Skip to main content

Advertisement

Log in

Recent progress and applications of aerogels in China

  • Invited Paper: Industrial and technological applications of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aerogels are nanoporous materials which were initially prepared by Kistler in 1931. During the past 80 years, the investigation of aerogels accelerated rapidly in the 1980s and 2000s due to potential applications in many important fields and industrialization demands. In recent years, aerogels are attracting more and more people because of the unprecedented global pressure of the problems of energy and environment. As the materials with the lowest thermal conductivity, aerogels are ideal materials for thermal insulations which can save energy and help to reduce carbon emissions. As materials with high porosity and specific surface area, aerogels are ideal materials to adsorb toxic molecules or ions in the air and water, which can be applied in environmental protection. Carbon aerogels, with a good electric conductivity, are also good electrode materials for supercapacitors. In this paper, recent progress in aerogel preparation and applications in China are reviewed.

Highlights

  • This paper is the first to introduce Chinese aerogel industry, which is helpful for countries around the world to better understand Chinese aerogel and strengthen in-depth cooperation.

  • This article not only introduces the academic research progress of aerogels in China, but also shows the practical industrial applications of Chinese aerogels.

  • This review points out the problems and challenges in the large-scale production and application of aerogel-based materials, and clarifies the direction for the international aerogel industry to become bigger and stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127(3211):741–741. https://doi.org/10.1038/127741a0

    Article  CAS  Google Scholar 

  2. Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interface Sci 5(3):245–273. https://doi.org/10.1016/0001-8686(76)80004-8

    Article  CAS  Google Scholar 

  3. Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3(9–10):363–367. https://doi.org/10.1016/0167-577X(85)90077-1

    Article  CAS  Google Scholar 

  4. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227. https://doi.org/10.1007/BF01139044

    Article  CAS  Google Scholar 

  5. Fu R, Zheng B, Liu J, Dresselhaus MS, Dresselhaus G, Satcher Jr. JH, Baumann TF (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13(7):558–562. https://doi.org/10.1002/adfm.200304289

    Article  CAS  Google Scholar 

  6. Tamon H, Ishizaka H (2000) Influence of gelation temperature and catalysts on the mesoporous structure of resorcinol–formaldehyde aerogels. J Colloid Interface Sci 223(2):305–307. https://doi.org/10.1006/jcis.1999.6640

    Article  CAS  Google Scholar 

  7. Barbieri O, Ehrburger-Dolle F, Rieker TP, Pajonk GM, Pinto N, Venkateswara Rao A (2001) Small-angle X-ray scattering of a new series of organic aerogels. J Non-Cryst Solids 285(1):109–115. https://doi.org/10.1016/S0022-3093(01)00440-9

    Article  CAS  Google Scholar 

  8. Merzbacher CI, Meier SR, Pierce JR, Korwin ML (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285(1):210–215. https://doi.org/10.1016/S0022-3093(01)00455-0

    Article  CAS  Google Scholar 

  9. Brandt R, Fricke J (2001) Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range. J Non-Cryst Solids 350:131–135. https://doi.org/10.1016/j.jnoncrysol.2004.06.039

    Article  CAS  Google Scholar 

  10. Brandt R, Petricevic R, Pröbstle H, Fricke J (2003) Acetic acid catalyzed carbon aerogels. J Porous Mater 10(3):171–178. https://doi.org/10.1023/A:1027486401135

    Article  CAS  Google Scholar 

  11. Horikawa T, Hayashi J, Muroyama K (2004) Controllability of pore characteristics of resorcinol–formaldehyde carbon aerogel. Carbon 42(8):1625–1633. https://doi.org/10.1016/j.carbon.2004.02.016

    Article  CAS  Google Scholar 

  12. Yang Z (2020) Preparation and application of carbon aerogel and its composites. Ph.D., University of Science and Technology of China

  13. Mulik S, Sotirious-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19(25):6138–6144. https://doi.org/10.1021/cm071572m

    Article  CAS  Google Scholar 

  14. Fricke J, Emmerling A (1992) Aerogels—prepartion, properties, applications. Struct Bond 77:37–87. https://doi.org/10.1007/BFb0036965

    Article  CAS  Google Scholar 

  15. Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144(12):L309–L311. https://doi.org/10.1149/1.1838142

    Article  CAS  Google Scholar 

  16. Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35(6):791–796. https://doi.org/10.1016/S0008-6223(97)00024-9

    Article  CAS  Google Scholar 

  17. Attia SM, Wang J, Wu GM, Shen J, Ma JH (2002) Review on sol-gel derived coatings: process, techniques and optical applications. J Mater Sci Technol 18(3):211–218

    CAS  Google Scholar 

  18. Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zheng GZ, Gui YS (2001) Morphological effects on the electrical and electrochemical properties of carbon aerogels. J Electrochem Soc 148(6):D75–D77. https://doi.org/10.1149/1.1368104

    Article  CAS  Google Scholar 

  19. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35(9):1271–1278. https://doi.org/10.1016/S0008-6223(97)00069-9

    Article  CAS  Google Scholar 

  20. Leventis N, Sotiriou-Leventis C, Zhang GH, Rawashdeh MAM (2002) Nanoengineering strong silica aerogels. Nano Lett 2(9):957–960. https://doi.org/10.1021/nl025690e

    Article  CAS  Google Scholar 

  21. Mohite PD, Mahadik-Khanolkar S, Luo HY, Lu HB, Sotiriou-Leventis C, Leventis N (2013) Polydicyclopentadiene aerogels grafted with PMMA: I. molecular and interparticle crosslinking†. Soft Matter 9(5):1516–1530. https://doi.org/10.1039/C2SM26931G

