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Abstract
The study investigated the adsorption behaviour of different activated carbon samples for pertechnetate under diverse condi-
tions. Characterizations of A-CF-F and A-CF-Z samples were done using BET, FTIR, XRD, XRF and SEM–EDX methods. 
In batch experiments, maximum adsorption occured at pH 2, with a swift process and an optimal phase mixing time deter-
mined as 1 h for all of the samples. Analyzing experimental data using Langmuir and Freundlich adsorption models revealed 
coefficients of determination R2 exceeding 90%. The Freundlich isotherm was found to be more suitable for describing the 
adsorption process.
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Introduction

Activated carbon (AC) was first defined by Schanz [1] as any 
carbon form capable of adsorption. This material belongs 
to the group known as pyrogenic carbonaceous materi-
als (PCMs), which are typically prepared through termo-
chemical conversion of certain precursors containing a high 
amount of carbon. Apart from activated carbon this group 
contains e.g. biochar, hydrochar or carbon nanotubes. PCMs 
primarily function as effective adsorbents for removing con-
taminants from aqueous solutions [2]. They also find appli-
cations in anaerobic reduction of azo dyes, oxidation of dyes 
and impurities in electrochemical wastewater treatment, as 
antidotes for poisoning and kidney diseases in medicine, and 
as decolorizing or deodorizing agents in industries, among 
others [3, 4]. Activated carbon (AC) is particularly note-
worthy due to its properties, such as a high surface area 

(600–2000 m2·g−1), well-defined microporous structure or 
presence of various functional groups on its surface [5]. The 
mechanism of AC adsorption for the removal of organic and 
inorganic pollutants relies on various processes, including 
electrostatic interaction, ion exchange, pore filling, and 
precipitation. The specific mechanism is influenced by the 
physicochemical properties of the material, such as dosage, 
pyrolysis temperature, and the pH of the medium or efflu-
ent [6]. Activated carbon is prepared through pyrolysis and 
followed by physical or chemical activation. This activation 
process enhances porosity and specific surface area, thus 
increasing the adsorption capacity. The choice of precur-
sor and optimization of pyrolytic and activation conditions 
are crucial in achieving satisfying adsorption properties [7]. 
Several studies used different precursors for preparation of 
activated carbons, e.g. from biomass, waste, plant parts [8], 
peanut shells [9], pineapple waste [10], oil palm shell [11] or 
coffee beans [12]. Most organic substances that obtain high 
percentage of C are potential raw materials for production 
of ACs. To produce a highly porous C structure, the fac-
tors of high % of C, low inorganic content, low degradation 
upon storage or the cost of precursors should be considered. 
Lignocellulosic materials are generally accepted as precur-
sors of AC [13]. Pyrolysis is a thermochemical conversion 
of organic biomass to liquid or/and gaseous fuels at high 
temperature in the absence of oxygen and this process is 
irreversible [14]. After pyrolysis, the material undergoes 
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physical or chemical activation. Physical activation is a two-
step process that uses activators such as CO2, air, water vapor 
or their mixtures [15]. However, activated carbon prepared 
through physical activation is unsuitable as an adsorbent due 
to its deficits in properties important for efficient adsorption 
processes [13]. Chemical activation, on the other hand, is 
a one-step process where activation agents serve as dehy-
drating and oxidizing agents simultaneously [16]. Chemical 
activation agents can be devided to acidic, basic and neutral. 
Acidic activators consist of inorganic acids, such as phos-
phoric, nitric, sulfuric and hydrochloric acid. Most common 
basic activators are NaOH and KOH and neutral chemical 
activators include for instance K2CO3, ZnCl2, or CaCl2 [17]. 
Some studies have shown that mixtures of activating agents, 
such as FeCl3/MgCl2 or FeCl3/ZnCl2 are also effective for 
synthesizing activated carbon [15]. The effectiveness of the 
activator increases with its addition [3]. Futher modifica-
tions of prepared materials by activation aim to optimize 
the surface chemistry for specific adsorbate adsorption, and 
these modifications fall into four main categories: oxida-
tion, sulfuration, nitrogenation and functionalization with 
coordination ligands [18].

Concerns about the dangerous effects of ionizing radia-
tion and radionuclides on the environment and humans have 
led to research on mitigating these effects [19]. Various 
methods are emplyed to remove radionuclides from aque-
ous systems, including phytoremediation [20], ion exchange 
[21], chemical precipitation [22], liquid extraction [23], 
reverse osmosis [24], electrochemical purification [25] or 
adsorption [6].

