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Abstract
Transition metal (TM)-modification of silica matrices are found in numerous materials for diverse applications. In other
related hybrid materials, one tries to explore properties that result from combining the silica network with organic moieties,
such as in the covalent grafting of polysaccharides onto amorphous nanosilicas. However, sol–gel routes for modification
with TM have been less explored for hybrid siliceous materials. The present study demonstrates the effective modification of
hybrid siliceous materials with TM (TM=Co2+, Ni2+, Cu2+, Zn2+) that result from a sol–gel method that uses as a precursor
the polysaccharide κ-carrageenan that was modified with a covalently alkoxysilane linked. Structural analysis and
characterization studies of the derived carrageenan-silica hybrids were undertaken, and, in particular, the effects of the TM
ions on the hybrids’ properties have been assessed. This work clearly indicates that the modification with TM imposes
changes on the morphological, optical, and thermal properties of the hybrids compared to the unmodified analogs. Hence,
the practical applicability of the modification with TM using the sol–gel described here is not limited to the presence of the
guest ion but also provides a tool for changing the properties of the host particles.

Graphical Abstract
Well-defined spheroidal shape ĸ-carrageenan silica particles doped with transition metals (Co2+, Cu2+, Ni2+, and Zn2+)
prepared using a sol–gel method.
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Highlights
● Transition metal (TM) doped carrageenan-silica hybrids were prepared using a sol–gel method.
● The synthetic strategy reported does not require surfactants as templates.
● Hybrid particles of greater monodispersity and well-defined spheroidal shape have been obtained.
● TM doping changes the morphological, optical, and thermal properties of the hybrids compared to the non-doped

analogs.

1 Introduction

The incorporation of transition metal ions in silica-based
materials is well known and is part of technologies widely
used in the manufacture of glass materials for various
applications [1–3]. The exchange of silicon sites in the silica
network with ions of Co(II) in a tetrahedral environment
imparts the well-known cobalt-blue color that can be
appreciated in several decorative glasses [4]. Colored silica
gel, commonly used as a desiccant, also contains Co(II) as a
colorimetric indicator and rare-earth ions (e.g., Er3+) doping
of silica glass optical fibers are explored for signal ampli-
fication in telecommunications [3], among many other
examples of technological relevance. In this regard, sol–gel
routes are quite effective for homogeneous doping because
the metal guest species are incorporated within the host as
the silica network is formed due to a series of hydrolytic and
condensation reactions of silica oligomers [5]. The adapta-
tion of such metal doping methodologies to the fabrication
of hybrid biomaterials is not straightforward, namely
because of the challenges associated with using different
types of building blocks in the fabrication of such materials
and their influence on the coordination chemistry involved.
For example, in using polysaccharides as the organic
component in siliceous hybrid materials, the metal coordi-
nation environments that result depend on the metal ion
exchange of silicon sites and the metal chemical affinity for
functional groups existent in the organic moieties [6].

Polysaccharides/silica hybrids prepared through the
sol–gel method have been studied as models for a new
generation of hybrid silica-based materials for several
applications [7]. Nevertheless, due to the poor compatibility
between the sol system and natural biopolymers, the for-
mation of polysaccharides/silica hybrid materials is not a
trivial task. Some polysaccharides can be more easily
incorporated into sol–gel processes than others. The most
commonly used polysaccharides have been chitosan [8, 9],
alginate [10, 11], and cellulose [12, 13]. So far, few studies
have been reported on preparing hybrid polysaccharide-
silica materials using carrageenan [14].

Over the last few years, we have reported a series of
silica-polysaccharide hybrid materials that use alkoxysilane-

modified biopolymers as precursors in a new sol–gel
method [15–18]. This sol–gel method has also been
explored to coat magnetic iron oxide cores with hybrid
silicious shells, thus providing a series of functional mate-
rials for magnetic-assisted environmental and medical
nanotechnologies [18–22]. Noteworthy, the surfaces of the
ensuing magnetic nanomaterials have specific chemical
functionalities provided by the biopolymer, which are
instrumental for capturing target species, such as in water-
cleaning nanosorbents and in biomolecule immobilization
substrates. Hence, the magnetic hybrids effectively removed
several emerging pollutants, namely pharmaceuticals
(diclofenac, naproxen, ketoprofen, sulfamethoxazole, and
ciprofloxacin) [19, 23–25] and pesticides (glyphosate) [18],
with high adsorption capacity, reusability and applicability
in natural water samples. Moreover, a drug delivery system
comprising an antitumor agent (doxorubicin) loaded mag-
netic hybrids for anticancer therapy were developed and
opens the way towards the development of theranostic
agents [21]. Another study showed the application of
magnetic silica hybrids in the purification of an Immu-
noglobulin (IgG) seemed to have high potential as a new
downstream platform for biologically active biomolecules
[22]. Modification with TM provides a new way to expand
the multifunctionality of such hybrid materials, yet this
strategy remains unexplored. For this reason, the main goal
of this research was to investigate the in situ sol–gel mod-
ification with TM of carrageenan-silica hybrids, which is a
straightforward method and takes advantage of the chem-
istry employed in the fabrication of silica-polysaccharide
materials.

