Skip to main content

Advertisement

Log in

High-performance photocatalytic WO3 nanoparticles for treatment of acidic wastewater

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Water treatment is a worldwide problem that can be solved by the interaction of light with nanoparticles like WO3 nanoparticles. However, most nanoparticles have low photocatalytic efficiency in acidic conditions like acidic effluents of factories. Therefore, in the study, WO3 nanoparticles are synthesized with the sol–gel route as a simple and low-cost method, and then the nanostructures are calcined at a different temperature to find an effective photocatalytic agent for acidic water treatment. For the purpose, optical and structural properties, crystallinity, thermodynamic stability, and hydrodynamic diameter of the nanostructures are investigated in the paper. Raman and FTIR spectra of all four samples have approximately similar peaks and indicate the formation of WO3. XRD and thermal analysis point to a transition in the crystal phase with a change in calcination temperature. According to FESEM, DLS, and optical analyses, the as-synthesized and calcined WO3 nanoparticles @300 °C have the smallest particle size, the most stability in a liquid medium, and the best optical properties among other samples. The photocatalytic activities of these samples are evaluated via degradation of methylene blue, MB, (10 ppm) using irradiated WO3 NPs (20 ppm) under diode laser light with a central wavelength of 405 nm and the power of 100 mW. The high photocatalytic efficiency is obtained using the as-synthesized sample in both neutral (57.3%,) and acidic (74.7%) conditions and unlike most nanoparticles, the photocatalytic efficiency of the sample in acidic conditions is noteworthy, which makes it a suitable candidate for the treatment of acidic effluents in factories.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Aliannezhadi M, Minbashi M, Tuchin VV (2018) Effect of laser intensity and exposure time on photothermal therapy with nanoparticles heated by a 793-nm diode laser and tissue optical clearing. Quantum Electron 48(6):559

    Article  CAS  Google Scholar 

  3. Jeevitha G, Abhinayaa R, Mangalaraj D, Ponpandian N (2018) Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J Phys Chem Solids 116:137–147

    Article  CAS  Google Scholar 

  4. Elsayed EM, S Elnouby M, Gouda M, Elessawy NA, Santos D (2020) Effect of the morphology of tungsten oxide embedded in sodium alginate/polyvinylpyrrolidone composite beads on the photocatalytic degradation of methylene blue dye solution. Materials 13(8):1905

    Article  CAS  Google Scholar 

  5. Han B, Popov A, Shekunova T, Kozlov D, Ivanova O, Rumyantsev A, Shcherbakov A, Popova N, Baranchikov A, Ivanov V (2019) Highly crystalline WO3 nanoparticles are nontoxic to stem cells and cancer cells. J Nanomater 2019:5384132

    Article  Google Scholar 

  6. Zheng N, Zhang S, Wang L, Qi Z, Peng Q, Jian L, Bai Y, Feng Y, Shen J, Wang R (2022) Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation. Nano Res 15(3):2315–2323

    Article  CAS  Google Scholar 

  7. Qureshi N, Lee S, Chaudhari R, Mane P, Pawar J, Chaudhari B, Shinde M, Rane S, Kim T, Amalnerkar D (2021) Hydrothermal Generation of 3-Dimensional WO3 Nanocubes, Nanobars and Nanobricks, Their Antimicrobial and Anticancer Properties. J Nanosci Nanotechnol 21(10):5337–5343

    Article  Google Scholar 

  8. Rezaee O, Mahmoudi Chenari H, Ghodsi F (2016) Precipitation synthesis of tungsten oxide nanoparticles: X-ray line broadening analysis and photocatalytic efficiency study. J Sol-Gel Sci Technol 80(1):109–118

    Article  CAS  Google Scholar 

  9. Yu J, Qi L, Cheng B, Zhao X (2008) Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres. J Hazard Mater 160(2-3):621–628

    Article  CAS  Google Scholar 

  10. Derbasova N, Gavrish V, Oleynik A (2021) Studying the effect of monochrome light on the photocatalytic activity of tungsten oxide. J Phys Conf Ser 1:012117

    Article  Google Scholar 

  11. Mohammed Harshulkhan S, Janaki K, Velraj G, Sakthi Ganapthy R, Nagarajan M (2016) Effect of Ag doping on structural, optical and photocatalytic activity of tungsten oxide (WO3) nanoparticles. J Mater Sci: Mater Electron 27(5):4744–4751

    CAS  Google Scholar 

  12. Khan MY, Ahmad M, Sadaf S, Iqbal S, Nawaz F, Iqbal J (2019) Visible light active indigo dye/graphene/WO3 nanocomposites with excellent photocatalytic activity. J Mater Res Technol 8(3):3261–3269

    Article  CAS  Google Scholar 

  13. Deepa M, Kar M, Singh D, Srivastava A, Ahmad S (2008) Influence of polyethylene glycol template on microstructure and electrochromic properties of tungsten oxide. Sol Energy Mater Sol Cells 92(2):170–178

    Article  CAS  Google Scholar 

  14. Ding R, Wang K, Hong K, Zhang Y, Cui Y (2019) Hierarchical core-shell tungsten oxide/TiO2 nanowires as an effective photocatalyst. Chem Phys Lett 714:156–159