Activated carbon is utilized in nuclear chemistry and 
radioecology as an adsorbent of ecotoxically significant 
radionuclides, including technetium, which is present in 
spent nuclear fuel. Technetium occurs naturally in trace 
amounts as a result of the spontaneous decay of uranium 
isotopes [26]. Anthropogenic sources, such as radioactive 
fallout or releases after the Chernobyl nuclear accident in 
1986, also contribute to higher levels of technetium con-
tamination [27]. In the environment, pertechnetate anion 
is the predominant chemical form of technetium under 
aerobic conditions. It is known for its good solubility and 
mobility in aqueous systems. Given the long half-life of 
99Tc (211 000 y), substantial efforts are being made to 
understand the long-term biogeochemical behaviour of this 
isotope, its transport in food chains and the mechanisms 
governing its mobility in different environments [28, 29]. 
99mTc, a metastable nuclear isomer of 99Tc with a half-life 
of nearly 6 h, is widely used in nuclear medicine to local-
ize damaged tissues [30]. Due to its relatively short half-
life, this isotope can also be used as a radiotracer for 99Tc 
[27]. The preparation of 99mTc isotope involves the use of 
a Mo-Tc generator [31] and 99Mo, the precursor, is usu-
ally obtained through neutron irradiation of 98Mo or 235U 

in a nuclear reactor or during the reprocessing of spent 
nuclear fuel cells [27, 32]. In the chromatographic column 
of the generator, 99Mo is adsorbed on an adsorbent, such 
as Al2O3 or activated carbon. Pertechnetate, being mono-
valent, is not strongly bound and shows limited interaction 
with the adsorbent. By adding NaCl as an eluent to the 
column, anion exchange between Cl and Tc ions occurs, 
leading to the subsequent elution of a colorless Na99mTcO4 
solution while Mo remains on the column [33]. Techne-
tium can be immobilized by barrier materials, transform-
ing Tc into a less mobile, reduced form Tc(IV) through the 
use of various reducing agents [34, 35]. Another approach 
involves using barrier clay materials modified with quater-
nary amines. This eliminates the need to create reductive 
conditions during redox processes, thereby simplifying 
the establishment and operation of radioactive waste sites 
[36]. Incorporating activated carbons as a modifying addi-
tive in barrier materials emerges as a promising strategy 
for technetium immobilization. A critical consideration 
in adopting this approach is determining the feasibility of 
seamlessly integrating the additive into the barrier mate-
rial without compromising its strenght and permeability 
characteristics. Additionally, it is imperative to ensure 
that the immobilization capacity of the additive remains 
high within the specified volume provided by the barrier 
material [34]. The adsorption of pertechnetate has been 
investigated using a variety of adsorbents. Acitvated car-
bon [36–40], along with other inorganic adsorbents such 
as mettalic minerals [41–45] and sulfur-based materials 
[46, 47], has been studied extensively. Ogranic adsorbents, 
including porous polymers, covalent-organic frameworks, 
metal–organic frameworks, and resins, have also been 
explored [48]. Biological adsorbents, such as biopolymers 
like chitosan, cellulose, and chitin, have recently shown 
promise in pertechnetate adsorption [49–51]. Each of these 
groups has its own set of advantages and disadvantages. 
Inorganic adsorbents remain valid in adsorption experi-
ments conducted in the nuclear industry due to their low 
cost, mechanical strenght, various possible modification, 
and ease of preparation. Organic adsorbents, on the other 
hand, are more challenging to prepare and tento to be more 
expensive, making them less practical. Biosorbents are 
gaining popularity, but their effectiveness in pertechnetate 
adsorption is still extensively under study [48].

The focus of this study was to characterize new acti-
vated carbon samples prepared from fibrous cellulose 
using different chemical activating agents and compare 
their adsorption behaviour towards pertechnetate anion 
with other activated carbon samples prepared from the 
same precursor, as previously described in scientific 
papers [40, 52–54]. The study investigated the influence 
of the initial pH of the solution, contact time of the phases, 
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and concentration of the adsorbate using adsorption iso-
therm models (Langmuir and Freundlich).