    Article  CAS  Google Scholar 

  22. Paraskevoppulou P, Smirnova I, Athamneh T, Papastergiou M, Chriti D, Mali G, Čendak T, Chatzichristidi M, Raptopoulos G, Gurikov P (2020) Correction to “mechanically strong polyurea/polyurethane-cross-linked alginate aerogels”. ACS Appl Polym Mater 2(5):1974–1988. https://doi.org/10.1021/acsapm.0c01298

    Article  CAS  Google Scholar 

  23. IDTechEx Research reports Aerogels 2021-2031: Technologies, Markets and Players

  24. Jiang XQ (2020) Research progress of silica aerogel. Fine Spec Chem 28(9):42–46

    CAS  Google Scholar 

  25. Wang J (1993) Lightweight nanoporous material—aerogel. Mater Rev 2:36–38

  26. Shen J, Wang J, Wu X (1994) Aerogels—a type of structure controllable new functional materials. Mater Sci Eng 12(03):1–5+37

    CAS  Google Scholar 

  27. Deng ZS, Wang J, Chen LY (1999) The development of aerogel applications. Mater Rev 6:47–49

    Google Scholar 

  28. Wang J, Shen J (1995) Preparation and investigation of highly effective thermal insulations: silica aerogels doped with TiO2 power and ceramic fiber. J Mater Res 9(6):568–572

    CAS  Google Scholar 

  29. Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Zhang HL, Chen LY (1999) New preparation method of ultra-low denisity silica aerogels. At Energy Sci Techno 33(4):314–318

    CAS  Google Scholar 

  30. Deng ZS, Zhang HL, Wei JD, Wang J, Shen J, Zhou B, Chen LY (1999) Structure and thermal properties of doped SiO2 aerogels. J Aeronaut Mater 19(4):38–43

    CAS  Google Scholar 

  31. Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Chen LY (1999) Structure and thermal properties of SiO2 aerogels. J Mater Eng 12:23–25

    Google Scholar 

  32. Deng ZS, Wei JD, Wang J, Shen J, Zhou B, Bao YP, Chen LY (2000) Silica aerogel prepared from polyethoxydisiloxanes. Chin J Funct Mater 3:296–298

    Google Scholar 

  33. Guo YZ, Shen J, Wang J (2001) Carbon aerogels dried at ambient conditions. Chin N Carbon Mater 16(3):55–57

    CAS  Google Scholar 

  34. Shen J, Zhou B, Wu GM, Deng ZS, Ni XY, Wang J (2002) Preparation and investigation of nanoporous super thermal insulation: silica aerogels. Chin J Process Eng 2(4):341–345

    CAS  Google Scholar 

  35. Shen J, Wang GQ, Wang J, Deng ZS (2004) Preparation of silica aerogels and study of surface modification and thermal conductivity. J Tongji Univ: Nat Sci Ed 32(8):1106–1110

    CAS  Google Scholar 

  36. Zhang ZH, Ni XY, Chen SW, Zhou B, Shen J, Wu GM, Wang XL, Wu YH (2005) Ambient pressure preparation, surface structure and adsorption properties of silica aerogels. At Energy Sci Techno 39(6):498–502

    CAS  Google Scholar 

  37. Zhang ZH, Ni XY, Shen J, Yang MX (2005) Hydrophobic silica aerogels prepared with ambient pressure drying and its adsorption properties. J Tongji Univ: Nat Sci Ed 33(12):1641–1645

    CAS  Google Scholar 

  38. Shen J, Wang JC, Ni XY, Wang B, Wang XD, Zhang ZH (2009) Preparation of silica aerogels with non-ionic exchange water glass. J Funct Mater 40(1):149–151+158

    CAS  Google Scholar 

  39. Zu GQ, Shen J, Zhou LP, Wang WQ, Lian Y, Zhang ZH (2014) Preparation mechanical properties and thermal properties of elastic aerogels. J Inorg Mater 29(4):417–422

    CAS  Google Scholar 

  40. Shen J, Li Q, Zhou B, Wang J, Chen LY (1997) SiO2-GeO2 binary aerogels with ultralow density. J Non-Cryst Solids 220(1):102–106. https://doi.org/10.1016/S0022-3093(97)00226-3

    Article  CAS  Google Scholar 

  41. Sun HY, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25(18):2554–2560. https://doi.org/10.1002/adma.201204576

    Article  CAS  Google Scholar 

  42. Shen J, Wang J, Wu X, Gan LH, Chen LW (1994) Study on structure controlling of silica aerogels. Mater Sci Technol 2(4):87–93

    CAS  Google Scholar 

  43. Shen J, Wang J (1995) The Structural investigation of silica aerogels via small angle X-Ray scattering. Chin J Light Scattering 7(2, 3):241–242

    Google Scholar 

  44. Shen J, Wang J, Wu X, Wang JH (1996) The structure investigation of silica aerogels via small angle X-ray scattering. Chin J Inorg Mater 11(4):753–756

    CAS  Google Scholar 

  45. Shen J, Wang J, Wu X (1994) Silica aerogels and their fractal structure. Chin Phys 8:483–487

    Google Scholar 

  46. Shen J, Wang J, Wu X (1996) Nanostructure of silica aerogels and their fractal phenomena. J Tongji Univ (Nat Sci Ed) 24(1):76–81

