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Clusters or paperbags? What can we actually learn from the
structure and reactivity of oligonuclear metal-oxo-alkoxide
complexes?
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Abstract
The term cluster has been proposed in Inorganic Chemistry for species featuring well-defined metal-metal bond based
structures and implies inherent stability against metal core transformation. The present article provides additional arguments
for the formation of metal oxo-alkoxide species on the action of external self-assembly forces, without invoking such
stability. These species are easily restructured on hydrolysis in aqueous medium and their alleged photo and electro catalytic
reactivity may actually be due to metal oxide nanoparticles resulting from their transformation. A new term “paperbag
compound” is proposed instead of ‘cluster’ to denote oligonuclear non-cluster species. New insights into the reactivity of
metal oxide nanoparticles in biological systems can be obtained from analysis of structure and bonding parameters in
paperbag compounds as molecular models.
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Highlights
● Self-assembly phenomena have been analyzed for oxo-alkoxide and polyoxometalate (POM) species.
● Trends in preservation and transformation of metal-oxide cores have been illustrated by new and literature-based single

crystal data.
● Reactivity of metal oxo-alkoxides in water leading to their transformation into metal oxide nanoparticles has been traced

using literature data.
● A new term, “paperbag compound” has been proposed for metal oxo-alkoxides and POMs as an alternative to misleading

term cluster.

1 Introduction

The exciting field of cluster chemistry was pioneered and
originally shaped by the works of F.A. Cotton at the Mas-
sachusetts Institute of Technology in the early 1960s [1]. As
brilliantly formulated in the Obituary to Frank Albert Cot-
ton written by M.H. Chisholm for Biography Mems of the
Fellows of the Royal Society in 2008, “Cotton defined the
term ‘metal cluster compounds’ as those compounds or
complex ions consisting of three or more metal atoms held
together at least in part by metal–metal bonds. These he
considered to be different from polyoxometallates and
polynuclear metal alkoxide or carboxylate compounds, in
which ligand bridges are involved in bringing the metal
atoms together” [2]. The most fascinating feature of these
compounds, derived from transition metal cations in low
oxidation states, was their well pronounced chemical sta-
bility. Already in the very first works in the field, it was
noticed, for example, that tri-nuclear rhenium clusters
derived from “ReCl3” such as Re3Cl9(H2O)3 could
exchange the water molecules for chloride ions, but did not
release the “core” chloride ligands for precipitation with
Ag+ cations [3]. This exceptional stability along with the
presence of specific ligand-exchanging active sites on the
surface of clusters reserved for them a special role in cat-
alysis, where especially octahedral species of Mo, W, Nb
and Ta such as, for example, [Mo6Cl8]

4+ units, have
received special attention [4]. Clusters have also been
considered as promising building blocks in functional
nanomaterials [5]. The reasons behind the observed geo-
metry and stability of cluster cores have received their
explanation in the Nobel prize winning research of Roald
Hoffmann [6].

With the development of nano science in the late 1980s,
the term cluster has been picked up by physicists in a very
different manner, as chemical thermodynamics started to
approach a quantitative description of nucleation phenom-
ena. Thus, the process of material formation was generally
assumed to proceed from molecules via clusters to bulk
solids. These studies actually were not in any way related to
chemistry. A very typical example can be found in the
ground-breaking works of the Chemical Physics school at
the Paris-Sud University, where, in particular crystallization

of CO2, N2 and SF6 was followed, revealing intermediate
formation of such aggregates as (CO2)13 [7]. This vision of
transformation from molecules to bulk material became
surprisingly attractive to members of the sol-gel commu-
nity, where an erroneous (in relation to metal oxide pre-
cursors) hypothesis of “kinetically controlled hydrolysis and
condensation” was dominating at that time [8]. The fun-
damental assumption in this hypothesis was that the M-O-M
bond once formed, either by hydrolysis, or in non-
hydrolytic approaches, by ester [9, 10] or ether [11–13]
elimination reactions, was rigid, and resistant to further
breakdown. Thus, the process of transformation of alkoxide
precursors into oxide gels was seen as a kind of inorganic
polymerization. In agreement with this vision of the sol-gel
phenomenon, if some aggregates were formed and isolated,
they were seen as “stable oligomers”. Their structure was
assumed to be preserved in any further transformations. In
the literature at that time, the oxo-alkoxides were compared,
quite correctly, to the polyoxometalates in aqueous media.
The matter, however, is that polyoxometalates are distinctly
not clusters in their behavior – they are products of ther-
modynamic equilibrium resulting from applied acidity,
concentration and temperature conditions and easily re-
transform if the conditions are changed. Even phase dia-
grams can be produced for them, showing the effects of
concentration and acidity (Fig. 1).

