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Abstract
This review reports on hybrid sol-gel coatings used for radiation protective purposes. The different types of electromagnetic
radiation are usually distinguished by their wavelength, frequency or photon energy. There is a broad range of types of radiation
that humans, materials or electric devices are exposed to, starting from radio waves, microwaves, infrared radiation, visible light,
UV light, X-ray and gamma-ray radiation. Gamma-ray radiation is thus at the end of the electromagnetic spectrum with smallest
wavelengths, highest frequencies and highest photon energies. Protection against radiation make sense, as it can pose health risks
or interfere with technical and electronic equipment for example. Radiation protection can be realized by materials that are able
to absorb or reflect the radiation, which leads to a considerable reduction in radiation transmission. These radiation protection
materials are specific to different types of radiation or spectral widths, e.g., a material with excellent protective properties against
UV light is not automatically suitable for protection against infrared light. The main aim of this review article is to report, what
types of hybrid sol-gel materials can be used to provide ideal protection against a specific category of radiation. Additional to the
broad view on all types of radiations, focusing in particular on materials exhibiting UV protective properties.
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Highlights
● Full overview on hybrid sol–gel materials for radiation protection.
● View a fundamental issue of radiation protection.
● Categorization of special sol–gel materials for protection against specific type of radiation.
● Discussion of relation of UV-protective properties and coloration of materials.

1 Introduction to radiation protection

Under the term electromagnetic radiation, a broad range of
different types of radiation are summarized. Each type of
electromagnetic radiation is characterized by a particular
range of wavelengths, frequencies and photon energies.
Probably the most commonly perceived radiation is visible
light, which has wavelengths in the range of 400–750 nm.
Radiation with smaller wavelength <400 nm is named ultra
violet (UV) light, while radiation with >750 nm is called
infrared light (IR) or thermal radiation. Table 1 summarizes
the different types of radiation from radio waves to X-ray
radiation [1]. In addition to the range of wavelengths and
frequencies, Table 1 also lists some prominent reasons for
protection from these radiations. For radiation with shorter
wavelengths (UV-light or X-rays) the main focus is on
health risks, as these can cause serious damages to health.

For radiation with longer wavelength, radiation protection
is mostly aimed at technical concerns, such as heat man-
agement, prevention of bleaching or protection of electronic
devices from interfering radiation effects. A material is
capable of providing radiation protection if the radiation
intensity is reduced when passing through that material. This
transmitted intensity is named transmission T (usually given
in percent). Figure 1 schematically visualizes the transmis-
sion of radiation. This schematic drawing is valid for all
different types of radiation. The transmission can be reduced
by two processes—the reflection R and the absorption A of
radiation. Reflection refers to scattering and specular or non-
specular reflection. Absorption refers to different physical
processes in which, for example the energy of the electro-
magnetic wave is converted into vibrational modes of atoms
or molecules or used to ionize atoms of the protective
material. If the intensity of the initial radiation I0 is set to
100%, the following equation applies, which gives the
relationship between transmission T, reflection R and
absorption A (all parameters are given in percent):

I0 ¼ 100% ¼ Rþ Aþ T ð1Þ

For the measurement of transmission, it is important to
distinguish between the directly transmitted radiation
Tdirect and the radiation that is scattered through the

material. The scattered radiation changes direction when
passing through the absorbing material (scattered trans-
mission, Tscattered) (Fig. 2). The intensity of the total
transmitted light (direct plus scattered) is named diffusive
transmission Tdiffusive:

Tdiffusive ¼ Tdirect þ Tscattered ð2Þ

Depending on the type of protective material and the
final application, it is important to determine the total
diffusive transmission rather than just the direct trans-
mission. For coated glass slides or polymer foils, mea-
suring direct transmission is often sufficient to assess their
radiation protective properties. For turbid materials, such
as textiles with particular scattering characteristics, on the
other hand, the determination of the diffusive transmission
is critically important in order to evaluate the radiation
protective properties.