    CAS  Google Scholar 

  47. Shen J, Wang J, Wu X (1996) Study on fractal structure of porous silica: aerogels and xerogels. Chin Acta Phys Sin-Ch Ed 45(9):81–85

    Google Scholar 

  48. Wang J, Shen J, Wu W, Zhou B (1994) Nanostructural investigation of silica aerogels. MRS Symp Proc 351:183–188. https://doi.org/10.1557/PROC-351-183

    Article  CAS  Google Scholar 

  49. Wang J, Shen J, Zhou B, Wu X (1996) SAXS investigation of silica aerogels derived from TEOS. Nanostruct Mater 7(6):699–708. https://doi.org/10.1016/0965-9773(96)00041-4

    Article  CAS  Google Scholar 

  50. Deng ZS, Wang J, Wei JD, Shen J, Zhou B, Chen LY (2000) Physical properties of silica aerogels prepared with polyethoxydisiloxanes. J Solgel Sci Technol 19(1):677–680. https://doi.org/10.1023/A:1008754504788

    Article  CAS  Google Scholar 

  51. Shen J, Hou JQ, Guo YZ, Xue H, Wu GM, Zhou B (2005) Microstructure control of RF and carbon aerogels prepared by sol-gel process. J Solgel Sci Technol 36(2):131–136. https://doi.org/10.1007/s10971-005-5284-3

    Article  CAS  Google Scholar 

  52. Qin RX, Shen J, Wu GM, Zhou B, Wang Q, Ni XY, Guo YZ (2004) Preparation of carbon aerogels by conventional drying and their control in microstructure. Chin J Process Eng 4(05):429–433

    CAS  Google Scholar 

  53. Wu DC, Zhang ST, Fu RW (2003) Progress in study of carbon aerogels and precursor organic aerogels. Chin Ion- Exch Adsorpt 19(5):473–480

    CAS  Google Scholar 

  54. Li WC, Guo SC, Zhu YD (2000) An investigation on carbonizing process of m-cresol and formaldehyde aerogels. Chin Carbon Tech 1:9–11

    Google Scholar 

  55. Zu GQ, Shen J, Ni XY, Li YN (2011) Preparation of elastic aerogels at ambient pressure. Funct Mater 42(1):151–154

    CAS  Google Scholar 

  56. Ni XY, Li Y, Zhang ZH, Shen J, Zhou B, Wu GM (2010) Surface modification and adsorption properties of SiO2 nanoporous aerogels. Rare Met Mat Eng 39(S2):22–25

    Google Scholar 

  57. Qiang YX, Cheng Y (2019) Preparation and modification of silica aerogel from composite silicon source. Chin J Xian Univ Posts Telecom 24(4):75–80

    Google Scholar 

  58. Yao DJ, Zhang JC, Niu LW, Zhang DS, Wu H, Chen S, Dong HN, He FX (2020) Rapid preparation of hydrophobic silica aerogels by repeated pressure lifting. Chinese Patent CN110902690A

  59. Zhu JJ, Jiang DL, Wei W, Xie JM (2013) Analysis on transmittance of hydrophobic silica aerogels prepared at ambient pressure. Chin Inorg Chem Ind 45(12):21–23

    CAS  Google Scholar 

  60. Liu GW, Zhou B, Ni XY, Zu GQ (2013) Effect of thermal process on microstructure and physical properties of silica aerogels. Chin J Tongji Univ: Nat Sci Ed 41(7):1078–1083

    CAS  Google Scholar 

  61. Cui S, Lin BL, Liu Y, Shen XD, Liu XY, Han GF (2011) Preparation and adsorption property of hydrophobic SiO2 aerogels modified by methyl triethoxysilane. J Wuhan Univ Technol-Mat Sci Ed 26(6):1079–1083

    Article  CAS  Google Scholar 

  62. Lin BL, Cui S, Liu XY, Liu Y, Shen XD, Han GF (2013) Preparation and adsorption property of phenyltriethoxysilane modified SiO2 aerogel. J Wuhan Univ Technol-Mat Sci Ed 28(5):916–920

    Article  CAS  Google Scholar 

  63. Liu ZL, Rong CG (2020) A method for preparing super hydrophobic silica aerogels at ambient pressure. Chinese Patent CN109850909B

  64. Li Z, Huang SQ, Wu XX, Liu Q (2020) A controllable hydrophobic silica bulk aerogel and its preparation method. Chinese Patent CN111392734A

  65. Shen J, Wang J, Zhai JW, Guo YZ, Wu GM, Zhou B, Ni XY (2004) Carbon aerogel films synthesized at ambient conditions. J Solgel Sci Technol 31(1–3):209–213. https://doi.org/10.1023/B:JSST.0000047989.39431.d5

    Article  CAS  Google Scholar 

  66. Liu XC, Yuan L, Wang CY, Fu ZB, Feng H, Tang YJ (2012) Preparation of high specific surface area carbon aerogels by conventional drying and their performance in microstructure. Chin High Power Laser Part Beams 24(2):370–374

    Article  CAS  Google Scholar 

  67. Liu NP, Shen J, Liu D (2013) Activated high specific surface area carbon aerogels for EDLCs. Micropor Mesopor Mat 167:176–181. https://doi.org/10.1016/j.micromeso.2012.09.009

    Article  CAS  Google Scholar 

  68. Sui ZY, Meng YN, Xiao PW, Zhao ZQ, Wei ZX, Han BH (2015) Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents. ACS Appl Mater Interfaces 7(3):1431–1438. https://doi.org/10.1021/am5042065

