrogen storage capacity and various parameters like
copper sheet surface, cycle number, and current intensity
were studied. The results revealed that MgAl2O4 nano-
particles could be a promising material for hydrogen storage.

2 Experimental

2.1 Materials and methods

Aluminum nitrate (Al(NO3)3·9H2O), magnesium acetate
(with better solubility and more stability) (Mg(OAc)

2·4H2O), and stearic acid (C18H36O2) with 99.9% purity
were purchased from Merck. The XRD patterns of
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MgAl2O4 nanoparticles were analyzed by a Model PTS
3003 SEIFERT diffractometer using Cu Kα radiation
(λ= 1.54 Å) and in the 2θ range from 10° to 80° to study
the structural development and crystallization of the sample.
The FTIR spectrum of the MgAl2O4 nanoparticles was
recorded with an MB100 (BOMEM) spectrophotometer
using a KBr pellet. FESEM was used to investigate the size
distribution and surface morphology of the samples (JEOL-
64000, Japan). The energy dispersive spectrometry (EDS)
evaluation was performed by Philips EM208. To study the
magnetic properties of the sample, a Vibrating Sample
Magnetometer was used (Meghnatis Daghigh Kavir Co.,
Kashan, Iran). The band gap of the sample was determined
through UV absorption spectra (Shimadzu UV/3101 PC)
within a wavelength range of 300 to 500 nm.
Brunauer–Emmett–Teller (BET) specific surface areas of
the catalysts were determined through N2 adsorption/des-
orption tests performed on an ASAP-2010 analyzer
(Micromeritics, USA). The chronopotentiometry method
was applied to estimate the discharge capacity (hydrogen
storage capacity) of a sample using the SAMA 500 electro-
analyzer system in Iran (potentiostat/galvanostat).

2.2 Preparation of MgAl2O4 spinel Nanoparticles

MgAl2O4 spinel nanoparticles (NPs) were prepared via the
sol-gel process, using Magnesium acetate, Aluminum nitrate
as the cation source, and stearic acid as a capping agent.
First, 10 mmol stearic acid was melted in a beaker at 73 °C.
Then, 1 mmol magnesium acetate and 2 mmol aluminum
nitrate were dissolved in distilled water (pH= 4). The

solutions containing metallic ions were added to stearic acid
and stirred at a temperature of 65–85 °C to form a viscous
gel. After cooling the gel at room temperature, it was heated
in an electric oven at 85 °C for 24 h to dry. During this time,
metal cations diffusion from the aqueous phase to the
organic phase, resulting in a homogeneous sol. Finally, the
dried gel was calcined at temperatures of 700 and 900 °C for
4 h to obtain MgAl2O4 spinel nanoparticles. Scheme 1.
displays a schematic diagram of synthesized MgAl2O4 spi-
nel NPs at temperatures of 700 and 900 °C for 4 h (Table 1).

2.3 Electrochemical hydrogen storage

The chronopotentiometry method is a significant technique
for estimating the hydrogen storage capacitance. In this
electrochemical cell, Ag/AgCl, Pt, and Cu-MgAl2O4 are the
reference, counter (anode), and working (cathode or coated-
copper plate) electrodes, respectively. The electrolyte is 6 M
KOH aqueous solution. In this system, a current intensity
(±1 mA) is applied between the counter (anode) and
working (cathode) electrodes, and the potential differences
are estimated between the working and the Ag/AgCl
(reference) electrodes. To fabricate an electrode of Cu-
MgAl2O4, the copper sheet used as a thin substrate for the
Cu/MgAl2O4. The MgAl2O4 powder is sonicated in ethanol
for 10 min. A pure copper sheet (1 × 1 cm2) is coated by a
substrate of MgAl2O4 powder at 100

°C [13].

3 Results and discussion

3.1 XRD analysis

XRD diffractograms of MgAl2O4 spinel nanoparticles cal-
cined at temperatures of 700 and 900 °C for 4 h in the 2θ
range from 10º–80º are illustrated in Fig. 1a. As can be seen
in Fig. 1a, the XRD pattern of MgAl2O4 calcined at 700 °C
demonstrated weak peaks with low intensity. Therefore, it
can be concluded that the primary structure of these