The ability of a particular material to support radiation
protection is primarily related to its capacity to absorb
radiation. This absorption is determined by the material
composition (chemical constituents: elements and mole-
cules) and the type of radiation to be protected. In other
words, a material does not protect equally against all types
of radiation. Commonly specific components are used as
absorbers for a particular spectral range of electromagnetic
radiation [2]. A good example here is titanium dioxide
TiO2, which can be used as UV-absorber to provide UV
protection properties [3]. Typical radiation absorbers are
known for each type of electromagnetic radiation. A sum-
mary of some typical absorbers can be found in Table 2.

In Table 2 the range for visible light is given for wave-
lengths from 400 to 780 nm. However, it should be kept in
mind that the human eye is also sensitive to light with
wavelengths between 380 nm and 400 nm [4, 5]. Often the
range for visible light is given for a range of 400–700 nm,
since the sensitivity of the human eye to light in the two
spectral ranges 380–400 nm and 700–780 nm is low [6].

In addition to absorptive materials, special reflectors can
also be used to provide protection against initiate radiation.
This strategy is often used to protect against IR radiation
because most IR radiation absorbing materials are inade-
quate or expensive. Well-known examples of IR reflective
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coatings include those containing aluminum metal effect
pigments, where the metal pigments act as a mirror for
IR light [7].

Usually, simple sol-gel coatings from silica or alumina
do not exhibit strong interactions with electromagnetic
radiation, so they cannot be used in isolation for the pre-
paration of radiation protective materials. To produce a
radiation protective sol-gel coating, the coating has to be
modified with agents that exhibit strong absorbing or
reflecting properties toward the particular radiation hazard

being addressed. For this purpose, special hybrid sol-gel
materials have to be designed that contain organic or inor-
ganic compounds in addition to the sol-gel matrix that can
support radiation protection. In addition to different com-
positions and hybrid approaches, the morphology of
incorporated particles (size, shape, crystallinity) can also be
used to develop special protective materials. However, it
should be indicated that there is no single universal sol-gel
hybrid material or coating that can provide protection for
every type of radiation.

2 Radiation protective sol-gel coatings

This section describes sol-gel coatings that can provide
protection against radiation, with each sub-section focusing
on a specific category electromagnetic radiation.

2.1 Microwaves and radio waves

There are often well-defined technical reasons for protecting
electronic devices from microwaves or radio waves, including
personal identity or data protection [8]. For example, a pocket
made from such a protective material can be a safe place to
store devices such as mobile phones or credit cards [7].

Another field of application is the shielding of so-called
electrosmog—also known as EMI-shielding (EMI, for
ElectroMagnetic Interference) [9, 10]. There are several
reports of possible negative health effects due to exposure
to radio waves. However, the effect and influence of such
radiation on health are part of a controversial debate that has
not been decided. Nevertheless, products developed for
EMI-shielding are highly sought after by consumer and can
often command a premium purchase price [10].

Electroconductive materials are often used for shielding
against microwaves and radio waves. Suitable materials
can be, for example, coatings with copper or silver pig-
ments as additives [11]. However, sol-gel materials applied
as coatings or as bulk materials can also be used for these
purposes. A rather simple approach involves the use of

Table 1 Overview on different types of radiation and main reasons for protection

Radiation type Wavelength
range [nm]

Frequency range [Hz] Photon energy range
[eV]; [J]

Reasons for protection

Microwaves &
radiowaves

>106 <300 × 109 <0.1 × 10–3; 1.6 × 10
−23

Protection of electronic devices & personal identity;
shielding from electrosmog

Infrared (IR) light 780–106 300 × 109 to 385 × 1012 ∼0.1; 1.6 × 10−20 Camouflage; thermal management

Visible light 400–780 385 × 1012 to 750 × 1012 ∼1; 1.6 × 10−19 Camouflage; optical protection; protection of light
sensitive materials

Ultra violet
(UV) light

10–400 750 × 1012 to 30 × 1015 ∼10; 1.6 × 10−18 Prevention of sun burns, eye damages & skin cancer;
protection of UV sensitive materials