Materials and methods

Materials

The AC samples were prepared at the Institute of Polymers 
SAV by researchers Novák & Berek. Comprehensive infor-
mation regarding the preparation and treatment specifics 
for each sample can be accessed in Table 1. All chemicals 
used in this study were of analytical grade and supplied from 
SLAVUS, s.r.o., Bratislava, Slovak Republic, except for car-
rier chemical of Tc (NH4ReO4), which was supplied from 
Sigma-Alrich, Saint Louis, MO, USA. Technetium in the 
form of [99mTc]NaTcO4 was elued using 0,9% solution of 
NaCl, directly from 99Mo-99mTc Ultra-Technekow FM gen-
erator provided from Oncological Institute of St. Alžbeta, 
s.r.o., Bratislava, Slovak Republic.

The pyrolysis lasted for 1 h, and the drying occured at 
110 °C.

Characterization

Various characterization techniques were used to study of the 
AC samples. The specific surface area value for each sample 
was determined using the BET isotherm analysis. The quality 
of functional groups on the AC samples surface was investi-
gated using Fourier-transform infrared spectroscopy (FTIR) 
with the organic oil Nujol method. Sample was combined 
with the oil on a watch glass until a suspension was formed 
which we applied to the glass. FTIR spectra were measured 
by spectrometer NICOLET 6700—Thermo scientific, USA. 
Measurements were performed at room temperature. X-ray dif-
fraction analysis (XRD) was performed using the Miniflex600 
(Rigaku, Tokyo, Japan) instrument to examine the sctructural 
properties of the samples. Measurement parameters were as 

follows: tension on the X-ray 40 kV, electric current 15 mA, 
angle range 3–80°, speed 5°･min−1. The sample was placed 
on a slide glass and then covered with a coverslip. The cov-
erslip was then removed and the sample was placed in the 
instrument holder. X-ray fluorescence analysis (XRF) with a 
NITON LX3t Analyzer spectrometer with GOLDD Technol-
ogy (Thermo Scientific, USA) was used for elemental iden-
tification. A thin foil (4 µm) was placed on one side of the 
plastic circle. The outer ring was used to stretch the foil and 
secure it to the ring. The samples were then poured into the 
attachment and it was placed in the holder above the detector. 
High-resolution electron microscopy was used to analyze the 
structure of the samples. Characterization using this method 
was carried out at the Department of Ecochemistry and Radio-
ecology FPV UCM in Trnava. Before SEM–EDX analysis, the 
samples were incubated for 4 h in 0,5 mol·dm−3 CaCl2, dried 
for 72 h at 45 °C, and the samples were fixed on an aluminum 
substrate using Ag-adhesive. The samples were subsequently 
plated with Au using a BP 343,7 (TESLA ELMI). Images 
were taken using a VEGA 2 SEM microscope (TESCAN) with 
an EDX QUANTAX QX2 microprobe (RONTEC). One image 
was selected from each new AC sample, which was used 
for this study. Images were taken at 200x, 500x, 1000 × and 
3000 × magnification. The analysis was performed at a pres-
sure of 36·10–3 Pa and voltage of 30 kV. In this study, we 
used an image with a 500 × magnification, which was the most 
suitable of all, due to the better mapping of the individual ele-
ments of the activation process.

Adsorption experiments

To evaluate the adsorption experiments, the following math-
ematical equations were used:

(1)n =
N

t

[

s−1
]

Table 1   Preparation and treatment of AC samples

Sample Preparation and treatment

A-CF-F Fibrous cellulose, Fe(OH)3, pyrolysis at 700 °C, washing, drying
A-CF-Z Fibrous cellulose, pyrolysis at 600 °C, then deposited ZnO (precipitated from the solution as Zn(OH)2 and converted 

to ZnO by heating at 400 °C
AC-A Fibrous cellulose, pyrolysis at 700 °C, washing, drying
AC-B Fibrous cellulose, 20% ZnCl2, drying, pyrolysis at 530 °C, washing, drying
AC-C Fibrous cellulose, pyrolysis at 530 °C, warm etanol solution of H3BO3, drying, washing with etanol, drying, washing
AC-E Fibrous cellulose, pyrolysis at 530 °C, 10% FeCl3 + drops of 10% NH3(l), filtration, washing, drying
AC-SC Commerce sample SEPARCOL, CARB-Seal, IMC-T-00–00003-Upo
AC-F AC-SC sample, 15 min boiling with HNO3, washing, drying
AC-G AC-SC sample, 15 min boiling with Na2S2O5, washing, drying
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where n is counts per second (index p is sample, index 
s standard), N is the number of counts shown on the detector, 
R is the adsorption percentage, Dg is the mass distribution 
ratio, BF is the batch factor, ceq is the equilibrium concentra-
tion, Q is the adsorbed amount, n0 is the corrected counts 
per second for the half-life of 99mTc, t0 is the corrected time, 
which passes between measuring the blank sample and the 
other samples, and σ represents the corresponding uncer-
tainty for each value.