Scheme. 1 Schematic diagram
of synthesized MgAl2O4

spinel NPs

Table. 1 The elementary components of MgAl2O4 spinel NPs at
900 °C

Element Mg Al O Total

W (%) 19.83 48.31 31.86 100

Mole fraction 0.15 0.3 0.55 1
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nanoparticles is being formed, and crystals have not yet
grown completely at 700 °C. An increase in temperature up
to 900 °C leads to an increase in the size of the crystals,
resulting in broadened diffraction peaks. All diffraction
peaks at 2θ values of 19º, 31º, 37º, 45º, 56º, 59.6º and 65.5º

can be indexed (111), (220), (311), (400), (422), (511), and
(440) crystal planes, respectively. The results exhibited that
MgAl2O4 (JCPDS- 01-071-2499) has a cubic crystal
structure with space group Fd-3m and lattice parameters
a= b= c= 8.05Å. No detected impurities like MgO or
Al2O3. The average crystallite size of the MgAl2O4 spinel
nanoparticles calcined at 900 °C for 4 h was calculated from
the XRD diffractogram utilizing the Debye–Scherrer rela-
tion (Eq. 1) [34]:

D ¼ kλ
βCos θ

ð1Þ

Where β is the width of the XRD peak at half height, k is a
shape factor of about 0.9 for spherical-shaped nanoparticles,
D is the mean particle diameter, λ is the wavelength
(0.15418 nm), and θ is the diffraction angle. The average
crystallite size was calculated utilizing the linear fit of Eq. 1
to the plot cosθ vs 1/β depicted in Fig. 1b. The average
crystal size was estimated to be 12 nm (increasing
temperature= promoting crystal growth) [35]. The Debye
−Scherrer equation calculates the crystallite size without
considering lattice distortion and micro-strain induced in the
structure. Therefore, the Williamson-Hall (W-H) relation
was used to analyze the effect of lattice on strain the peak
broadening [36, 37] (Eq. 2):

β cos θ ¼ kλ
D

þ 4ε sin θ ð2Þ

Where ε is the strain induced in the lattice, and D is the
average crystallite size. According to Fig. 1c, the lattice
strain and crystallite size have been calculated using the
Williamson-Hall plot. Figure 1c displays the fit of Eq. 2 to
the β cos θ vs 4 sin θ plot. The average crystallite size and
lattice strain were estimated by determining the intercept
and slope of the graph, these were found to be 17.35 nm and
296 × 10−5, respectively. The crystallite size obtained by the
Williamson-Hall equation is slightly larger than that
calculated by the Debay-Scherrer equation. This difference
may be due to considering the strain impact as calculated by
the Williamson-Hall equation [38] (Fig. 2).

3.2 FT-IR spectroscopy

The results of FT-IR spectroscopy for MgAl2O4 spinel NPs
at 900 °C are shown in Fig. 2. Two absorption bonds can be
seen at 522–697 cm−1, which are attributed to the vibrations
involving metal-oxygen bondssuch as Al-O stretching in the
AlO6 group and lattice vibration of Mg-O stretching [28,
39]. The vibration bond observed at 1630 cm−1 is related to
bending (H-O-H), and the vibration band around 3440 cm−1

corresponds to the OH group [40].
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3.3 FESEM and energy dispersive X-ray (EDS)

The surface morphology of the MgAl2O4 spinel NPs cal-
cined at 900 °C was studied using FESEM analysis. The
FESEM images of the sample are displayed in Fig. 3a, b.
The powder sample showed the formation of uniform
spherical shapes and homogeneity of the structure. Fur-
thermore, the FESEM images of the MgAl2O4 spinel

nanoparticles was analyzed using the ImageJ software [39].
The histogram plot of the sample is shown in Fig. 3c. The
average grain size was obtained 25 nm. The EDX spectrum
of the MgAl2O4 spinel nanoparticles is depicted in Fig. 4.
The EDS results demonstrate the presence of oxygen, alu-
minum, and magnesium elements without impurity. The
elementary constituents of MgAl2O4 spinel NPs are dis-
played in Table 1 [41, 42].

3.4 Optical properties

The energy gap (Eg) and absorption coefficient are desirable
features of semiconductors that determine their applications
in optoelectronics. The results of the UV–vis absorption
spectrum of MgAl2O4 spinel NPs in the wavelength range
of 300–500 nm are depicted in Fig. 5a, b. The absorption
peak was observed at 380 nm due possibly to the O2−→
Al3+ charge transition [43]. The photon energy (Eg) has
been obtained utilizing Tuac’s relation (Eg) (Eq. 3).