X-rays <10 >30 × 1015 >1 × 103; 1.6 × 10−16 Prevention of cancer/tumors & radiation damages

reflection

R [%]

transmission

T [%]

absorption
A [%]

original intensity
of radiation
I =100%0

source of
radiation

object 
to be 

protectedmaterial 
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Fig. 1 Schematic drawing showing the interaction of radiation with
radiation protection material. The radiation can be of different types
(radio waves, microwaves, infrared light, visible light, UV-light and
X-rays)
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Fig. 2 Schematic drawing illustrating different types of transmitted
radiation when an object is irradiated. The radiation can be of different
types (radio waves, microwaves, infrared light, visible light, UV-light
and X-rays)
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hybrid sol-gel materials containing a conductive additive,
such as the organic and conductive polyaniline embedded
in a silica sol matrix [12]. Carbon nanotubes can also be
used here as a conductive material to realize sol-gel based
shielding materials on cotton fabrics [13]. A special
approach is the use of aerogels based on a combination of
carbon, silica and silicon carbide [14]. In addition to hybrid
materials, special mixed metal oxides for effective elec-
tromagnetic shielding have also been reported, including a
nanostructured strontium doped lanthanum manganese
oxide La0.7Sr0.3MnO3 [15].

The main factors determining whether these materials
will reach practical applications, apart from the shielding
efficiency, are price and suitable processes for their appli-
cation, e.g., as coatings. For cost and resource reasons,
compounds containing lanthanum or other lanthanoids such
as cerium are less favored for use in commercially available
shielding materials.

2.2 Infrared radiation

Infrared radiation (IR light) is also known as thermal
radiation. Often, protection from IR radiation is associated
with heat management. Of interest, for example, are win-
dow coverings that exclude thermal radiation from build-
ings in the summer. However, in winter, conversely,
thermal radiation should be allowed to illuminate the indoor
side of the window to save on heating costs and trap thermal
radiation within the building [16]. Sun glasses incorporating
IR protection can also protect the human eye from excessive
exposure [17]. Another interesting area for manipulating IR
light interaction is camouflage of clothing used in military
applications. To support perfect camouflage even against
night vision devices, it is necessary to consider IR reflective
and absorptive properties of textiles [18].

Typically, a reduction of transmission T of infrared
radiation is achieved by using IR reflective materials such as
coatings of metallic aluminum or aluminum-based effect
pigments [7, 19]. Textiles equipped with such reflective
coatings are used as workwear for people working in hot

environment where reflection of thermal radiation is
required as part of personal protection. However, other IR
reflective pigments can also be used as part of coating
recipes [20, 21].

Unlike IR-reflective materials, IR-absorbing materials
are less widely used, mainly for two reasons [22]. First, IR
absorbers are less effective in their ability to reduce IR light
transmission. Second, the IR absorber can heat up con-
siderably due to exposure to IR light, which can lead to
discomfort for the wearer. Sol-gel based IR absorbers can
be realized by modified types of indium oxide, which are
used as coatings for windows, for example [23]. Another
prominent IR-absorber is zirconium carbide (ZrC), which
can also be realized in a hybrid sol-gel material containing
ZrC and SiC [24]. For practical applications, nanocrystal-
line ZrC prepared in aqueous solvent can be advantageous
[25]. In contrast to recipes based on organic solvents, such
water-based recipes have several advantages in terms of
work safety, ecology and cost. A commercially available IR
absorber is supplied under the brand name Calorsil (CHT,
Tübingen, Germany). This absorber is based on modified tin
oxide and can be incorporated in conventional sol-gel
coatings.