The adsorption experiment of pertechnetate on AC 
samples were performed using the radioisotope indi-
cation method with a radioisotope 99mTc, with the final 
volume activity of 1 MBq∙cm−3. Batch adsorption was 
performed under aerobic conditions at room temperature. 
The batch factor used in this study was BF = 100 cm3·g−1. 
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√
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Using a RADWAG AS 220 R2, Poland, 50 mg of sam-
ple was weighed into a plastic test tube with a volume 
of 10 ml and 5 ml of aqueous phase was then added. AC 
sample and aqueous phase were mixed in a Programma-
ble laboratory Rotator-Mixer, Biosan Multi Bio RS-24 
with a constant mixing time (30 rpm). After the adsorp-
tion process took place, the suspension was filtrated using 
a filtrating paper, 5 ml plastic tip and a compressor. An 
aliquot of each supernatant was collected and analyzed 
with a scintillation detector NaI(Tl) using a single-channel 
amplitude analyzer NP-420. Subsequently, the results were 
compared with those of the standard (blank) solution. The 
number of counts on the NaI(Tl) detector was corrected 
based on the half-life of 99mTc for each sample and blank 
measurement. The effect of initial pH of the solution was 
analyzed between pH 0–8. The pH value of the solutions 
was adjusted with diluted solutions of HCl and NH3 with 
an analytical concentration of 0,1 mol/l on a pH meter HI 
2215 pH/ORP (Hanna Instruments). The influence of con-
tact time was studied between 1 and 60 min. Adsorption 
isotherm studies were carried out using a carrier solution 
of NH4ReO4, with different initial analytical concentra-
tion: 1·10–5 mol·dm−3, 5·10–5 mol·dm−3, 1·10–4 mol·dm−3, 
5·10–4  mol·dm−3, 1·10–3  mol·dm−3, 5·10–3  mol·dm−3, 
1·10–2 mol·dm−3, 5·10–2 mol·dm−3 and 1·10–1 mol·dm−3. 
Langmuir isotherm represents a  theoretical model that 
assumes monolayer adsorption. The mathematical descrip-
tion of the Langmuir adsorption model is as follows:

cs represents adsorption capacity, ceq is the equivalent con-
centration, csmax is maximum adsorption capacity, which 
corresponds to the saturation of sites and b is the ratio of the 
rate constant of adsorption and desorption.

The Freundlich isotherm is a model that describes ideal 
and reversible adsorption that is not limited to monolayer 
formation. This isotherm is valid for low degrees of sur-
face coverage. The Freundlich isotherm can be described 
by the following mathematical relation:

kF is the Freundlich constant, nF is regresion constant and 
ceq is the equilibrium concentration.

Langmuir and Freundlich adsorption isotherm models 
were used in this manuscript because they are commonly 
employed to describe the adsorption process of various 
activated carbon and biochar samples [48, 55–57].

In this particular study, the recovery of pertechnetate 
was not investigated. However, recovery could be achieved 
through several processes, including desorption with 

(13)cs =
csmax ⋅ b ⋅ ceq
(

1 + b ⋅ ceq
)

[

mmol ∙ g−1
]

(14)qF = kF ⋅ cnF
eq

[

mmol ∙ g−1
]
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eluents, the use of competing anions with higher affin-
ity towards the materials, temperature changes, sequential 
washing, or on sulfide minerals such as pyrite [34, 47, 54].

Results and discussion

Characterization of AC samples

Figure 1 shows the specific surface area values of indi-
vidual AC samples. A  higher specific surface area 
value typically correlates with enhanced adsorbent effi-
ciency for the intended application. The SBET values 
of AC samples decreased in the order AC-G > A-CF-
Z  >  A C - B  >  A C - F  >  A C - S C  >  A C - C  >  A - C F -

F > AC-A > AC-E. These values depend on the preparation 
process, raw material and activating agent. Notably, all sam-
ples underwent chemical activation for their preparation. 
Samples derived from fibrious cellulose displayed a posi-
tive response to activation with Zn compounds (as seen in 
A-CF-Z and AC-B), while lower values were observed in 
samples activated with Fe compounds (A-CF-F and AC-E).