ðαhνÞn ¼ A hν � Eg
� � ð3Þ

Where h is the Planck’s constant (6.62607004 × 10−34

m2kg/s), ʋ is the Frequency (Hz), α is the Absorption
coefficient, A is the Energy independent constant, Eg band
gap energy (eV) and n is the nature of transmission.
Accordingly, the band gap energy of the nanoparticle was
evaluated using a graph of (αhν)2 values against the band
gap energy (hν) axis extrapolating the linear portion of the
absorption edge to find the interruption by energy axis.
Figure 5b shows the optical band gap of MgAl2O4 spinel
nanoparticles. The value of the direct band gap for
MgAl2O4 spinel nanoparticles came out to be 2.84 eV
[31]. Previous reports showed that the optical reflectance of
MgAl2O4 spinel nanoparticles depends on the calcination
temperature [44]. As the calcination temperature is
increased beyond 800 °C, the crystallite size of MgAl2O4

increases leading to a decrease in the energy of the band
gap. In other words, the optical reflectance properties of
MgAl2O4 spinel NPs can be attributed to its cubic crystal
structure system. The reduction in bandgap energy may be
due to the accumulation of defect states between the valence
and conduction bands [45]. Consequently, MgAl2O4 spinel
NPs can be employed as semiconductor and photocatalyst.

3.5 VSM studies

The magnetic behavior of MgAl2O4 spinel NPs has been
measured (Fig. 6). The magnetic properties of the sample
were observed at room temperature. Exploring the M-H
curve confirms the ferromagnetic properties of MgAl2O4

spinel NPs. The ferromagnetic property of MgAl2O4

spinel NPs has already been reported [46]. The saturation

Fig. 3 FESEM images (a, b), particle size distribution (c) of synthe-
sized MgAl2O4 spinel NPs at 900 °C
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Fig. 4 EDS spectrum of MgAl2O4 NPs at 900 °C
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magnetization (Ms), remanence magnetization (Mr), and
coercivity field (Hc) were about 0.0154 emu/g,
0.0244 emu/g, and 200 Oe, respectively. The remanence
ratio (Mr/Ms) value was estimated at around 1.584. The
saturation magnetization (Ms) of 0.0154 emu/g indicates
their capacity for strong magnetization under an external
field. This Mr value suggests notable magnetic memory
after the field is removed, while the Hc of 200 Oe sig-
nifies MgAl2O4 resistance to demagnetization. The value
of 1.584 highlights the (Mr/Ms) ability to maintain
magnetization, showcasing the potential for applications
in data storage and magnetic devices. Normal spinel, also
known as cubic spinel, can exhibit ferromagnetic beha-
vior due to the presence of magnetic ions in its crystal
structure. This mineral’s chemical formula is AB2O4,
with A and B representing different metal cations. Fer-
romagnetism emerges from the alignment of magnetic
moments of these cations within the crystal lattice. When
magnetic ions occupy both the A and B sites, they
interact via exchange interactions that favor parallel
alignment of their magnetic moments. When a magnetic
field is applied, the magnetic moments align themselves
with the field, leading to saturation magnetization. Bulk
normal spinel may contain magnetic domains, with

groups of atomic magnetic moments aligning in the same
direction. The specific combination of magnetic ions and
their arrangement in the lattice, as well as temperature,
determine whether ferromagnetism is observed in each
normal spinel compound. Ferromagnetism in the normal
spinel is a result of quantum mechanical interactions and
the behavior of magnetic moments in the crystal
structure.

3.6 BET technique

The specific surface region of the MgAl2O4 spinel NPs at
900 °C was estimated using a BET- BJH technique. The
result is illustrated in Fig. 7a, b. The N2 adsorption/des-
orption and the categorization of IUPAC demonstrate a
characterization of Class IV in the adsorption isotherms
with hysteresis loops [35]. The MgAl2O4 spinel NPs
(which have a mesoporous structure) exhibit hysteresis of
H3-type. The specific surface area of 108.1 m²/g indicates
a substantial surface area available for interactions with
hydrogen molecules, suggesting a high adsorption capa-
city. The pore volume of 0.5459 cm³/g is noteworthy, as it
implies that the material can hold a significant amount of
hydrogen gas, making it suitable for various practical
applications, including hydrogen fuel cells and transpor-
tation. Furthermore, the mean pore size of 20.2 nm pro-
vides insights into the material’s pore structure, which is
vital for hydrogen mobility and accessibility. The diver-
sity in pore sizes within the nanoparticles allows for
accommodating different masses of hydrogen, facilitating
their diffusion into and out of the material. Overall, the
BET results emphasize the material’s potential for gas
adsorption and storage with a particular focus on hydro-
gen, thanks to the significant specific surface area, pore
volume, and mean pore size. On the other hand, the
FESEM results provide visual confirmation of the nano-
particles’ size, shape, and uniformity, which can be
important for applications that rely on a consistent and
well-defined nanoparticle structure.
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3.7 Hydrogen storage capacity

According to Fig. 8, the discharge capacity of copper foam
without MgAl2O4 attendance is almost equal to 3mAh/g.
Figure 9 illustrates the discharge properties of the Cu-
MgAl2O4 electrode after 5 cycles under a constant current of
1mA. Additionally, this diagram indicates that placing the Cu-
MgAl2O4 electrode in an alkaline medium can affect its
capacity. Electrochemical hydrogen absorption mechanisms
occur during three reactions: Volmer, Tafel, and Heyrovsky
[47]. The electrolyte solution was prepared using a 6 M KOH
combination dissolved in deionized water (Proton source). As a
result of the decomposition of water, H atoms are formed (Eq.
4). During the charging process (Volmer reaction), the elec-
trolyte is separated around the working electrode, and hydrogen
is adsorbed on the MgAl2O4 nanoparticles surface (Eq. 5).