A combination of the Calorsil product with a commercial
silica sol can be applied as coating agent on textile materials.
Microscopic images of such coatings on cotton and polyester
fabrics are shown in Fig. 3. The commercial silica sol used is
iSys HPX (CHT, Tübingen, Germany), which was originally
developed for application on textiles. This silica sol product is
non-flammable and can be diluted by adding water. The
application of this silica sol alone on textile fabrics leads to
smooth and regular coatings. No cracks or peeling of the
coating can be observed (Fig. 3). If this coating recipe is
applied together with the Calorsil product, the complete tex-
tile surface is regularly covered by the hybrid sol-gel coating.
Due to the irregular fiber structure of cotton and its thicker
fabric, a higher up-take of the sol-gel solution by the cotton
fabric is observed compared to that of polyester fabric
(Fig. 3). The optical transmission spectra of related uncoated
and coated textile fabrics are shown in Fig. 4. These spectra

Table 2 Summary of different radiation absorbers categorized according to type of radiation

Type of radiation Typical absorbers or reflecting agent Literature related to the use in sol-gel
materials

Microwave & radiowaves Electric conductive materials, C/SiO2/SiC-based aerogels [12–15]

Infrared (IR) light Organic IR absorbers, infrared reflecting pigments, effect pigments, doped
indium oxides, zirconium carbide

[23–25, 58–61]

Visible light Organic dye stuffs or inorganic color pigments [62, 63]

Ultra violet (UV) light Inorganic absorbers, such as TiO2, ZnO or CeO2; Organic absorbers, such as
cinnamate or benzotriazole derivatives

[48, 49, 64–67]

X-rays Materials built up from chemical elements with high atomic numbers, such as
lead, HfO2 or BaSO4

[54, 55]
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show the transmission in the range of 220–1400 nm and
illustrate the transmission for near infrared light in the range
of 700–1400 nm. In this spectral range of near infrared light,
the applied pure silica sol coating does not change the
transmission behavior of the textile fabrics. Only by applying
the hybrid sol-gel coating that also contains the inorganic IR
absorber can a significant decrease in transmission be
achieved (Fig. 4). However, also the optical properties with
visible light are changed, so the coated fabrics exhibit a light
blue coloration. In comparison to applications with inorganic
UV absorbers, it is also not possible to reduce the IR trans-
mission down to values near 0% [22].

Transmission spectra for infrared light in the range from
2500 to 17500 nm are presented in Fig. 5. These spectra clearly
show the peaks typical for the fiber materials in polyester and
cotton fabrics. These peaks are caused by related vibrations of
chemical bonds present in the polymers building up the fiber
materials [26, 27]. Following application of the silica sol
coating without additional additives, new peaks arising from
vibrational modes of Si-O-Si species are observed in the
transmission spectra, with the strongest of these observed near
12500 nm [28–30]. Even though IR transmission is

significantly reduced in the spectral region near these peaks a
simple silica coating alone is unlikely to protect against IR
radiation, because transmission is still high in other regions of
the IR spectrum. A significant improvement can only be
achieved by application of the sol-gel hybrid coating containing
silica and the inorganic IR absorber. With this hybrid sol-gel
coating the IR transmission can be reduced significantly over
the entire observed IR range (Fig. 5).

2.3 Visible light & coloration

Visible light is, of course the best known type of radiation.
However, in many everyday situations it is not recognized
as “radiation” per se and particularly not as radiation against
which protection might be necessary. However, irradiation
with visible light can also damage material objects. In
particular, the color properties of materials can be bleached
out by visible light. For this reason, radiation protection
applications that target visible light are often used to protect
materials especially in outdoor applications. Not surpris-
ingly, applications that combine UV light and visible light
absorption are common here.

Fig. 3 Scanning electron
micrographs of textile fabrics
made from cotton and polyester
fibers. Shown are untreated
fabrics and fabrics with silica sol
coating and hybrid coatings
from silica and an inorganic IR
absorber from doped tin oxide
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A prominent example is the use of modified sol-gel
coatings to protect wood from sun light and weathering
[31–33]. For this application, silica sols can be modified
with color pigments of various iron oxides. Iron oxide
pigments are often used for wood treatment (timber
treatment) as they are known for their good light stability
and for dark color shades [34]. These dark shades support
the natural appearance of wooden materials. Iron oxide
pigments can be obtained in different colors such as black,
red or yellow. These different colors are related to the
different chemical composition of iron oxides – Fe2O3 for
iron oxide red; Fe(OH)3 for iron oxide yellow and Fe3O4

for iron oxide black [34–36]. The pigment iron oxide
brown is a combination of various iron oxides and man-
ganese dioxide MnO2 [36].