2 Experimental part

2.1 Chemicals

Ethanol (CH3CH2OH) (>99%) was obtained from Panreac
and methanol (CH3OH) (>99%) was purchased from VWR.
Tetraethyl orthosilicate (Si(OC2H5)4, TEOS, >99%) and 3-
(triethoxysilyl)propyl isocyanate ((C2H5O)3Si(CH2)3NCO,
ICPTES, 95%) were purchased from Sigma-Aldrich. N,
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N-dimethylformamide (HCON(CH3)2) was obtained from
Carlo Erba Reagents, and ammonia solution (NH4OH, 25%
NH3) was purchased from Riedel-de-Häen. κ- carrageenan
(300.000 g mol–1) was obtained from Fluka Chemie. Cobalt
(II) chloride hexahydrate (CoCl2.6H2O) (98%), copper (II)
acetate monohydrate (Cu(CH3COO)2.H2O) (99%) and zinc
acetate dihydrate (Zn(CH3COO)2.2H2O) were purchased
from Panreac. Nickel (II) chloride hexahydrate
(NiCl2.6H2O) (99%) was obtained from Sigma-Aldrich.
Ultra-pure water used was obtained using a Milli-Q system
with a 0.22 μm filter (Synergy equipment, Millipore).

2.2 Synthesis of the κ-carrageenan precursor
(SiκCRG)

An alkoxysilane containing κ-carrageenan (SiκCRG) cova-
lently linked was prepared by reacting the biopolymer with
the silane coupling agent ICPTES, following a procedure that
was previously reported by us [15]. The reaction was per-
formed in a deprotonated solvent (N, N- dimethylformamide)
(DMF). Typically, SiκCRG resulted from the reaction
between dry κ-carrageenan (1 g), dry DMF (13mL), and the
silane coupling agent ICPTES (1.3 mL). The synthesis was
performed in a dried atmosphere at 100 °C, under solvent
reflux conditions, and left under constant stirring for 24 h. The
SiκCRG was washed several times with dry methanol and dry
ethanol and finally dried at room temperature.

2.3 Synthesis of the TM-modified κ-carrageenan-
silica hybrid particles

The hybrid materials were obtained by hydrolysis and
condensation of a mixture of the SiκCRG with a silica
precursor (TEOS) in ethanol containing ultra-pure
water and a TM salt solution, using a base as a catalyst.
Cobalt (II) chloride hexahydrate (CoCl2·6H2O), copper (II)
acetate monohydrate (Cu(CH3COO)2·H2O), zinc acetate
dihydrate (Zn(CH3COO)2·2H2O) and nickel (II) chloride
hexahydrate (NiCl2·6H2O) were used as TMs source.
Briefly, the SiκCRG (0.3 g) and TEOS (0.406 mL) were
mixed with deionized water (0.9 mL). Then, the TM aqu-
eous solution (0.09 mL, 0.1 M) was added, with ethanol
(8.5 mL) and ammonia solution (0.15 mL), under constant
stirring (250 rpm). The synthesis was maintained over 24 h,
at room temperature. Then, the hybrid particles were
washed five times with deionized water and once with dry
ethanol, followed by centrifugation. Finally, the solvents
were evaporated, and the TM-modified κ-carrageenan-silica
hybrid particles were obtained (Fig. S1, Supporting Infor-
mation). In view of the results obtained in this work, the
materials are denominated as SiO2/SiκCRG/Co, SiO2/
SiκCRG/Cu, SiO2/SiκCRG/Ni, and SiO2/SiκCRG/Zn, tak-
ing into account the TM salt solution used. For comparative

purposes, TM-modified silica (SiO2) particles have also
been [26] prepared by using the Stöber method in the pre-
sence of each TM salt solution, to generate SiO2/Co, SiO2/
Cu, SiO2/Ni, and SiO2/Zn particles.