    Article  CAS  Google Scholar 

  69. Shen J, Xue H, Wu GM, Zhou B (2007) Microstructure control of carbon aerogels. Chin J Tongji Univ: Nat Sci Ed 35(6):779–782

    CAS  Google Scholar 

  70. Hou JQ, Shen J, Xue H, Wu GM, Zhou B, Ni XY (2005) Preparation of high specific surface area carbon aerogels via CO2 activation. Chin J Process Eng 5(6):651–653

    CAS  Google Scholar 

  71. Chang Y-M, Wu C-Y, Wu P-W (2013) Synthesis of large surface area carbon xerogels for electrochemical double layer capacitors. J Power Sources 223:147–154. https://doi.org/10.1016/j.jpowsour.2012.09.066

    Article  CAS  Google Scholar 

  72. Yang HM, Wang S, Du X, Li SB, Liu JY (2020) Study on adsorption of methylene from water by KOH-activated carbon aerogel. Chin New Chem Mater 48(3):213–216+221

    Google Scholar 

  73. Liu D, Shen J, Li YJ, Liu NP, Liu B (2102) Pore structures of carbon aerogels and their effects on electrochemical supercapacitor performance. Acta Phys Chim Sin 28(4):843–849

    Google Scholar 

  74. Wu XL, Zhang ZH, Liu D, Guan DY, Liu NP, Ye YF, Shen J (2016) Preparation of carbon aerogels and its application in electrochemical supercapacitors. Chin Energy Sto Sci Tech 5(6):828–833

    Google Scholar 

  75. Chen Y, Han YM, Fan DB, Yan TT, Li GY, Wang SQ (2019) Carbon aerogel based on biomass cellulose. Chin Sci Silvae Sin 55(10):88–98

    CAS  Google Scholar 

  76. Wang LN, Ma XJ (2021) Preparation and application progress of plant cellulose-based carbon aerogel. Chin Biomass Chem Eng 55(1):83–90

    CAS  Google Scholar 

  77. Cheng Z, Li J, Wang B, Zeng J, Xu J, Gao W, Zhu S, Hu F, Dong J, Chen K (2020) Scalable and robust bacterial cellulose carbon aerogels as reusable absorbents for high-efficiency oil/water separation. ACS Appl Bio Mater 3(11):7483–7491. https://doi.org/10.1021/acsabm.0c00708

    Article  CAS  Google Scholar 

  78. Li ZY, Jia ZG, Ni T, Li SBA (2017) Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method. J Mol Liq 242:747–756. https://doi.org/10.1016/j.molliq.2017.07.062

    Article  CAS  Google Scholar 

  79. Wang Y, Zhu L, Zhu FY, You LJ, Shen XQ, Li SJ (2017) Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J Taiwan Inst Chem Eng 78:351–358. https://doi.org/10.1016/j.jtice.2017.06.037

    Article  CAS  Google Scholar 

  80. Lei E, Li W, Ma CH, Xu Z, Liu SX (2018) CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl Surf Sci 457:477–486. https://doi.org/10.1016/j.apsusc.2018.07.001

    Article  CAS  Google Scholar 

  81. Zhang JL (2018) Preparation of graphene-based gels and its application in supercapacitors. Master, Qingdao University of Science & Technology

  82. Hu H (2014) Controllable preparation, modification and properties of graphene aerogels. Ph.D, Dalian University of Technology

  83. Xu Z, Sun HY, Gao C (2013) Perspective: Graphene aerogel goes to superelasticity and ultraflyweight. APL Mater 1(3):3. https://doi.org/10.1063/1.4820426

    Article  CAS  Google Scholar 

  84. Xu YX, Sheng KX, Li C, Shi GQ (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4(7):4324–4330. https://doi.org/10.1021/nn101187z

    Article  CAS  Google Scholar 

  85. Hu H, Zhao ZB, Wan WB, Gogotsi Y, Qiu JS (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25(15):2219–2223. https://doi.org/10.1002/adma.201204530

    Article  CAS  Google Scholar 

  86. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  Google Scholar 

  87. Qiu L, Liu JZ, Chang SLY, Wu YZ, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:7. https://doi.org/10.1038/ncomms2251

    Article  CAS  Google Scholar 

  88. Yue Y, Liu N, Ma YA, Wang SL, Liu WJ, Luo C, Zhang H, Cheng F, Rao JY, Hu XK, Su J, Gao YH (2018) Highly self-healable 3D microsupercapacitor with MXene-Graphene composite aerogel. ACS Nano 12(5):4224–4232. https://doi.org/10.1021/acsnano.7b07528

    Article  CAS  Google Scholar 

  89. Fesmire JE (2006) Aerogel insulation systems for space launch applications. Cryogenics 46(2–3):111–117. https://doi.org/10.1016/j.cryogenics.2005.11.007

    Article  CAS  Google Scholar 

  90. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300(1):279–285. https://doi.org/10.1016/j.jcis.2006.03.044

    Article  CAS  Google Scholar 

  91. Hu ZJ, Zhou JJ, Chen XH, Sun CC (2009) Research progress in the study of alumina aerogels. B Chin Ceram Soc 28(5):1002–1007

    CAS  Google Scholar 

  92. Ai SF, Sun Y, Lei YF, Shen YX, Gong X (2019) Characterization of the high-temperature resistance performance of silica aerogels with different densities. Chin J B Univ Chem Technol (Nat Sci Ed) 46(1):63–68