The breakdown and restructuring of polyoxometalates in
water is a relatively rapidly proceeding reaction. The rate
constant for the 1st order dissociation of [PW12O40]

3− in
MilliQ water was found to be 6.96 × 10−3 s giving the
reaction halftime of 100 s—a seemingly quick reaction [14].

Fig. 1 Phase diagram for isopoly-molybdate compounds’ formation in
solution with Mo concentration in the range 0.1–0.4 M. Reprinted with
permission from [55]
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The nature of the metal oxide and specifically titanium
and zirconium oxides formation in sol-gel processes has
been beyond doubt proven to be thermodynamically con-
trolled nucleation, followed by aggregation without growth,
guided by diffusion and heterogeneous kinetics. Homo-
geneous reaction kinetics is no issue in metal oxide sol-gel
chemistry [15–18].

The erroneous ideas about the nature of oligonuclear
oxo-alkoxides have led to a number of spectacularly
complicated synthetic approaches to some oligonuclear
species. For example, for production of [BaZr(OH)(OiPr)

5(
iPrOH)2]2, to avoid formation of Ba:Zr 2:1 and 1:2

“clusters” formed with iso-propoxide ligands, first, a 1:1
complex with t-butoxide ligands was formed by reaction
of pre-formed Ba(OtBu)2 with the industrially available
Zr(OtBu)4. Then, it was hydrolyzed by a stoichiometric
amount of water and later subjected to ligand exchange
with an excess of iPrOH [19]. In fact, this compound
could instead be produced with very high yields just by
dissolving barium metal in a solution of the commer-
cially available zirconium iso-propoxide, with sub-
sequent careful addition of a stoichiometric amount of
water in the parent alcohol [20]. The non-cluster nature
of complex precursors has even been a pitfall and
damaged the image of sol-gel chemistry in the synthesis
of High-Temperature HTSC, because formation of an
oligonuclear oxo-alkoxide intermediate did not show any
effect on further formation of complex oxide phases. The
oxide phase did form, but only under conditions where it
was thermodynamically stable and kinetically accessible
(diffusion of cations was rapid enough) [21].

The idea of “cluster nature” seemed finally to be aban-
doned and consensus achieved among people working with
metal alkoxide chemistry at Materials Discussion VII in
2004 in London dedicated to Donald C. Bradley. It
returned, however, recently with the growing modern
interest in molecular models of oxides. The idea of using
oxo-alkoxides as molecular models for the forming oxide
phases is, however, not in any sense new. It has been
advocated by the classics of alkoxide chemistry, in parti-
cular, by Don Bradley already in 1960s [22]. Then in the
late 1980s and beginning of the 1990s, came the works by
Malcolm Chisholm et al. on metal alkoxides generally as
models of oxides, with a focus on mechanisms of catalytic
processes [23–25], and of Walter Klemperer, who tracked
the structural analogy between oxo-alkoxides and poly-
oxometalates [26]. An important contribution was made
also by Nataliya Turova et al., with the idea about oxo-
alkoxides as true precursors of oxides [27]. The concept of
modeling the properties of especially nanosized oxides with
oxo-alkoxide species received a new lease of life with the
interest in titania as a photocatalyst. A huge effort has been
made by the group of Philip Coppens that produced—in a

small fraction, also in collaboration with our group—a
plethora of oligonuclear titanium oxo-alkoxides and inves-
tigated their electronic spectra, relating ligand properties to
the bonding in their structures [28]. This gave, on one hand,
indications for the ligand influences the bandgap in surface-
modified TiO2, and, on the other hand, insights into how the
ligands, used in surface grafting of organic functions on
titania surface, can and cannot be attached. These insights
were very valuable and helped in regulating the photo
activity of hybrid nano titania [29, 30] and in building up
hybrid adsorbents for recycling of critical metals [31, 32].