2.4 Instrumentation

Fourier transform infrared (FTIR) spectra of the particles
were measured in the solid state. The spectra of the mate-
rials were collected using a Bruker Optics Tensor 27 spec-
trometer coupled to a horizontal attenuated total reflectance
(ATR) cell, using 256 scans at a resolution of 4 cm−1. The
elemental analysis of carbon, nitrogen, hydrogen, and sulfur
was obtained on a Leco Truspec-Micro CHNS 630-200-
200. The specific surface area of the particles was assessed
by nitrogen adsorption Brunauer–Emmett–Teller (BET)
measurements, performed with a Gemini V2.0 Micro-
meritics instrument. The pore volume was evaluated from
the adsorption branch using the Barret–Joyner–Halenda
method. The morphology and size of the particles were
analyzed by scanning electron microscopy (SEM) using a
Hitachi SU-70 instrument operated at an accelerating vol-
tage of 15 kV and by scanning transmission electron
microscopy (STEM), using a 200 kV Hitachi HD-2700
STEM microscope equipped with energy-dispersive X-ray
spectroscopy (EDS) and secondary electron detectors.
Samples for SEM analysis were prepared by placing an
aliquot of a dilute suspension of the particles in ethanol over
a glass slide glued to the sample holder using double-sided
carbon tape, and then coating the sample with carbon
sputtering. Samples for STEM analysis were prepared by
evaporating the diluted suspensions of the particles on a
grid coated with an amorphous carbon film. Thermogravi-
metric analysis (TGA) of the materials was performed by
using a TGA 50 instrument from Shimadzu. Samples were
heated from 25 to 900 at 10 °C min–1 under a nitrogen
atmosphere. The 29Si MAS/CP MAS NMR and 13C CP
MAS NMR spectra were recorded on a Bruker Avance III
400MHz (9.4 T) spectrometer at 79.49 and 100.61MHz,
respectively. 29Si MAS/CP MAS NMR spectra were
recorded with 4.5 μs 1H 90° pulses, a recycle delay of 60 s,
at a spinning rate of 5 kHz and using a probe for a rotor with
a diameter of 4 mm. 13C CP/MAS NMR spectra were
recorded with 3.65 μs 1H 90° pulses, 1.5 ms contact time, a
recycle delay of 5 s, and at a spinning rate of 9 kHz. Diffuse
reflectance UV–VIS spectra of the powder samples were
recorded on a Jasco U-560 UV/VIS spectrophotometer. The
surface charge of the materials was assessed by zeta
potential measurements, using a Zetasizer Nano series
equipment from Malvern Instruments. The content of the
transition metals was determined using inductively coupled
plasma-optical emission spectroscopy (ICP-OES) using a
model Horiba Jobin Yvon Activa M.

Journal of Sol-Gel Science and Technology (2023) 107:201–214 203



3 Results and discussion

The first step of this work involved the preparation of a hybrid
precursor (SiκCRG) by reaction of κ-carrageenan with a
functionalized alkoxysilane containing isocyanate groups.
Covalent urethane bonds (−NHCOO−) can be formed
between the hydroxyl groups of κ-carrageenan with the iso-
cyanate groups (−NCO) of the silane coupling agent ICPTES
(Fig. 1). In order to obtain TM-modified κ-carrageenan-silica
hybrid particles, in a second step, the SiκCRG and TEOS
were mixed, in the presence of aqueous solutions of selected
TM ions (TM=Co2+, Cu2+, Ni2+, Zn2+) (Fig. 1). For the
sake of comparison, a similar method was applied for pre-
paring the TM-modified SiO2 based counterparts, i.e., in the
absence of the κ-carrageenan containing precursor.

The synthesized particles were analyzed using ATR
FTIR spectroscopy (Fig. 2). The spectra of amorphous

SiO2 and TM-modified SiO2 particles (Fig. S2, Supporting
Information) show the typical absorption bands at
429–434 cm−1 and 945–946 cm−1, which are assigned to
the O–Si–O deformation and stretching vibrations of
silanol (Si–OH) surface groups, respectively [27]. The
absorption bands at 789–794 cm−1 and 1043–1050 cm−1

are ascribed to the symmetric and antisymmetric Si–O–Si
stretching vibrations, respectively [28, 29]. The vibrations
of Co–O (661–570 cm−1) [30], Cu–O (617 cm−1) [31],
Ni–O (578–518 cm−1) [32] and Zn–O (468 cm−1) [33] that
usually appear within the range of 400–670 cm−1, can
barely be seen in the FTIR spectra due to the lower con-
centration of each TM and presence and overlap of silica
peaks that mask these specific vibrations. Regarding the
TM-modified hybrid particles (Fig. 2), the FTIR spectral
bands of the particles have confirmed the main character-
istics of silicate network grafted to ĸ-carrageenan. Briefly,