    Article  CAS  Google Scholar 

  15. Smrithi S, Kottam N, Arpitha V, Narula A, Anilkumar G, Subramanian K (2020) Tungsten oxide modified with carbon nanodots: Integrating adsorptive and photocatalytic functionalities for water remediation. J Sci: Adv Mater Devices 5(1):73–83

    Google Scholar 

  16. Sheikhi S, Aliannezhadi M, Tehrani FS (2022) Effect of precursor material, pH, and aging on ZnO nanoparticles synthesized by one-step sol–gel method for photodynamic and photocatalytic applications. Eur Phys J 137(1):60

    CAS  Google Scholar 

  17. Jamali M, Tehrani FS (2020) Effect of synthesis route on the structural and morphological properties of WO3 nanostructures. Mater Sci Semiconductor Process 107:104829

    Article  CAS  Google Scholar 

  18. Ou P, Song F, Yang Y, Shao J, Hua Y, Yang S, Wang H, Luo Y, Liao J (2022) WO3· n H2O Crystals with Controllable Morphology/Phase and Their Optical Absorption Properties. ACS Omega 7(10):8833–8839

    Article  CAS  Google Scholar 

  19. Jamali M, Tehrani FS (2021) Thermally stable WO3 nanostructure synthesized by hydrothermal method without using surfactant. Mater Sci Eng B 270:115221

    Article  CAS  Google Scholar 

  20. Shariatmadar Tehrani F, Ahmadian H, Aliannezhadi M (2021) High specific surface area micro-mesoporous WO3 nanostructures synthesized with facile hydrothermal method. Eur Phys J 136(1):1–11

    Google Scholar 

  21. Tijani JO, Ugochukwu O, Fadipe L, Bankole M, Abdulkareem A, Roos W (2019) One-step green synthesis of WO3 nanoparticles using Spondias mombin aqueous extract: effect of solution pH and calcination temperature. Appl Phys A 125(3):1–12

    Article  Google Scholar 

  22. Ahmadian H, Tehrani FS, Aliannezhadi M (2019) Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH. Mater Res Express 6(10):105024

    Article  CAS  Google Scholar 

  23. Abbaspoor M, Aliannezhadi M, Tehrani FS (2021) Effect of solution pH on as-synthesized and calcined WO3 nanoparticles synthesized using sol-gel method. Optical Mater 121:111552

    Article  CAS  Google Scholar 

  24. Salmaoui S, Sediri F, Gharbi N, Perruchot C, Jouini M (2013) Hexagonal hydrated tungsten oxide nanomaterials: hydrothermal synthesis and electrochemical properties. Electrochim Acta 108:634–643

    Article  CAS  Google Scholar 

  25. Tehrani FS, Ahmadian H, Aliannezhadi M (2020) Hydrothermal synthesis and characterization of WO3 nanostructures: Effect of reaction time. Mater Res Express 7(1):015911

    Article  CAS  Google Scholar 

  26. Meng L, Zhao Z, Zhang M, Zhu X, Geng X, Liu J, Xia Y, Wang Z (2017) Synthesis of WO3 microfibers and their optical properties. Ceram Int 43(9):7048–7056

    Article  CAS  Google Scholar 

  27. Shakya V, Pandey N, Misra SK, Roy A (2017) Electrical and optical properties of ZnO–WO3 nanocomposite and its application as a solid-state humidity sensor. Bull Mater Sci 40(2):253–262

    Article  CAS  Google Scholar 

  28. Talukder A, Sultana P, Haider A, Wahadoszamen M, Abedin KM, Farhad S (2010) Power dependence of size of laser ablated colloidal silver nanoparticles. Eur Phys J D 60(2):295–300

    Article  CAS  Google Scholar 

  29. Bahadori A, Dizaji HR, Memarian N, Aliannezhadi M (2020) Effect of preparation conditions on physical properties of manganese oxide thin films. J Sol-Gel Sci Technol 95(1):180–189

    Article  CAS  Google Scholar 

  30. Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani FS (2022) High Specific Surface Area γ-Al2O3 Nanoparticles Synthesized by Facile and Low-cost Co-precipitation Method. preprint https://doi.org/10.21203/rs.3.rs-2085977/v1

  31. Mioduska J, Zielińska-Jurek A, Janczarek M, Hupka J (2016) The effect of calcination temperature on structure and photocatalytic properties of WO3/TiO2 nanocomposites. J Nanomater 2016:3145912

    Article  Google Scholar 

  32. Egorin A, Dran’kov A, Didenko N, Tokar E, Sokol’nitskaya T, Papynov E, Tananaev I (2020) Synthesis and sorption characteristics of tungsten oxides-based materials for Sr-90 removal from water media. J Mater Sci 55(22):9374–9384

    Article  CAS  Google Scholar 

  33. Reis KP, Ramanan A, Whittingham MS (1992) Synthesis of novel compounds with the pyrochlore and hexagonal tungsten bronze structures. J Solid State Chem 96(1):31–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Aliannezhadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaspoor, M., Aliannezhadi, M. & Tehrani, F.S. High-performance photocatalytic WO3 nanoparticles for treatment of acidic wastewater. J Sol-Gel Sci Technol 105, 565–576 (2023). https://doi.org/10.1007/s10971-022-06002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06002-9

Keywords

Navigation