In the present contribution, we demonstrate that the
reactivity with structural transformation on ligand
exchange, where hydrolysis can be considered as a par-
ticular case, have general characteristics for metal oxo-
alkoxides and are not only specific for titanium or zir-
conium derivatives. We provide also insights in possible
approaches enabling the composition of heterometallic
oxo-alkoxides of titanium to be exploited for under-
standing the biological activity of titanium oxide. A new
term, “paperbag” is proposed for non-cluster oligo-
nuclear complexes.

2 Experimental

All chemicals were obtained from Sigma-Aldrich Sweden.
Alcohols were purified and distilled before use from barium
ethoxide for EtOH and from aluminum normal propoxide—
for nPrOH. Toluene was purified via distillation over
lithium aluminum hydride.

2.1 Preparation and synthesis

Niobium n-propoxide, Nb2(O
nPr)10(l), Cas. No. 38874-17-

8, was received as a colorless transparent viscous liquid. A
portion of ca. 3 ml of the product was transferred to a
Schlenk flask (further sealed with a stopper well-smeared
with silicon grease and Parafilm) under nitrogen atmosphere
and left in a refrigerator at 3 °C for a period of several
months. Colorless rod-shaped crystals discovered on the
bottom of the stored flask were separated by decantation
and characterized by single-crystal X-ray study.

A portion of niobium ethoxide, Nb2(OEt)10(l), Cas. No.
3236-82-6, was received as a colorless transparent viscous
liquid. A portion of ca. 2 ml of the product was transferred
to a Schlenk flask and a portion of 10 ml nPrOH along with
10 ml toluene was added to it by syringe. The formed
transparent solution was evacuated to dryness without
heating and the procedure was repeated twice, leaving a
viscous transparent liquid that was stored for 1 week at
3 °C, producing a crop of rod-shaped crystals, identical to
those obtained on storage of Nb2(O

nPr)10(l).
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2.2 X-ray crystallography

Data collection was carried out at room temperature with
Bruker SMART Apex-II CCD diffractometer for a full
hemisphere in the 2Theta range 2.68–50.05° using graphite-
monochromated MoKα radiation (sealed tube),
λ = 0.71073 Å. Integration of the data was performed with
Bruker SAINTPLUS and data reduction with the Bruker
SADABS program. C60H140Nb8O30, M= 2084.99 Da,
Orthorhombic, Space group Pbca, a= 22.314(4),
b= 17.157(3), c= 24.459(4) Å, V= 9364(3) Å3, Z= 4.
The structure was solved by direct methods. The positions
of the majority of non-hydrogen atoms were obtained from
the initial solution and those of the residual ones were found
in the subsequent difference Fourier synthesis. All non-
hydrogen atoms were refined first in isotropic and then in
anisotropic approximation. Hydrogen atoms were intro-
duced by geometrical calculation, and included into the final
refinement in isotropic approximation, applying a riding
model. The refinement converged at discrepancy factors
R1= 0.0671, wR2= 0.1779, for 5225 observed reflections
(I > 2sigma(I)). Full details of experiment and structure
solution and refinement are available free-of-charge from
the Cambridge Crystallographic Data Center at http://www.
cam.ac.uk citing deposition number 2151366.

3 Results and discussion

Metal alkoxides are, due to the weak σ and strong π-
donor properties of alkoxide ligands, stabilizing the
highest oxidation states of metal atoms [33]. This feature
is also leading to localization of bonding orbitals in the
alkoxide complexes on the oxygen atoms, making the
charge interactions, i.e. ionic bonding, the dominating
force in their formation [34]. The structures of the het-
erometallic alkoxide complexes have on a broad selec-
tion of examples over the whole Periodic Table been
proved to result from self-assembly, or maybe more
correctly stated molecular assembly, of metal cations and
alkoxide anions [34]. The same is true, of course, even
for homometallic species. Broadly demonstrated for Ti
[35], Zr and Hf [36, 37], the ionic nature and molecular
(self-)assembly principles can be traced for oxo-
alkoxides and polyoxometalate species of a broad vari-
ety of metal cations. In particular, in this work the
insights into molecular assembly of niobium oxo-
alkoxide species have been complemented. Slow spon-
taneous decomposition/microhydrolysis of niobium
n-propoxide was shown to result in formation of the
same type of metal-oxide core for the oxo-substituted
species as in case of the ethoxide as starting reagent (see
Fig. 2). The ether elimination phenomenon leading to

spontaneous formation of oxo-substituted species has
actually been proved for Nb(V) alkoxides earlier
[38, 39].

