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Abstract
Light nuclei with mass number of below 8 are considered to be produced by the so-called the Big-bang nucleosynthesis 
(BBN) occurring in the early universe. Since BBN depends on various assumptions related to the origin of the universe 
and the laws of fundamental interactions and elementary particles, those assumptions can be verified by comparing the 
abundances of light isotopes calculated with BBN and the astronomically observed ones. Since the neutrons are the starting 
materials of BBN together with protons, and also they are electrically neutral, they play a unique and critical roles in BBN. In 
this paper status of the BBN analysis and experimental studies of the properties of neutrons relevant to BBN will be reviewed.
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Introduction

When did the Universe begin? How did the Universe begin? 
Why was the Universe born? What is the fate of the Uni-
verse?—Those are the questions not only from cosmologists 
but from rather general people, since they are closely related 
to origins of the solar-system, the Earth, and lives. A hint to 
those questions was obtained from the systematic observa-
tion of the red shift z of the distant galaxies as a function of 
the distance R from the Earth. and the distance R of galaxies. 
It was found that z shows a clear proportionality to R [1], 
which is called the Hubble-Lemaître law. It is the direct evi-
dence of the fact that our universe is expanding as suggested 
from the solution of the Einstein’s equation for the universe. 
Alpher [2] considered that the temperature and the density of 
the early universe should be much higher than those of the 
present, and light nuclei could be produced via the nuclear 
reaction network shown by Fig. 1. Since the half-lives of 
the isotopes with the mass number 8 are too short to main-
tain nuclear reactions, it is not possible to produce heavier 
elements in significant amounts. This process is called the 
big-bang nucleosynthesis (BBN), and is considered to be 
responsible for the origin of light elements up to lithium.

Theory

The standard model of BBN assumes the following 
conditions;

(1) isotropic and homogeneous matter distribution,
(2) general relativity,
(3) standard theory of electromagnetic and weak interac-

tions,
(4) neutrinos are light and stable, and
(5) number of species of light neutrinos is three.

These assumptions can be verified through the com-
parison of the abundances of light isotopes obtained from 
the BBN calculations and the ones from astronomical 
observations.

Figure 2 shows the comparison of the abundances of light 
isotopes from the observations and the ones calculated with 
the standard BBN model as a function of the baryon-to-
photon ratio η10 in units of  1010, which is equivalent to the 
baryon density at the epoch of BBN.

As can be found in Fig. 2, the observed abundances of 
4He and D are well reproduced by the standard BBN cal-
culation with η10 determined by the observation of the fluc-
tuation of the cosmic-microwave background [3], which is 
one of the pieces of evidence for the big-bang theory. On 
the other hand, the observed abundance of 7Li is more than 
a factor of two smaller than the BBN calculation with the 
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same value of η10, which is called the “lithium problem”, 
suggesting that there should be some problem in either the 
assumptions for the standard BBN, the data of the relevant 
nuclear reaction rates, or the astronomical observations.

Experiment

To calculate the production yields of light isotopes in BBN, 
reliable data of the thermal reaction rates of the relevant 
nuclear reactions are required. The reaction rate depend-
ence of the production yields of the isotopes are studied in 
Ref. [4], and it was found that the reaction rates of neutron 

β-decay, 1H(n,γ)2H, 2H(p,γ)3He, 2H(d,n)3He, 3He(n,p)3H, 
3He(d,p)4He, 3He(α,γ)7Be, 7Be(n,p)7Li are influential for 
the 7Li yield in the BBN calculation. The rates of those 
reactions have recently been revisited experimentally. The 
new data of the 3He(α,γ)7Be [5] and 3He(d,p)4He [6] reac-
tions were found to agree with the previously adopted values 
within the uncertainty of the evaluation. New measurement 
of the 7Be(n,p)7Li reaction rate by the n_TOF collaboration 
reported a 20–40% enhancement of the cross section near 
the reaction threshold energy, but the 7Li yield of the BBN 
calculation is reduced by only 13%, which is not enough 
to suppress the over production of 7Li in the BBN calcu-
lation [7]. For the 7Li(p,α)4He reaction, there has been a 
large discrepancy between existing cross section data, but 
the most recent result confirmed the evaluated nuclear data. 
In addition, since the BBN yield of 7Li is not sensitive to the 
7Li(p,α)4He reaction rate, 10% change in the reaction rate 
results in only 0.5% change in 7Li yield, according to the 
study of Ref. [4], the reaction is not relevant to the lithium 
problem. The reaction rates of 7Be(d,p)7Li and 7Be(d,pα)4He 
were remeasured with the uncertainty of 30%, which gives 
the lower limit of the ratio of 7Li production yield in BBN 
to the observed 7Li abundance of 2.18 [8], suggesting the 
lithium problem cannot be solved with the updated data. 
Finally, the 7Be(n,α)4He reaction rate was determined from 
the measurements of the cross sections of the forward reac-
tion, i.e. the 7Be(n,α)4He reaction [9] as well as the time-
reversed 4He(α,n)7Be reaction [10], and the reaction rate was 
found to be not sufficiently large to reduce the 7Li yield in 
the BBN calculation to the level of the observed abundance.