    Google Scholar 

  93. Cai HF, Jiang YG, Feng J, Chen Q, Zhang SZ, Li LJ, Feng JZ (2020) Nanostructure evolution of silica aerogels under rapid heating from 600 degrees C to 1300 degrees C via in-situ TEM observation. Ceram Int 46(8):12489–12498. https://doi.org/10.1016/j.ceramint.2020.02.011

    Article  CAS  Google Scholar 

  94. Poco JF, Satcher JH, Hrubesh LW (2001) Synthesis of high porosity, monolithic alumina aerogels. J Non-Cryst Solids 285(1-3):57–63. https://doi.org/10.1016/S0022-3093(01)00432-X

    Article  CAS  Google Scholar 

  95. Yoldas BE (1975) Alumina gels that form porous transparent Al2O3. J Mater Sci 10(11):1856–1860. https://doi.org/10.1007/BF00754473

    Article  CAS  Google Scholar 

  96. Gao QF, Zhang CR, Feng J, Wu W, Feng JZ, Jiang YG (2008) Preparation of low density, monolithic alumina aerogels. Chin J Inorg Chem 24(9):1456–1460

    CAS  Google Scholar 

  97. Pakharukova VP, Shalygin AS, Gerasimov EY, Tsybulya SV, Martyanov ON (2016) Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment. J Solid State Chem 233:294–302. https://doi.org/10.1016/j.jssc.2015.11.007

    Article  CAS  Google Scholar 

  98. Bararpour ST, Karami D, Mahinpey N (2019) Investigation of the effect of alumina-aerogel support on the CO2 capture performance of K2CO3. Fuel 242:124–132. https://doi.org/10.1016/j.fuel.2018.12.123

    Article  CAS  Google Scholar 

  99. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem Mat 17(2):395–401. https://doi.org/10.1021/cm048800m

    Article  CAS  Google Scholar 

  100. Hurwitz FI, Gallagher M, Olin TC, Shave MK, Ittes MA, Olafson KN, Fields MG, Rogers RB, Guo H (2014) Optimization of alumina and aluminosilicate aerogel structure for high-temperature performance. Int J Appl Glass Sci 5(3):276–286. https://doi.org/10.1111/ijag.12070

    Article  CAS  Google Scholar 

  101. Yorov KE, Yapryntsev AD, Baranchikov AE, Khamova TV, Straumal EA, Lermontov SA, Ivanov VK (2018) Luminescent alumina-based aerogels modified with tris (8-hydroxyquinolinato) aluminum. J Solgel Sci Technol 86(2):400–409. https://doi.org/10.1007/s10971-018-4647-5

    Article  CAS  Google Scholar 

  102. Wen SY, Ren HB, Zhu JY, Bi YT, Zhang L (2019) Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. J Porous Mat 26(4):1027–1034. https://doi.org/10.1007/s10934-018-0700-6

    Article  CAS  Google Scholar 

  103. Zu GQ, Shen J, Zou LP, Wang WQ, Lian Y, Zhang ZH, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mat 25(23):4757–4764. https://doi.org/10.1021/cm402900y

    Article  CAS  Google Scholar 

  104. Gao QF, Zhang CR, Feng J, Wu W, Feng JZ, Jiang YG (2008) Preparation and thermal performance of alumina aerogel insulation composites. Chin J Nat Univ Def Tech 30(04):39–42

    CAS  Google Scholar 

  105. Zhou JJ, Chen XH, Hu ZJ, Sun CC, Chen HK, Song HH (2010) Effect of heat treament on microstructure of monolithic alumina aerogels. Chin Aerosp Mater Technol 40(02):51–54

    CAS  Google Scholar 

  106. Xu ZJ, Gan LH, Pang YC, Chen LW (2005) Preparation of Al2O3 bulk aerogels by non-supercritical fluid drying technology. Chin Acta Phys Chim Sin 21(2):221–224

    Article  CAS  Google Scholar 

  107. Zhong L, Chen XH, Hu ZJ, Song HH, Sun CC (2012) Progressive State on preparation method of zirconia aerogels research. Chin Aeros Mater Technol 42(2):24–29

    CAS  Google Scholar 

  108. Zhao ZQ, Chen DR, Jiao XL (2007) Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: Comparison of aerogels prepared by freeze-drying and supercritical CO2(l) extraction. J Phys Chem C 111(50):18738–18743. https://doi.org/10.1021/jp075150b

    Article  CAS  Google Scholar 

  109. Wu ZG, Zhao YX, Xu LP, Liu DS (2003) Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution. J Non-Cryst Solids 330(1-3):274–277. https://doi.org/10.1016/j.jnoncrysol.2003.08.049

    Article  CAS  Google Scholar 

  110. Gash AE, Tillotson TM, Satcher JH, Hrubesh LW, Simpson RL (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285(1-3):22–28. https://doi.org/10.1016/S0022-3093(01)00427-6

    Article  CAS  Google Scholar 

  111. Du A, Zhou B, Shen J, Gui JY, Zhong YH, Liu CZ, Zhang ZH, Wu GM (2011) A versatile sol-gel route to monolithic oxidic gels via polyacrylic acid template. N J Chem 35(5):1096–1102. https://doi.org/10.1039/C0NJ00909A

    Article  CAS  Google Scholar 

  112. Suh DJ, Park TJ (1996) Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mat 8(2):509–513. https://doi.org/10.1021/cm950407g

    Article  CAS  Google Scholar 

  113. Sui RH, Rizkalla AS, Charpentier PA (2006) Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir 22(9):4390–4396. https://doi.org/10.1021/la053513y