This fact, however, is not in any way manifesting the
existence of a specific stable Nb8O30 “cluster core”. In the
same way as was noticed for Zr and Hf alkoxides
[20, 36, 37], the addition of a different ligand even in the
absence of heating or other high-energy treatment leads for
smaller fraction to preservation of the core (just because the
smaller primary ligands are still present to permit the same
kind of molecular assembly) and for its excess results in a
completely different structure with a different number of
niobium atoms in the aggregate.

Starting from Nb8O10(OEt)20 the addition of 2 equivalents
of HOSi(SiMe3)3 [40] gives Nb8O10(OEt)18(OSi(SiMe3)3)2,
making a “flash” of cluster behavior, but the excess of the
same ligand without heating(!) produces Nb6O13(OSi(SiMe3)3)

6H2, a structure with completely different core Nb6O19 (see
Fig. 3a, b), by the way analogous to that of Lindquist type
polyoxometalates, well-known for aqueous equilibria [41]. In
the same way, the addition of iso-propanol in excess to nio-
bium oxo-ethoxide results in a different but also hexa-nuclear
core, Nb6O24 (see Fig. 3c) [42].

It should be noted, of course, that heating, when applied,
does often lead to a change in the structure and size of the
alkoxide species—either via simple rearrangement as in the
case of the aluminum iso-propoxide trimer-tetramer system,

Fig. 2 Molecular structures of Nb8O10(OEt)20 (a) [39, 56] and
Nb8O10(O

nPr)20 (b, this work)
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where a kinetically slow [Al(OR)3]3 ⇄ [Al(OR)3]4 equili-
brium is shifted [43], or by a change in the ligand compo-
sition via ether [11–13] or ester elimination [9, 10]. In
structural transformations on heating of titanium and
zirconium-titanium paperbags, there may occur the “fla-
shes” of structural resemblance between smaller oxo-

complexes and fragments of the bigger ones [44–46], but
just as in the case of Nb(V) they result from mere
coincidence.

Unfortunately, the interest in photo and especially photo
electro catalysis, in particular, for water splitting has led to
an unexpected development based on a belief in the cluster
nature of titanium oligonuclear oxo-alkoxide species. In a
growing wave of publications, new exciting oxo-alkoxide
structures modified by carboxylate, phenoxide, phosphonate
ligands, etc. were prepared by solvothermal synthesis,
characterized and then put into aqueous medium assuming
that they remain intact and that their photocatalytic and
photoelectrocatalytic properties observed for derived mate-
rials can be attributed to the structurally characterized pre-
cursor molecules. This, according to the accumulated
knowledge about the actual reactivity of such species, is
most probably, never true. Solvothermal synthesis does not
provide these very reactive species with any superficial
stability. Their structures follow the same motifs as those
produced by room temperature hydrolysis. The reactivity of
a large number of such complexes in either hot or cold
water has been investigated quite thoroughly and showed
transformation into ligand-capped TiO2. The process was
traced for carboxylate [47], phenoxide [48] and alkyl
phosphonate [35] bearing oxo-alkoxide complexes, and
revealed everywhere the same pattern—topotactic trans-
formation with preserved outer shape and size of original
crystals, but with internal densification, resulting in the
formation of TiO2 nanoparticles with an anatase core
structure (Fig. 4).