In addition to the chemical composition of iron oxide
pigments, the size of the pigment particles also influences
the color shade of the pigment. So-called transparent iron
oxides, which contain particles with smaller particle dia-
meters, are of particular interest for use with sol-gel sys-
tems. Due to their smaller size, these transparent pigments
also have a greater penetration depth when applied to
wooden materials.

Sol-gel coatings can also be modified by embedding
organic dye stuffs. This modification enables a wide range
of different colors to be generated, depending on the types
of dyes used [37–39]. For incorporating dyes in silica-based
sol-gel coatings, cationic dyes in particular are recom-
mended to achieve a good stability against washing,
leaching and wet rubbing. Due to a negative net charge of
the silica matrix, the cationic dye is electrostatically
attracted to the surrounding matrix [40, 41]. Hybrid sol-gel
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Fig. 4 Optical transmission spectra of textile fabrics made from cotton
and polyester fibers with and without different sol-gel coatings. The
infrared region is indicated
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materials based on silica/alumina compositions can also
complex mordant dyes. This effect leads to improved
leaching stability and an enhancement of coloration inten-
sity [42]. In addition, sol-gel coatings containing titania can
also complex embedded organic molecules. In systems
where colorless UV light absorbing compounds are incor-
porated, a strong color shift into the visible range can occur
and a yellow-colored sol-gel hybrid coating can be realized.

2.4 UV radiation

Mitigating exposure to UV radiation is probably the most
widely studied area of radiation protection, due to the
amount of UV radiation in sunlight and associated health
risks arising from outdoor exposure to excessive sunlight
[43, 44]. Besides sunlight, there are also artificial sources
for UV light, such as conventional lighting systems, UV
black light lamps or UV emitting LEDs [45, 46]. These light
sources are used for illumination, industrial processes and
identification procedures. However, indoor lighting in par-
ticular can lead to material damages. This is the case with
historical artwork presented under illumination. Here, sol-
gel based materials can be very effective at mitigating the
effects of UV exposure, particularly in the form of coatings
on glass display cases [47].

Sol-gel coatings can be a perfect tool to implement UV
protection properties on different materials, such as glass,
polymer foils or textiles [48]. For this purpose, conventional
silica sol coatings are often modified with UV-light
absorbing components. Alternatively, sol-gel coatings con-
taining titania can be used for UV-protection. However, also
the combination of titania with embedded organic UV-
absorbers can be an advantageous combination to support a
complete UV protection over the whole spectral range of
UV-light [49].

Organic UV-absorbers that are well suited for combina-
tion in hybrid sol-gel systems include those of cinnamate or
benzotriazole basic structure [37]. Examples of four cin-
namate based UV absorbers are shown with their chemical
structures in Fig. 6. These UV absorbers are supplied under
the brand name semasorb by the company sema GmbH
(Coswig, Germany).

Photographs of related UV-absorber containing silica-
based sol-gel coatings on glass plates are shown in Fig. 7.
These coatings are prepared by a dip-coating procedure.
The optical transmission spectra of these coated glass
substrates are shown in Fig. 8. These hybrid sol-gel coat-
ings are based on silica and contain other silane additives,
such as N-(2-aminoethyl)-3-aminopropyltrimethoxysilane
(AAPM), 3-glycidyloxypropyltriethoxysilane (Glyeo) and
aminopropyltriethoxysilane (APS). It can be clearly seen
that some of the UV protective coatings have a strong
coloration—yellow to orange. Even when using the same

type of absorber, the coloration of the final coating can
vary, depending on the type of additional silane additives.
It is likely that the surrounding sol-gel matrix has an
influence on the auxochromic groups of the UV-absorbers,
resulting in a change in coloration. Whether coloration of a
UV-protective coating is acceptable depends on the final

Fig. 6 Summary of chemical structures of different organic UV absor-
bers (Abs.1 to Abs.4) used for embedding in hybrid sol-gel coatings

Fig. 7 Photographs of glass substrates coated with different hybrid sol-
gel materials containing embedded UV-absorbers. The sol-gel is SiO2

based, different absorbers and additives are indicated for each coating
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application of the coated substrate. In the case of a glass
window for use in buildings or in the automotive sector,
there is often a requirement for no coloration. Here, a high
degree of transparency for visible light is required, as this
visible light illuminates the interior and an unrestricted
view to the outside area is also required. Any coloration of
the coating would reduce this.