    Article  CAS  Google Scholar 

  114. Bai LH, Ma HX, Gao CG, Zhao YX (2006) ZrO2 Aerogel prepared by heating of alcohol aqueous salt solution. J Mol Catal 20(6):539–544

    CAS  Google Scholar 

  115. Guo XZ, Yan LQ, Yang H, Li J, Li CY, Cai XB (2011) Synthesis of zirconia aerogels by ambient pressure drying with propylene oxide addition. Chin Acta Phys Chim Sin 27(10):2478–2484

    Article  CAS  Google Scholar 

  116. Dong LH, Han L, Tian L, Zhang J, Zhang HJ (2020) Research progress of preparation and photocatalytic performance of TiO2 aerogel. B Chin Ceram Soc 39(1):290–302

    Google Scholar 

  117. Sun S (2013) Study on synthesis and surface modification of TiO2 aerogels by ambient prussure drying. Master, Zhejiang university

  118. Li XW, Lu PP, Yao KF, Zhao HL, Zhu XH (2012) Preparation of monolithic TiO2 aerogel via ambient drying and photocatalytic degradation of oily wastewater. J Inorg Mater 27(11):1153–1158

    Article  CAS  Google Scholar 

  119. Lu B, Song M, Lu H, Zhou Q, Wei QQ (2012) TiO2 aerogels prepared by ambient pressure drying. Chin Acta Mater Compos Sin 29(3):127–133

    CAS  Google Scholar 

  120. Zhao LL, Wang SX, Wang YY (2015) Study of texture and structure of TiO2 aerogel prepared by ambient pressure drying and sol-gel method. Chin Ind Catal 23(01):19–25

    CAS  Google Scholar 

  121. National standard of the People’s Republic of China: GB/T 4272-2008 “General principles for thermal insulation technique of equipment and pipes”

  122. Ye YF, Hu XH (2016) A pH-sensitive injectable nanoparticle composite hydrogel for anticancer drug delivery. J Nanomater 2016(57):1–8. https://doi.org/10.1155/2016/9816461

    Article  CAS  Google Scholar 

  123. Shen J, Lian Y, Zu GQ, Zou LP, Wang WQ, Zhang ZH (2015) Aerogel low-cost preparation and its application in the field of building insulation. J Funct Mater 07:07001–07007

    Google Scholar 

  124. Wei T-Y, Lu S-Y, Chang Y-C (2009) A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J Phys Chem C 113(17):7424–7428. https://doi.org/10.1021/jp900380q

    Article  CAS  Google Scholar 

  125. Zhang JJ, Zhong Y, Shen XD, Cui S, Kong Y, Ji LL, Li BY (2014) Properties and characterization of SiO2 monolithic aerogels doped with Yttrium. Chin J Inorg Chem 30(04):793–799

    CAS  Google Scholar 

  126. Wu XD, Shao GF, Cui S, Wang L, Shen XD (2016) Synthesis of a novel Al2O3-SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42(1):874–882. https://doi.org/10.1016/j.ceramint.2015.09.012

    Article  CAS  Google Scholar 

  127. Kong Y, Zhong Y, Shen XD, Hu DD, Cui S, Teng KM, Zhang JJ (2012) Preparation of monolithic C/SiO2 composite aerogels with low density. J Nanjing U Techno: Nat Sci Ed 34(4):6–10

    CAS  Google Scholar 

  128. Feng J, Feng J, Jiang Y, Zhang C (2011) Ultralow density carbon aerogels with low thermal conductivity up to 2000 degrees C. Mater Lett 65(23–24):3454–3456. https://doi.org/10.1016/j.matlet.2011.07.114

    Article  CAS  Google Scholar 

  129. Kong Y, Zhong Y, Shen XD, Gu LH, Cui S, Yang M (2013) Synthesis of monolithic mesoporous silicon carbide from resorcinol-formaldehyde/silica composites. Mater Lett 99:108–110. https://doi.org/10.1016/j.matlet.2013.02.047

    Article  CAS  Google Scholar 

  130. Ding YD, Liu CH, Wang F, Ye ST, Jia YF, Ban GD, Lin R (2016) Research progress in preparation and application of silica aerogel coatings. Chin Sur Tech 45(6):153–160

    Google Scholar 

  131. Zhang X, Ye JF, Zhou HB, Li SL, Feng T (2013) Experimental research on new wall thermal insulation material. B Chin Ceram Soc 32(5):982–986

    CAS  Google Scholar 

  132. Xu JZ (2020) A special aerogel infrared health coating for floor heating and its preparation method. Chinese Patent CN111410858A

  133. Xu JZ (2020) A fire-resistant aerogel thermal insulation coating and its preparation method. Chinese Patent CN111410552A

  134. Zhu W, Jiang X, Liu F, You F, Yao C (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of methyl orange. Polymers 12(9):1–16. https://doi.org/10.3390/polym12092169

    Article  CAS  Google Scholar 

  135. Wang QB, Luan ZQ, Li Q, Li L, Tang TF (2018) Progress in application of aerogels as adsorbents for gas purification. Chin Mater Rev 32(13):2214–2222+2240

    Google Scholar 

  136. Cui S, Cheng WW, Shen XD, Fan MH, Russell A, Wu ZW, Yi XB (2011) Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ Sci 4(6):2070–2074. https://doi.org/10.1039/C0EE00442A

    Article  CAS  Google Scholar 

  137. Zhang ZH, Ni XY, Shen J, Wu GM, Zhou B (2005) Effect of surface characteristics of silica aerogels on adsorption properties. Chin Mater Rev 19(07):115–117