Another important nuclear parameter is the life-time of 
neutrons τn, because it affects the production yields of light 
isotopes by determining the initial ratio between the num-
bers of protons and neutrons and by changing neutron den-
sity during the BBN process [11]. So far, there has been a 
discrepancy as large as 5σ between the experimental data 
of τn measured with the storage method [12] and the beam 
method [12] as shown in Fig. 4. Namely, in the storage 
method, a known number n(t = 0) of ultra-cold neutrons 
(UCNs) are injected into a UCN bottle, and the number 
n(t) of surviving UCN is measured after a certain time t. 
τn is obtained from the formula n(t)

n(t=0)
= exp

(

−
t

�
n

)

 . On the 
other hand, the decay method measures the decay rate Rn 
of a beam neutron by counting decay products and obtain 
τn using the formula R

n
=

dn(t)

dt
= −

1

�
n

Φ
n
 , where Φ

n
 is the 

incident neutron intensity. To solve the discrepancy 
between two methods, an independent measurement will 
be important. We are promoting an independent measure-
ment with the decay method at the J-PARC materials and 
life-science experimental facility (MLF) [13]. Figure 3 
shows a schematic view of the experimental setup [14].

Fig. 1  Nuclear reaction network of the standard big-bang nucleosyn-
thesis

Fig. 2  Comparison of observed (colored boxes) and calculated (solid 
curves) abundances of light isotopes. Y denotes the mass fraction of 
4He. A gray band shows the region of the baryon-to-photon ratio η10 
determined from the WMAP observation of the fluctuation of cos-
mic-microwave background [3]
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We introduce a cold neutron beam provided at the BL05 
beamline of MLF into a time-projection chamber (TPC). The 
unique point of our method is that the intensity of the incom-
ing neutrons and their β-decay rate are simultaneously meas-
ured by counting the emitted particles from the 3He(n,p)3H 
reaction and the neutron β-rays, respectively, and therefore 
τn is determined with respect to the 3He(n,p)3H reaction 
cross section which is known with the accuracy of about 
0.13%. This method has an advantage that the systematic 
errors such as the detection efficiencies and the solid angles 
are canceled at the lowest-order approximation between the 
measurements of the 3He(n,p)3H reaction and the neutron 
β-decay, which is essential for reliable determination of τn.

As shown in Fig. 4, our recent result [14] of τn = 898 
± 10(stat.)+15

–18(syst.) s seems consistent with the previ-
ous values. After the publication of Ref. [14], the meas-
urement was continued, and the present statistical error in 
τn achieved 1.5 s according to the ongoing analysis. 11 s 
of the systematic error 15 s comes from the discrepancy 

between measured and simulated β-ray energy spectra due 
to the influence of the unknown background. Its origin is 
supposed to be the neutrons scattered by the gas, since the 
intensity of the background depends on the gas pressure in 
the TPC. From the energy distribution of the background, 
it is likely to be due to the γ-rays from (n,γ) reactions. At 
present the source materials of the capture γ-rays are under 
investigation.

Implications to elementary‑particle physics

Discrepancy between the observed and calculated abun-
dances of primordial elements might suggest some exotic 
physics beyond the standard model of elementary particles 
and fundamental interactions. As a possible new physics, 
the effect of the large-extra-dimension (LED) [16] was 
recently considered in the BBN calculation [17–19]. The 
LED model assumes that our world is (N + 1) dimensional 
space–time (bulk), consisting of ordinary three-dimensional 
space (brane) and compact (N−3)-dimensional inner space, 
and only graviton can propagate both spaces, which is suit-
able to solve the “hierarchy” problem, i.e. extreme weak-
ness of the gravitational interaction compared to the other 
fundamental interactions as the consequence of the leakage 
of the gravitational flux into the inner space. Because of the 
additional degree of freedom in the inner space, the expan-
sion rate of the universe will be modified at the temperature 
above the characteristic energy M* of the LED model of a 
few ~ a few ten TeV, affecting production yields of light ele-
ments in BBN. The effect of the extra dimensions to BBN 
has been studied in Refs. [17–19], and it was found that the 
dark radiation by the electric part of the five-dimensional 
Weyl tensor can reduce the abundance of 7Li without affect-
ing the abundances of 4He and D. Those works considered 
the case of the number n of extra dimensions is equal to one, 