H2Oþ e�$Hþ OH� ð4Þ

MgAl2O4 þ H2Oþ e�$ MgAl2O4 � Hadsð Þ þ OH� ð5Þ

According to the Volmer, the reaction reduction of H2O
to hydroxyl ions and the adsorption of hydrogen atoms onto
the working electrode surface; result in the formation of
subsurface hydrogen (Hss).

MgAl2O4 � Hads$MgAl2O4 � Hss ð6Þ
Then, subsurface hydrogen atoms (Hss) diffuse as bulk-

absorbed hydrogen (Habs).

MgAl2O4 � Hss$MgAl2O4 � Habs ð7Þ
The increase of surface accumulated hydrogen causes the

migration of adsorbed H (Hads) into the MgAl2O4 network.
During the discharge process, which occurs in the opposite
direction to the charging process, the absorbed hydrogen
atoms are desorbed from the surface of the working elec-
trode and turned back into water, releasing an electron. The
adsorption of hydrogen atoms on the surface of the Cu-
MgAl2O4 (cathode) is a type of physical adsorption [48].
The discharge capacity enhanced from 2380 mAh/g in the
first cycle to 4000 mAh/g after 5 cycles. The increase in
discharge capacity can likely be explained by the formation
of more active sites for hydrogen desorption/absorption on
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the surface of the working electrode, the pore distribution,
and the surface-to-volume ratio of MgAl2O4 spinel nano-
particles. [49]. Based on the physical adsorption equations
for electrochemical hydrogen storage, such as the sidewise
Tafel reaction (Eqs. 9, 10) and the Heyrovsky process (Eq.
11), if the hydrogen absorption energy is less than the
released energy, gaseous hydrogen (H2) is formed.

MgAl2O4 � Hads þMgAl2O4 � Hads$2MgAl2O4 þ H2 gð Þ
ð8Þ

Hþ H$H2 ð9Þ

MgAl2O4 � Hads þ H2Oþ e�$MgAl2O4 þ H2ðgÞ þ OH�

ð10Þ

Figure 10 shows the cycling performance of the
MgAl2O4 nanoparticles at a constant current of 1 mA. The
amount of stored hydrogen in the working electrode can be
measured by the discharge capacity. The storage capacity
(SC) can be estimated from the charge/discharge curves of
the electrodes according to Eq. 11 [50].

StorageCapacity SCð Þ ¼ Time hð Þ � Current mAð Þ½ �=ActiveMass gð Þ
ð11Þ

The MgAl2O4 spinel nanoparticles are suitable due to
their fewer cycle number, low cost, and desirable electro-
chemical discharge capacity. Table 2 displays a comparison

between MgAl2O4 spinel nanoparticles and the previously
reported nanomaterials.

4 Conclusion

In summary, MgAl2O4 spinel nanoparticles (NPs) were
successfully synthesized through the sol-gel process at a
temperature of 900 °C, utilizing stearic acid as a capping
agent. The obtained results revealed an average crystallite
size of approximately 12 nm and a specific surface area of
108.1 m2.g−1, both of which were associated with a meso-
porous structure. The EDS and FESEM analyses confirmed
the purity of the acquired MgAl2O4 spinel NPs, exhibiting a
lack of impurities and showcasing a consistently small,
uniform, and spherical morphology.

Furthermore, the optical band gap, calculated as 2.84
eV using Diffuse Reflectance Spectroscopy (DRS), falls
within the range indicative of efficient photo-catalytic
behavior. The Vibrating Sample Magnetometer (VSM)
analysis indicated ferromagnetic behaviors within the
nanoparticles.

Owing to their distinctive structure and properties,
MgAl2O4 spinel nanoparticles hold promise for application
in hydrogen energy storage. Notably, the nanoparticles
demonstrated a noteworthy maximum discharge capacity of
4000 mAh/g, solidifying their potential as a suitable can-
didate for hydrogen storage applications.
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Table 2 Comparison of the
hydrogen discharge capacity of
different nanomaterials

Sample Number of Cycle Discharge Capacity (mAhg−1) Ref.
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MgAl2O4 5 4000 Current work
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