    Google Scholar 

  138. Liu Q, Zhang ZH, Liu Y, Wang XD, Shen J (2020) Study on the adsorption performance of silica aerogel on volatile organic compounds. Chin Chem B 83(6):552–556+507

    CAS  Google Scholar 

  139. Zhuo H, Hu YJ, Tong X, Zhong LX, Peng XW, Sun RC (2016) Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind Crop Prod 87:229–235. https://doi.org/10.1016/j.indcrop.2016.04.041

    Article  CAS  Google Scholar 

  140. Yun S, Kim H, Lee H, Park HS (2015) Three-dimensionally macroporous, Si and N-incorporated graphene aerogels for gas adsorbents. Mater Express 5(5):463–469. https://doi.org/10.1166/mex.2015.1261

    Article  CAS  Google Scholar 

  141. Wu DC, Liu XF, Fu RW (2005) The adsorption of organic vapours on carbon aerogels and their precursor organic aerogels. Chin N. Carbon Mater 20(4):305–311

    CAS  Google Scholar 

  142. Wu DC, Sun ZQ, Fu RW (2006) Structure and adsorption properties of activated carbon aerogels. J Appl Polym Sci 99(5):2263–2267. https://doi.org/10.1002/app.22764

    Article  CAS  Google Scholar 

  143. Xiao ZH (2014) Research on adsorption of heavy metal Ions of carbon aerogels and their Modified materials. Ph.D, Hefei University of Technology

  144. Zhao GX, Huang XB, Tang ZW, Huang QF, Niu FL, Wang XK (2018) Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: a review. Polym Chem 9(26):3562–3582. https://doi.org/10.1039/C8PY00484F

    Article  CAS  Google Scholar 

  145. Zhang ZH, Ni XY, Chen SW, Zhou B, Shen J, Wu GM (2004) Study on atmospheric preparation and adsorption characteristics of SiO2 Aerogel. The 8th National Academic Exchange Conference on Nuclear Target Technology

  146. Han HK, Wei W, Jiang ZF, Lu JW, Zhu JJ, Xie JM (2016) Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surf A-Physicochem Eng Asp 509:539–549. https://doi.org/10.1016/j.colsurfa.2016.09.056

    Article  CAS  Google Scholar 

  147. Cui S, Liu XT, Liu Y, Shen XD, Lin BL, Han GF, Wu ZW (2011) Adsorption properties of nitrobenzene in wastewater with silica aerogels. Sci China Ser 41(2):229–233. https://doi.org/10.1007/s11431-010-4047-8

    Article  CAS  Google Scholar 

  148. Wei W, Lu X, Han HK, Zhu JJ, Xie JM (2016) Adsorption capacity of wintermelon peel-derived carbon aerogel for Pb(II) wastewater. Chin Appl Chem Ind 45(10):1828–1831

    Google Scholar 

  149. Wang YP, Liu ZY, Li HJ, Sun HJ, Wang J, Zhang LY (2021) Carbon aerogels and its application for wastewater treatment. Chin Ind Water Treat 41(07):34–39

  150. Kong QP, Wei CH, Preis S, Hu Y, Wang F (2018) Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd2+ and organic dyes. Environ Sci Pollut Res 25(21):21164–21175. https://doi.org/10.1007/s11356-018-2195-8

    Article  CAS  Google Scholar 

  151. Pan LH, Wang ZQ, Yang Q, Huang RY (2018) Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 8(11):957. https://doi.org/10.3390/nano8110957

    Article  CAS  Google Scholar 

  152. Jing ZF, Ding JC, Zhang T, Yang DY, Qiu FX, Chen QY, Xu JC (2019) Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process 115:134–142. https://doi.org/10.1016/j.fbp.2019.03.010

    Article  CAS  Google Scholar 

  153. Ge Y, Zhang T, Zhou B, Wang HQ, Zhang ZH, Shen J, Du A (2018) Nanostructured resorcinol-formaldehyde ink for 3D direct writing. J Mater Res 33(14):2052–2061. https://doi.org/10.1557/jmr.2018.104

    Article  CAS  Google Scholar 

  154. Wei W, Sun W, Han HK, Ci MJ, Zhu JJ, Xie JM (2016) Preparation of carbon from watermelon peel and its adsorption properties. Chin Environ Prot Chem Ind 36(4):386–389

    Google Scholar 

  155. Wang X, Lu LL, Yu ZL, Xu XW, Zheng YR, Yu SH (2015) Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties. Angew Chem-Int Ed 54(8):2397–2401. https://doi.org/10.1002/anie.201410668

    Article  CAS  Google Scholar 

  156. Sun W, Du A, Zhou B, Shen J, Huang S, Tang J (2016) Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal. J Solgel Sci Technol 80(1):68–76

    Article  CAS  Google Scholar 

  157. Yang W, Chen SZ, Xue JJ, Hu XF, Xia XD, Lin WM (2015) Effects of different carbon aerogel conductive agents on performance of Li-MnO2 battery. J South China Univ Techno: Nat Sci Ed 43(6):37–41

    CAS  Google Scholar 

  158. Yang X, Wei C, Zhang G (2016) Activated carbon aerogels with developed mesoporosity as high-rate anodes in lithium-ion batteries. J Mater Sci 51(11):5565–5571. https://doi.org/10.1007/s10853-016-9861-3

    Article  CAS  Google Scholar 

  159. Luo DW, Lin F, Luan CL, Chen JH, Chen JM, Li X (2017) Synthesis and electrochemical performance of carbon aerogels/Fe2O3 Composite by hydrothermal/solvthermal method as an anode material for Li-ion batteries. Chin J Synth cryst 46(4):733–738