For other applications, the total transparency for visible
light is not required. Also, a coloration is not a hindrance for
several industrial issues. It should be kept in mind, how-
ever, that the coloration of a coating itself does not indicate
its UV protective characteristics. Even though it is often
mentioned in the literature that dark colored materials offer
better UV-protection, this is not automatically the case. The
coloration only indicates the interaction of the material with
visible light and does not give any further information about
the interaction with any other types of radiation. The only
method for determining UV-protective properties is optical
spectroscopy in the UV-range of the electromagnetic
spectrum. If the transmission for UV-light in the wave-
length range from 200 to 400 nm is almost zero, one can
assume perfect UV protection for the corresponding mate-
rial. For this purpose, the optical transmission spectra of the
four coated glass slides are shown in Fig. 8.

Each coated sample exhibits a different transmission
spectrum typical of a particular category (Fig. 9). The
coating with absorber Abs1 in the presence of AAPM
results in insufficient UV-protection and a yellowing of the
coated substrate. The protection is insufficient due to the
high transmission values, especially between 350 nm (T=
11%) and 400 nm (T= 42%). In addition, the yellow

coloration is indicated in the spectrum by lower transmis-
sion values in the visible range of light from 400 to 500 nm.
This type of coating is an example of a colored coating
without sufficient UV-protection.

In contrast, the coating with absorber Abs1, AAPM and
Glyeo results in excellent UV protective glass substrates
with transmission values T < 1.2% for the entire range of
UV-light. However, the significant decrease in transmission
for visible light correlates with the strong yellow/orange
coloration of the coated glass substrate. Although the UV
protection is excellent, this coating is only acceptable for
applications where such coloration does not interfere. The
coating containing absorber Abs1 and Glyeo is almost
transparent to visible light and thus colorless. However, its
UV protection is insufficient, due to the high transmission
in the UV range. Probably the best type of coating is
demonstrated by the combination of the absorber Abs2 with
APS in a silica sol coating. Here the UV protection is
excellent with transmission values T < 1.2% over the entire
UV range. Furthermore, the influence on the coloration is
low. The schematic drawing in Fig. 9 illustrates the four
situations as a function of UV-absorption and transparency
to visible light. In fact, the best option is a sol-gel hybrid
material that combines the properties of “strong UV light
absorption” with “high visible light transparency”.

Besides glass substrates, other materials can also be
coated by sol-gel hybrid materials to provide UV-protective
properties. One area of application is the functionalization
of textiles to produce UV-protective clothing or home tex-
tiles. Related to this application, Fig. 10 shows transmission
spectra of a polyester fabric before and after the application
of two different UV-protective hybrid sol-gel coatings. By
applying these sol-gel coatings, the transmission over the
entire UV range is below <5%, thus indicating good UV
protection of this textile fabric. Also, a lower transmission
for visible light in the range of 400–450 nm is evident,
which is associated with a yellow coloration of the coated
textile. Such a coloration is acceptable for many textile
applications, such as outdoor clothing or clothing for young
children. Another interesting feature is the high transmis-
sion for visible light in the range of 475–800 nm after
application of the sol-gel coating. As can be seen in the
corresponding micrographs (Fig. 11), the sol-gel material
mainly fills in cavities between the fibers that comprise the
polyester yarn. Presumably, this improves the transmittance
for visible light.