Fig. 1 Schematic representation of the synthesis of the hybrid pre-
cursor, SiκCRG (step 1) by reaction of the hydroxyl groups of κ-
carrageenan with isocyanate groups of ICPTES. The scheme also

illustrates the case of Co-modified hybrid siliceous materials using
TEOS in the presence of aqueous solutions of the selected TM ion
(step 2), suggesting a coordination environment for the cation
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κ-carrageenan spectrum showed typical bands in the
region 1067–1033 cm−1 due to C–O and C–OH vibrations,
a band at 838 cm−1 that is attributed to the α(1-3)-D-
galactose C–O–S stretching vibration, a band at 925 cm−1

that corresponds to the 3,6-anhydro-D-galactose and a
broad band at 1227 cm−1 due to the S–O antisymmetric
stretching of the ester sulfate groups [19]. The typical
vibration bands of SiO2 and κ-carrageenan have also been
observed in the spectra of the TM-modified hybrid parti-
cles, although these particles have not shown any notice-
able changes in the FTIR spectral bands position after
being modified with TM.

The organic-inorganic hybrid nature of the TM-modified
siliceous materials obtained by this sol–gel method was
confirmed by elemental microanalysis (Table 1). While SiO2

and TM-modified silica particles show low carbon content
(<1.6 wt%), all the TM-modified hybrid particles exhibit
higher carbon content (>12 wt%), which is in agreement with
the formation of hybrids with a significant content of κ-car-
rageenan as the organic component. The specific surface area
(SBET) and pore volume (Vp) of these materials (Table 1) were
assessed by nitrogen adsorption/desorption isotherms. The
specific surface area decreased from 52.0m2 g−1 in SiO2 to
9.2m2 g−1 in SiO2/SiκCRG, due to the increase of the particle

Fig. 2 ATR-FTIR spectra of
κCRG, SiO2, SiO2/SiκCRG,
SiO2/SiκCRG/Co, SiO2/
SiκCRG/Cu, SiO2/SiκCRG/Ni
and SiO2/SiκCRG/Zn particles

Table 1 Compositional and
structural properties of as-
synthesized materials

Sample C (%)a H (%)a N (%)a S (%)a D (nm)b SBET (m2 g−1)c Vp (cm
3 g−1)c

SiO2 0.3 1.5 0.4 – 131 ± 9 52.0 0.15

SiO2/Co 0.9 1.3 0.4 – 6 ± 1 23.4 0.03

SiO2/Cu 0.8 1.2 0.9 – 60 ± 20 20.1 0.02

SiO2/Ni 1.0 1.4 0.1 – 13 ± 2 29.2 0.04

SiO2/Zn 1.6 1.6 1.0 – 180 ± 20 31.3 0.04

SiO2/SiκCRG 19.5 4.0 0.9 2.3 460 ± 30 9.2 0.015

SiO2/SiκCRG/Co 15.5 4.1 0.4 2.2 1300 ± 100 3.5 0.005

SiO2/SiκCRG/Cu 12.2 3.8 0.3 1.0 1100 ± 100 3.9 0.005

SiO2/SiκCRG/Ni 12.9 3.5 0.3 1.0 1000 ± 200 0.2 0.001

SiO2/SiκCRG/Zn 21.5 3.6 0.3 3.7 750 ± 50 2.6 0.004

aCarbon, hydrogen, nitrogen and sulfur content measured by elemental microanalysis
bParticle diameter assessed by TEM
cBET specific surface area (SBET) and porosity volume (Vp) assessed by N2 adsorption
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size and the formation of the hybrid. Identical correlation
between the particle size and the surface area was found in the
TM-modified hybrids. The BET-specific surface area
decreased from 9.2 m2 g−1 (SiO2/SiκCRG) to values in the
range from 0.2 to 3.9m2 g−1, along with an increase in par-
ticle size. The presence of the TM cations during the synthesis
of the particles contributed to the surface area decrease [34].
Regarding the inorganic silica particles, the BET-specific
surface area decreased from 52.0m2 g−1 in SiO2 to values in
the range 20.1–31.3 m2 g−1 in modified silica. Since the par-
ticle size decreased after modification (except for SiO2/Zn),
the decrease in surface area was most likely due to the
blocking of some pores by the TM cations that could limit
the adsorption of the probe gas (N2) inside the pores [35]. The
decrease in the pore volume is in agreement with this effect.