    CAS  Google Scholar 

  160. Huang ST, Suo H, Cui S, Yu KW, Su H, Zheng HJ (2018) Research development of carbon aerogels in electrochemical fields. Chin Mater Rev 32(31):10–15+36

    Google Scholar 

  161. Tang ZW, Jiang JL, Liu SH, Chen LY, Liu RL, Zheng BN, Fu RW, Wu DC (2017) Polyaniline-coated activated carbon aerogel/sulfur composite for high-performance lithium-sulfur battery. Nanoscale Res Lett 12(617):1–9. https://doi.org/10.1186/s11671-017-2372-6

    Article  CAS  Google Scholar 

  162. Ding ZQ, Li XL, Zhang P, Yu JJ, Hua Y (2017) Enhanced electrochemical performance of sulfur on Y2O3-modified porous carbon aerogels for high performance lithium-sulfur batteries. N J Chem 41(21):12726–12735. https://doi.org/10.1039/C7NJ02714A

    Article  CAS  Google Scholar 

  163. Xin X (2019) Suzhou Institute of Nano-Tech and Nano-Tech and Nano-Bionics(SINANO) has made significant progress in the field of graphene aerogels. New Chem Mater 47 (7):281

  164. Lei Q, Song HH, Zhou D, Zhang S, Chen XH (2015) Morphology control and supercapacitor performance of resorcinol-formaldehyde-based carbon particles upon Ni loading in an inverse emulsion system. RSC Adv 5(96):78526–78533. https://doi.org/10.1039/C5RA14430B

    Article  CAS  Google Scholar 

  165. Li XL, Wu YH, Xiao ZH, Chen F (2013) In-situ preparation of carbon aerogel/nickel oxide composite and its supercapacitance. J Chin Ceram Soc 41(2):145–148

    Google Scholar 

  166. Fu ZB, Yuan L, Jiao XL, Yang X, Zhang HQ, Wang CY (2013) Preparation and electrochemical performance of carbon aerogels dried at ambient pressure. Chin High Power Laser Part Beams 25(12):3235–3238

    Article  CAS  Google Scholar 

  167. Liu D, Shen J, Liu NP, Yang HY, Du A (2013) Preparation of activated carbon aerogels with hierarchically porous structures for electrical double layer capacitors. Electrochim Acta 89:571–576. https://doi.org/10.1016/j.electacta.2012.11.033

    Article  CAS  Google Scholar 

  168. DeSario PA, Pietron JJ, Dunkelberger A, Brintlinger TH, Baturina O, Stroud RM, Owrutsky JC, Rolison DR (2017) Plasmonic aerogels as a three-dimensional nanoscale platform for solar fuel photocatalysis. Langmuir 33(37):9444–9454. https://doi.org/10.1021/acs.langmuir.7b01117

    Article  CAS  Google Scholar 

  169. Wei X, Cai HD, Feng QG, Liu Z, Ma DC, Chen K, Huang Y (2018) Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination. Mater Lett 228:379–383. https://doi.org/10.1016/j.matlet.2018.06.050

    Article  CAS  Google Scholar 

  170. Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu IC, Danciu V (2010) Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO2 aerogels. Rev Roum Chim 55(7):369–375

    CAS  Google Scholar 

  171. Cui SC, Li R, Ma WS, Li MM, Cui JX, Pei JZ (2018) Preparation, photocatalytic properties investigation and degradation rate study on nano-TiO2 aerogels doped with Fe3+ for automobile emission purification. Mater Res Express 5(11):14. 0000-0002-1994-5819

    Article  Google Scholar 

  172. Shao X, Lu WC, Zhang R, Pan F (2013) Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci Rep 3(1):3018. https://doi.org/10.1038/srep03018

  173. Liu ML, Xu ZW, Zhao HB (2017) A study on photocatalytic water splitting of plasma-induced nitrogen doped TiO2. Chin Adv N Renew Energ 5(2):91–96

    Google Scholar 

  174. Popa M, Macovei D, Indrea E, Mercioniu I, Popescu IC, Danciu V (2010) Synthesis and structural characteristics of nitrogen doped TiO2 aerogels. Microporous Mesoporous Mater 132(1–2):80–86. https://doi.org/10.1016/j.micromeso.2009.12.024

    Article  CAS  Google Scholar 

  175. Fort CI, Pap Z, Indrea E, Baia L, Danciu V, Popa M (2014) Pt/N-TiO2 aerogel composites used for hydrogen production via photocatalysis process. Catal Lett 144(11):1955–1961. https://doi.org/10.1007/s10562-014-1353-y

    Article  CAS  Google Scholar 

  176. Zheng RR, Li TT, Yu H (2018) Construction of indium and cerium codoped ordered mesoporous TiO2 aerogel composite material and its high photocatalytic activity. Glob Chall 2(5–6):8. https://doi.org/10.1002/gch2.201700118

    Article  Google Scholar 

  177. Sadrieyeh S, Malekfar R (2018) Photocatalytic performance of plasmonic Au/Ag-TiO2 aerogel nanocomposites. J Non-Cryst Solids 489:33–39. https://doi.org/10.1016/j.jnoncrysol.2018.03.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0204600) and the National Natural Science Foundation of China (51072137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Shen or Xiaoxue Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Zhang, X. Recent progress and applications of aerogels in China. J Sol-Gel Sci Technol 106, 290–318 (2023). https://doi.org/10.1007/s10971-021-05639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05639-2

Keywords

Navigation