Fig. 3  Experimental setup of 
the neutron life-time measure-
ment at J-PARC/MLF/BL05 
[14]. The TPC consists of the 
MWPC region on the top and 
the drift region below

Fig. 4  Summary of the data of neutron lifetime ηn including our 
recent result (open circle, [14]). Open square shows the result with 
UCN stored in a magnetic trap [15]
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but unfortunately n ≤ 2 scenarios with M* = a few ~ a few ten 
TeV have already been ruled out experimentally [20, 21]. 
Therefore, it is interesting to consider the BBN with n ≥ 3 as 
well as to make the experimental verification of the case of 
n ≥ 3. One of the predictions of the LED model is the devia-
tion from the inverse-square law of the gravity (ISL) at the 
distance near the size of the inner space which corresponds 
to the Compton wavelength λ of the graviton in the inner 
space. The gravitational force F(r) including the effect of 
LED is approximately given as Eq. (1);

where r is the distance between two test objects with masses 
of M and m, G stands for the Newtonian constant of gravita-
tion, and α is the relative coupling constant of the LED grav-
ity with respect to G. Therefore, by experimentally searching 
for the exponential term in Eq. (1), it is possible to verify the 
LED model. So far ISL of the gravity has been tested via the 
experiments of Cavendish type, i.e. by precisely measuring 
the forces between two test objects with given separations in 
the region of the distance down to a few micrometers. The 
LED model suggests λ < ~ 100 nm in case of n = 3, At such 
a short distance, the previous experiments rapidly lose the 
sensitivity due to the huge background by the intermolecular 
force whose strength is inversely proportional to the sixth 
power of the distance [23]. Since the strength of the intermo-
lecular force is proportional to the electric polarizabilities α 
of the test objects, it can be drastically suppressed by replac-
ing one of the test objects with a neutron whose α is eighteen 
orders of magnitude smaller than those of ordinally atoms 
or molecules. The force between a neutron and another test 
object can be studied by measuring the differential cross 
section of the small-angle neutron scattering (SANS) [24]. 
For that purpose, we performed a precise measurement [25] 
of SANS at the J-PARC/MLF/BL05 with use of noble gases 
as the target whose form factors are well known.

Results and discussion

Figure 5 shows the summary of the upper limit to α obtained 
by various experiments.

In Fig. 5, the curves denoted with Refs. [25] and [26] 
are obtained using pulsed neutrons at J-PARC and con-
tinuous neutrons at the HANARO reactor, respectively, 
and due to the difference in the velocity distribution of 
the neutron beams, the obtained upper limits are different 
from each other. The result of Ref. [27] was obtained by 
means of the neutron interferometry, and thanks to its very 
high sensitivity, the upper limit better than [25] and [26] 
were obtained. Through those experimental efforts, the cur-
rent upper limit on α obtained with the experiments using 

(1)F(r) = −G
M ⋅ m

r2
⋅

(

1 + � exp
(

−
r

�

))

neutrons is still 5–6 orders of magnitude higher than the 
theoretically expected region [22]. To improve the sensi-
tivity of the SANS method, we are going to use a target 
made of nanoparticles in place of noble gas atoms. Since 
the mass of a nanoparticle is typically  106 times larger than 
that of a single atom, a large improvement in the sensitivity 
is expected. It should be noted that background due to the 
nuclear scattering is also enhanced with the same factor and 
should be suppressed. For that purpose, we are developing 
nanopowder made of null-matrix alloy [32] whose coherent 
scattering length is reduced by mixing two elements having 
opposite signs of the scattering lengths so as to cancel the 
total coherent nuclear scattering. To design such a material, 
accurate data of the scattering lengths of various isotopes 
are indispensable.

Conclusions

The BBN analysis provides a unique opportunity to investi-
gate the origin of the universe and the fundamental laws in 
nature. Since the neutrons play critical roles in BBN, it is 
important to obtain accurate data of the fundamental prop-
erties of neutrons as well as of the neutron-induced nuclear 
reaction rates.
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