The morphological characteristics of the TM-modified
and unmodified materials were investigated by SEM
(Fig. 3). The SEM analysis showed that unmodified bulk
SiO2 and SiO2/SiκCRG samples have both uniform and
spheroidal particle morphology (Fig. 3a, b). As shown in
Table 1, the average size of the SiO2 particles was
131 ± 9 nm, and decreased to 60 ± 20 nm, 13 ± 2 nm, and
6 ± 1 nm, for the SiO2/Cu, SiO2/Ni and SiO2/Co particles,
respectively (Fig. 3c, e and g). Compared with the
unmodified SiO2, the average size of the TM-modified
SiO2 particles markedly decrease, suggesting that the
incorporation of the TM cations, such as Co2+, Cu2+, and
Ni2+, limits the growth of the SiO2 particles. Interestingly,
the above observation follows the decreasing tendency of
the TM ionic radii for the respective coordination geo-
metry, which might suggest a charge density effect of the
TM ions when already interacting with the silica oligo-
mers. In the case of SiO2/Zn particles, as compared to the
unmodified SiO2 sample, the average particle size
increased to 180 ± 20 nm, but the particles show a distinct
nanoplatelets-like morphology (Fig. 3i) instead of a
spheroidal morphology [36, 37]. The TM-modified κ-car-
rageenan silica particles (Fig. 3d, f, h and j) presented
well-defined spheroidal shape with an average size ranging
between 750 nm and 1300 nm in diameter (Table 1). Fur-
thermore, there is not a clear trend on the effect of the TM
cation employed on the final average particle size of the
modified hybrid materials. These observations are a strong
indication of the important role of the alkoxysilane-
modified polysaccharide precursor during the sol–gel
process, namely by providing diverse oxygen donor
groups for coordinating TM cationic species present in the
reacting mixture, such as sulfate groups. It should be
stressed that the above sol–gel route led to morphological
uniform spherical particles of the TM-modified hybrid
materials without surfactants and emulsions.

XRD patterns of the unmodified and TM-modified par-
ticles are shown in Fig. S3 (Supporting Information). For all

the materials, the only broad peak detected is the one
ascribed to amorphous silica at 2θ ≈ 21°.

The surface charge measured as zeta-potential revealed a
negative surface charge for all the silica and hybrid particles
(Table 2). The zeta potential of unmodified SiO2 and SiO2/
SiκCRG particles was negative (−46 and −68 mV,
respectively). The TM-modified κ-carrageenan silica parti-
cles presented more negative zeta-potential values, com-
pared with amorphous inorganic SiO2, indicating that the
anionic polysaccharide κ-carrageenan was bonded to the
silica network.

A first indication of the presence of the TM cations in the
silicious network was their characteristic color, which
remained after thoroughly washing the solid samples
(Fig. 4). This aspect was further investigated by diffuse
reflectance visible (DR-UV/VIS) spectroscopy, as shown in
Fig. 4. Overall, the DR-UV/VIS spectra show the absorp-
tion features in the visible region as expected for d–d
electronic transition bands for the respective coordinated
TM cations (Fig. 4a–c), except for the Zn2+ samples in
which the metal has the d orbitals totally filled (Fig. 4d).
Furthermore, the DR-UV/VIS spectra suggest different
coordination environments for the TM cations in the hybrid
materials. The analysis of the spectra for the Co-modified
siliceous materials (SiO2/Co and SiO2/SiκCRG/Co) is par-
ticularly instructive because it showed bands peaked at 527,
584, and 643 nm, which is a triplet characteristic of Co2+ in
a tetrahedral environment [38–40], thus in agreement with
the observed blue color of the respective samples (Fig. 4a).
It is known that Co2+ changes in color from pink to blue,
from octahedral coordination in the corresponding hydrated
samples to tetrahedral coordination in the dehydrated sam-
ples [39, 40]. Additionally, the DR-UV/VIS spectra of Cu-
modified silica (SiO2/Cu) and hybrid (SiO2/SiκCRG/Cu)
materials (Fig. 4b) show two bands at around 330–350 nm,
that can be ascribed to charge transfer between mononuclear
Cu2+ ion and oxygen and between Cu2+ and oxygen in
oligonuclear [Cu–O–Cu]n surface species [41]. The band in
the 600–800 nm range is usually attributed to d–d transi-
tions of the Cu2+ ions in an octahedral or tetragonal dis-
torted octahedral surrounding [42]. These results are in
agreement with the structures proposed in refs. [43–45],
showing the typical fingerprint of hexacoordinated Cu2+