In the cases where salts, featuring oligonuclear oxo-alkoxide
cation and halogeno-metalate anion, were subjected to
humidity or contact with water, the observed result was exactly
the same [49]. To the best of our knowledge, there are actually
very few alkoxides featuring resistance to water, such as
Re4O2(OMe)16 or its higher oxidation state analog
Re4O6(OMe)12 [50]. It is worth noting that this latter paperbag
compound forms on thermal condensation of a true cluster
Re2O3(OMe)6, demonstrating that denser packing in a bigger
molecule may offer better stabilization than a metal-metal
bond. However, the origin of the hydrolytic stability of these
rhenium species is not the cluster nature, but the dense packing
of molecules rendering it hydrophobic, impenetrable for water.
The structures that are not accessible to water would apparently
not be reactive in photoelectrochemical water splitting (see, for
example, [51]). In many cases, the reported results directly
indicate the transformation to surface-modified titania, as in the
case where different salicylate substituted titanium oxo-
alkoxides have all demonstrated exactly the same photoelec-
trocatalytic activity (originating supposedly from formation of
the same kind of salicylate-capped anatase) [52].

In summary—there is a challenge: in all cases, where
transformations of these so-called oxo-alkoxide “clusters”

Fig. 3 Molecular structures of Nb8O10(OEt)18(OSi(SiMe3)3)2 (a) [40],
Nb6O13(OSi(SiMe3)3)6H2 (b) [40] and Nb6O8(O

iPr)14(
iPrOH)2 (c) [42]
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have actually been followed, they resulted in formation of
(surface-capped) nano titania, which was apparently
responsible for the catalytic properties. In my opinion, the
Sol-Gel and, more broadly, Inorganic Chemistry commu-
nity needs to reflect on this in two ways. One reasonable
measure is to require the authors in all cases, where pre-
served or “partly condensed” structure of an oxo-alkoxide
oligonuclear complex is postulated [53], to provide con-
vincing high-resolution microscopy (TEM, AFM) and/or
structure-sensitive X-ray spectroscopy evidence for the
nature of their material after contact with aqueous medium.
This, however, will not be sufficient. Something needs to be
done with the misuse of the word “cluster” itself. In Eng-
lish, this (for a non-native-English speaker) beautifully
sounding word, has a rather clear meaning, evoking an
image of a cluster of grapes or a cluster of wheat—a
structure bound on the inside by connections and branches.
In a molecule, these are metal-metal bonds. For structures
emerging not due to internal bonding, but as a result of
external molecular (self-)assembly forces such as dense
packing and minimization of the surface energy, we need a
different term with an unequivocal everyday life image to
relate to. A different kind of object needs a different name.
My proposal would be a “paperbag” (Fig. 5).

The need for a separate term lies in the expectations for
the behavior. Both clusters and paperbags can have different
stability, but naming something a cluster induces expecta-
tion of a stable cluster behavior. Naming an object a
paperbag will work as an apparent alarm for avoiding the
pitfalls described above.

Oligonuclear oxo-alkoxide complexes and poly-oxo-
metalates, not behaving as clusters and generally not being
good subjects of study in photo electrochemical behavior,
are however excellent instrument for providing insights into
the surface chemistry of oxide nanoparticles, and are
especially valuable for understanding of the mineral nano-
particle interactions with biologically active species such as

medicines and bio-molecules, phospholipids, peptides and
nucleotides. Analysis of structure and bonding in the
paperbag species provides a strong background for theore-
tical modeling of mineral nanoparticle—biomolecule inter-
action, such as, for example, strong specific binding to viral
proteins, potentially contributing to anti-viral activity [54].

4 Conclusion

Oligonuclear complexes without metal-metal bonding are
behaving similarly to a bag of paper filled with potatoes or
apples. As far as external forces remain the same—the
content stays in it. If the conditions change—we can pour
over a part of the content or contents of several bags into a
new one. If we put a bag with potatoes into a bucket of
water—it will crack and offer us a densely packed pile on
the bottom—a reasonable visual analogy of a metal oxide
nano crystal. The paperbag chemistry is exciting and can
enable us to learn a lot about oxide nanoparticles. However,
it is not cluster chemistry and, in my opinion, should not be
treated as such.

Fig. 4 Transformation of an (oxo) alkoxide crystal to crystalline anatase particles on topotactic hydrolysis in water: Addition of water to the
molecular precursor crystal (a) causes hydrolysis and contraction of the crystal structure, leading to densification with formation of the amorphous
lamellar structures (b). Randomly scattered crystalline (anatase) nuclei emerge in the disordering amorphous phase upon further hydrolysis (c).
Reprinted with permission from ref. 35

Fig. 5 Visual references for the classic term cluster and the new
complementing one—paperbag
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