2.5 X-rays

To demonstrate the difference between, for example, irra-
diating a person with IR radiation and X-rays, we compare
the energy emitted by a cup of hot coffee with the same
amount of energy emitted by a conventional X-ray tube.
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Fig. 9 Schematic drawing illustrating the four different categories of
materials related to UV-protection and coloration
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According to the Stefan Boltzmann law, a cup of hot coffee
emits energy equivalent to about 400 J in 10 s. We assume
that this energy is emitted as IR radiation. We further
consider a person of 75 kg weight. If the person is in front
of this cup, after 10 s a specific energy of 5 J/kg has been
absorbed. A hard X-ray photon has an energy of 10–14 J. An
energy of 400 J would therefore correspond to 1016 photons,
the amount that a conventional X-ray tube can emit. If the
person is in front of this X-ray source, he or she has also
absorbed a dose of 5 Gy (Gray). While in the first case the
person hardly feels anything, in the second case the person
feels a health problem after 30 min, because a lethal dose
with a mortality rate of 60% has been absorbed. However,
much smaller doses can also shorten lifetime. This is
attributed to the ability of X-rays to ionize matter, especially
chemical and biological materials, which are damaged as a
result [48, 50].

Nevertheless, X-ray-based methods are widespread (e.g.,
in medical imaging, medical treatment or materials science).
X-rays are present in various occupational fields (e.g.,
nuclear reactors, mining or aviation industry) and occur in
nature (radon gas in cellars or cosmic radiation during
overseas flights). Therefore, protection against X-rays is of
broad interest.

Compared to IR, X-rays have a much higher penetration
depth for matter, i.e., a higher transmission T. Figure 12
schematically shows the transmission T of a fiber as a
function of photon energy, frequency and wavelength. It
can be seen that the transmission is not the same over the
entire range, nor is it a linear function. Rather, it depends
on the electronic structure of the constituents of the fiber.
To obtain a low T at high energies (small wavelengths),
the material thickness must be increased or the atomic
composition must contain chemical elements with a high
atomic number.

Figure 12 also shows that protection from X-rays is the
most demanding challenge because X-rays, unlike other
types of radiation, have a higher photon energy. The photon
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energy of X-rays can vary over a wide range from 250 eV to
several MeV [51–53].

A significant decrease in the transmission of high energy
X-ray photons in the MeV range is only possible, if a lead
plate of several millimeter thickness is used. It is not to be
expected that a sol-gel coating of several micrometer
thickness can be used here. However, X-ray photons with
smaller energies of 2–10 keV can be shielded to a certain
extent by modified sol-gel coatings [54].

Materials with high X-ray absorbance are composed of
densely arranged chemical elements of high atomic
numbers such as lead, barium or bismuth. Common sol-
gel materials based on silica, alumina or titania are almost
completely transparent to X-rays. In contrast sol-gel
materials containing heavy metals such as PbWO4 can
provide X-ray shielding [55]. However, it should be
noted that the use of lead-based materials is limited due to
the toxicity of lead [50]. An alternative is the use of
barium sulfate (BaSO4) as X-ray absorber, which is not
toxic. BaSO4 particles can be used as an additive for
silica sols to produce hybrid sol coatings with X-ray
absorptive properties [54]. The application of these sol-
gel coatings on textiles is possible and leads to textile
materials with lower X-ray transmission [54]. An exam-
ple of the X-ray transmission spectra of such textiles is
shown in Fig. 13.

3 Summary & conclusion

The term “protection against radiation” covers many dif-
ferent types of radiation and it is important to identify the
type of radiation against which protection is required. In
particular, the design of the required protective material is
dependent on the type of radiation, e.g., radio waves or
UV-light. A material that offers excellent protection

against one type of radiation can be useless for protection
against another type of radiation. Hybrid sol-gel materials
offer an appropriate tool to produce radiation protective
coatings for each type of radiation. The sol-gel matrix is an
ideal carrier for the absorbing or reflective components,
which are necessary to achieve radiation protection.
Nevertheless, the limits of such protective sol-gel coatings
must also be recognized. It is absolutely clear that a sol-gel
coating with micrometer thickness will not be able to
protect against high energy X-rays with several MeV
photon energy. Probable best results are obtained for
hybrid sol-gel coatings in the field of UV-protection and
the shielding of radio waves.
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