ions. Figure 4c shows the DR-UV/VIS spectra of Ni-
modified silica and hybrid materials. For these materials,
two bands located between 401 and 680 nm are observed,
corresponding to the d–d transitions of the Ni2+ cations
[46–48], indicating an octahedral coordination of Ni2+ [49].
Figure 4d shows the DR-UV/VIS spectra of Zn-modified
silica (SiO2/Zn) and hybrid (SiO2/SiκCRG/Zn) particles,
which are in agreement with other studies reported in the
literature for Zn-modified silica particles [50]. Although the
above interpretation is consistent with the data available, a
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Fig. 3 SEM images of particles
in dry and powdered samples
obtained by sol–gel routes:
a SiO2, b SiO2/SiκCRG, c SiO2/
Co, d SiO2/SiκCRG/Co, e SiO2/
Cu, f SiO2/SiκCRG/Cu, g SiO2/
Ni, h SiO2/SiκCRG/Ni, i SiO2/
Zn, and j SiO2/SiκCRG/Zn
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detailed description of the type of coordination environ-
ments of the TM cations in the silicious shells is still an
open issue.

To determine the TM content, the modified materials
were analyzed by ICP-OES. The ICP-OES results showed
that TM-modified particles contain between 0.2 and 2.8% of
metal (Table S1, Supporting Information), which corrobo-
rates the results previously discussed and indicates the
presence of the TM cations in the silicious network of the
materials.

The above electronic spectra indicate that TM ions have
been successfully incorporated into the silica matrix.
However, this has been further confirmed by energy-
dispersive EDS and STEM performed on the samples
(Figs. 5 and S4, Supporting Information). The EDS maps
show a homogeneous dispersion of the TM ions over the
particles for all the samples analyzed. The EDS Si signal
provides maps with a higher color density than the TM EDS
signals, which is consistent with the dispersion of the metal
species on the siliceous matrix.

Solid-state 29Si NMR spectroscopy of the powders
was explored to investigate the effect of TM modifica-
tion on the degree of condensation of the silica network.
Figure 6 shows the cross-polarization (CP)/magic-angle
spinning (MAS) 29Si NMR spectra; the corresponding
chemical-shift assignments are listed in Table S2 (Sup-
porting Information). The silicon sites are labeled
according to the usual NMR spectroscopy notation: Qn

represents quaternary Si atoms linked to n siloxane
groups and (4− n) OH groups [51–53]. Figure 6a shows
the 29Si MAS NMR spectra of bulk SiO2 and the TM-
modified silica particles and Fig. 6b shows the 29Si MAS
NMR spectra of the SiO2/SiκCRG hybrid and the TM-
modified κ-carrageenan SiO2 particles and yields infor-
mation on the connectivity of the siloxane bonds.
Bulk SiO2 particles (Fig. 6a) show two main signals
at −111 and −102 ppm, attributed to the silica sites and

Table 2 Zeta potential of the hybrid particles in aqueous suspensions
at pH 7

Sample Zeta Potential (mV)

SiO2 –46 ± 1

SiO2/SiκCRG –68 ± 3

SiO2/Cu –53.0 ± 0.4

SiO2/SiκCRG/Cu –52 ± 2

SiO2/Co –51 ± 1

SiO2/SiκCRG/Co –51.0 ± 0.9

SiO2/Ni –52.1 ± 0.6

SiO2/SiκCRG/Ni –53.0 ± 0.6

SiO2/Zn –49.6 ± 0.2

SiO2/SiκCRG/Zn –62 ± 1

Fig. 4 Diffuse reflectance UV/
VIS spectra of TM-modified
silica (SiO2/Co, SiO2/Cu, SiO2/
Ni, and SiO2/Zn) and hybrid
(SiO2/SiκCRG/Co, SiO2/
SiκCRG/Cu, SiO2/SiκCRG/Ni,
and SiO2/SiκCRG/Zn) materials
and photographs of the
powdered samples
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Fig. 5 STEM images of SiO2/Co, SiO2/SiκCRG/Co, SiO2/Cu, SiO2/SiκCRG/Cu, SiO2/Ni, SiO2/SiκCRG/Ni, SiO2/Zn, and SiO2/SiκCRG/Zn
particles, and elemental mapping of Co, Cu, Ni, and Zn
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Fig. 6 29Si MAS NMR spectra of a TM-modified silica particles and
b TM-modified hybrid silica particles. 29Si CP/MAS NMR spectra of
c TM-modified silica particles and d TM-modified hybrid silica

particles; and e schematic representation showing the labeling of Si
sites according to NMR spectroscopy notation usually applied to silica
networks
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the unreacted surface silanol sites, respectively [51]. The
chemical shifts between −90.6 ppm and −111.2 ppm in
SiO2 were ascribed to geminated silanols Q2 (Si(OSi)

2(OH)2), isolated silanols Q3 (Si(OSi)3OH) and siloxane
bridges Q4 Si(OSi)4, respectively [52]. The fraction of
silanol groups [(Q2 + Q3)/Q4] that can be calculated from
the 29Si MAS NMR spectra was 0.50 in SiO2 particles
and decreased to 0.44 in the SiO2/SiκCRG hybrid (Table
S2, Supporting Information). The covalent bonding of
the hybrid precursor SiCRG on the surface of the parti-
cles was supported by the decrease in the number of
surface hydroxyl groups. Moreover, the fraction of
silanol groups was 0.52, 0.50, 0.60, and 0.53 in SiO2/Co,
SiO2/Cu, SiO2/Ni, and SiO2/Zn particles, respectively,
and decreased to 0.37, 0.33, 0.36 and 0.43 in SiO2/
SiκCRG/Co, SiO2/SiκCRG/Cu, SiO2/SiκCRG/Ni, and
SiO2/SiκCRG/Zn particles, respectively. SiO2/SiκCRG/
Co, SiO2/SiκCRG/Cu, SiO2/SiκCRG/Ni, and SiO2/
SiκCRG/Zn showed chemical shifts at −103.9, −102.1,
−103.1, and −101.4 ppm respectively, which might be
imposed by the formation of Si–O–TM bridges involving
the Q3 silicon units [54]. The SiO2/SiκCRG/Co, SiO2/
SiκCRG/Cu, SiO2/SiκCRG/Ni, and SiO2/SiκCRG/Zn
samples show Q4 resonances at −111.1, −111.7,
−111.2, and −111.4 ppm, respectively. Furthermore, as
compared to the unmodified samples, broadening of the
Q3 and Q4 peaks (Fig. 6b) occurs, which is due to the
presence of TM ions in the silica matrix.

Comparing the 29Si CP MAS NMR spectra of SiO2

materials (Fig. 6c) with the 29Si CP MAS NMR spectra
(Fig. 6d) of the SiO2/SiκCRG/TM materials show a
decrease in the intensity of the Q4 signals comparing with
the intensity of the Q3 signals, which means that the mod-
ified hybrid materials have an increased number of SiOH%
content, i.e., the amount of Q3. In addition, four new signals
appear at −37.4, −47.1, −56.1, and −65.8 ppm which,
compared to literature values, can be ascribed to T0, T1, T2,
and T3 Si sites, where n denotes the number of –Si–O–
bonds linked to the Si site Tn [15]. Thus, T1, T2, and T3

represent the Si sites in RSi(OSi)(OH)2, RSi(OSi)2OH, and
RSi(OSi)3, respectively [R= –(CH2)3 –NHCOO –κ-carra-
geenan] and further support the polysaccharide κ-carragee-
nan’s covalent attachment to the siliceous network. The
presence of T0 [RSi(OH)3] indicates that the hydrolysis of
the alkoxy groups of the κ-carrageenan precursor can occur
during the sol–gel reaction. The 29Si CP MAS NMR spectra
of SiO2/SiκCRG/Co, SiO2/SiκCRG/Cu, SiO2/SiκCRG/Ni,
and SiO2/SiκCRG/Zn show four new signals corresponding
to Si sites in T0, T1, T2, and T3, confirming the formation of
the covalent bonding between the κ-carrageenan and the
SiO2 matrix, even in the presence of the selected TM ions.

Further insight into the hybrid composition was provided
by 13C CP/magic-angle spinning (MAS) NMR. The 13C CP/

MAS NMR spectra of κ-carrageenan, and hybrid particles
are shown in Fig. 7a and the chemical shifts are listed in
Table S3 (Supporting Information). The spectrum of the
hybrid SiO2/SiκCRG, when compared to κ-carrageenan
spectrum, shows new signals at δ= 9.6, 23.1, and 43.6 that
correspond to C10, C9, and C8 carbon atoms, respectively,
of the Si-bonded propyl chain (Fig. 5b) [51]. Additionally, a
new signal that is attributed to the carbon in urethane groups
(C7) occurs at δ= 157.2 ppm, demonstrating the covalent
bond between the polysaccharide κ-carrageenan and the
siliceous network [15]. Although less intense, these new
signals are also present in the 13C CP/MAS NMR spectra of
the TM-modified hybrid siliceous materials. In addition, the
broad resonances between δ= 61 and 106 ppm have been
attributed to the skeleton carbon atoms of κ-carrageenan
(C1–C6 and C1′–C6′), according to the literature [53].

Thermogravimetric analysis (TGA) measurements were
performed to evaluate the thermal properties of the mate-
rials. Figure 8a shows the TGA of bulk silica and TM-
modified silica particles. The weight loss of bare silica
below 200 °C is 4% which is attributed to the physisorbed
water [55], and the mass loss from 200 to 600 °C is related

Fig. 7 a 13C CP/MAS NMR spectra of κ-carrageenan, SiO2/SiCRG,
SiO2/SiCRG/Co, SiO2/SiCRG/Cu, SiO2/SiCRG/Ni and SiO2/SiCRG/
Zn particles; and b chemical structure, with carbons numbered, of
SiO2/SiκCRG hybrid
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to silica hydroxylation [56]. The polysaccharide κ-carra-
geenan (Fig. 8b) shows weight loss in three distinct stages:
below 200 °C (16% weight loss) corresponds to the loss of
adsorbed and bound water; a second stage from 230 to
400 °C (61% weight loss) is due to carbohydrate-backbone
fragmentation and sulfur dioxide release [57], and further
decomposition at higher temperatures leads to 20% residue
at 900 °C, which is due to carbon. The onset temperature of
the second stage decreased to 171 °C in the unmodified
hybrid (SiO2/SiĸCRG) due to the thermal dissociation of
urethane bonds in aliphatic urethane. However, in the TM-
modified hybrids, this temperature was higher
(210–218 °C), indicating that the TM decreases the resis-
tance to thermal decomposition (Fig. 8b). Overall, the
thermal degradation of native κ-carrageenan is faster than
that of TM-modified κ-carrageenan silica particles. About
77% weight loss takes place in the temperature range of
400–550 °C for κ-carrageenan. In the SiO2/SiκCRG, SiO2/
SiκCRG/Co, SiO2/SiκCRG/Cu, SiO2/SiκCRG/Ni, and

SiO2/SiκCRG/Zn samples, a weight loss of 52%, 56%,
66%, 47%, and 53%, respectively, was observed at 550 °C.
The differences observed in the weight losses by varying
the TM not only confirm the presence of the TM ion, but
also suggest that the respective structures of the κ-carra-
geenan backbones might be changed depending on the TM
species. At 900 °C the residue was about 30% and 32%,
25%, 39%, and 34% for unmodified SiO2/SiκCRG and
hybrids modified with Co, Cu, Ni, and Zn TM, respectively.

4 Conclusions

TM-modified (TM=Co2+, Cu2+, Ni2+, Zn2+) carrageenan-
silica hybrids were synthesized by an in situ sol–gel route that
uses as precursor a covalently linked alkoxysilane modified κ-
carrageenan. This room-temperature sol–gel method is simpler
in reaction conditions and allows spherical, monodispersed
sub-micrometer-sized particles to be obtained without the need
of surfactants and emulsions. The measured specific surface
area of the TM-modified materials is significantly altered as a
result of the blocking of some pores by the TM cations, and the
pore volume also decreased. Compared with the unmodified
SiO2, the average size of the TM-modified SiO2 particles
markedly decrease, suggesting that the incorporation of the TM
cations, such as Co2+, Cu2+, and Ni2+, limits the growth of the
SiO2 particles. Related to the SiO2/Zn particles, as compared to
the unmodified SiO2 sample, the average particle size increased
but the particles present a distinct nanoplatelets-like morphol-
ogy. The incorporation of TM in the carrageenan-silica parti-
cles has not shown a clear trend in the effect of the TM cation
employed on the final average particle size of the modified
hybrid materials. However, samples with well-defined spher-
oidal shapes have been obtained. These observations are a
strong indication of the important role of the alkoxysilane-
modified polysaccharide precursor during the sol–gel process,
namely by providing diverse oxygen donor groups for coor-
dinating TM cationic species present in the reacting mixture,
such as sulfate groups. These metal-modified hybrid particles
will hopefully aid in improving several applications of tech-
nological relevance. As a perspective for future structural stu-
dies in these hybrid materials, the collection of extended X-ray
absorption fine structure signals would enable the type of
coordination of the TM cation in the silica shells to be
established.
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