Overall, the vibration bands detected in AC samples were 
of modest intensity, proving indicative assignments. The 
presence of similar functional groups as observed in other 
samples from the comparative series can be assumed. FTIR 
spectra for sample A-CF-F and A-CF-Z are shown in Figs. 2 
and 3, respectively. The attribution of specific functional 
groups to vibration bands for samples A-CF-F and A-CF-Z 
is detailed in Table 2. A noteworthy difference between the 
specfra lies in the rounded peak at 1591 cm−1 in the sample 
A-CF-Z, a feature less pronounced in sample A-CF-F. In 
both cases, the presence of a C = C functional group, char-
acteristic of aromatic rings, was presumed.

XRD spectra are displayed in Figs. 4 and 5. The spec-
trum of sample A-CF-F lacks distinct identifiable structures, 
likely due to the abundant presence of iron in the sample. In 
contrast, the A-CF-Z sample exhibits peaks corresponding to 
ZnO, Ca(CO3)2, and a compound featuring the simonkolleite 
structure Zn5(OH)8Cl2·H2O.

The summary of identified elements using XRF method 
are presented in Table 3. In sample A-CF-F, elements Fe, 
C, Ar, Zn, Ni, Sr, and Ag were present, with the background 
representing the tube´s construction material (Fe, Ni, and 
W). Sample A-CF-Z contained elements Fe, Ca, Ar, Zn, 
Ni, Sr, Cl, and Ag, alongside background elements from 
the tube. All of the identified elements are of macro- and 
microbiogenic character; therefore, they were obtained from Fig. 1   Specific surface area values for AC samples

Fig. 2   FTIR spectrum of A-CF-F sample
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outdoor environment, and the plant incorporates them into 
its metabolism. The XRF method provided information 
about elements from Al – W; however, for identifying lighter 
elements, the EDX method was used.

The SEM–EDX method visually confirmed the effi-
cency of chemical activation in the AC samples and further 
revealed the presence of Fe and Zn elements in the sam-
ples. Figure 6 and 7 showcase the EDX spectrum of each 
sample´s fiber under SEM at 3 000 × magnification. In each 
case, a distinct peak corresponding to the constituent ele-
ments was visible (Fe, Zn), along with peaks corresponding 

Fig. 3   FTIR spectrum of A-CF-Z sample

Table 2   Functional groups assigned to the wavenumbers in cm−1 of 
the AC samples

Functional group A-CF-F A-CF-Z

–OH – –
C = O 1713,1682 1714,1682
C = C 1556 1591
C–H 1462 –
HC = CH – –
C–O 1272 1155
C–H vibrations 722,804 721,804,875

Fig. 4   Difractogram of sample 
A-CF-F
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to other elements, such as Cl, C, Ca, O, Mg, Al, Si, S and 
Na. Other elements with percentual abundance below 1% 
can be presumed as microcomponents. Surface mappings of 
the activation elements, depicted as the electronmicroscopic 
images in Figures 8 and 9, underscore the uneven distribu-
tion of these elements across the samples.

Adsorption experiments

pH of the solution

The dependence of the adsorption percentage R on the 
initial pH value of the aqueous phase of the studied AC 
samples is shown in Fig. 10. The A-CF-F sample exhib-
ited notable R values (above 74%) in the acidic pH range 
of 0 to 4. A significant decline in R (50%) was observed 
at pH 6, as well as in the alkaline region (pH 8). Higher 

pH was not investigated due to preliminary studies, which 
indicated a significant decrease in the adsorption percent-
age above pH 8. This observation suggested that higher 
concentrations of OH− anions, resulting from an increase 
in pH, compete for the adsorption of pertechnetate anions 
on the active sites of the material. Increasing the pH could 
potentially be used as a desorption method for recovering 
pertechnetate from activated carbon materials. The adsorp-
tion behaviour of pertechnetate on A-CF-F at different pH 
values closely resembled that of the unactivated AC sample 
(AC-A). These two samples possess nearly identical specific 
surface area values. Within the slightly acidic to alkaline 
pH range, weaker adsorption of Tc was evident, indicating 
the occurence of anion desorption. Similar tendencies were 
observed in the AC-E sample. The A-CF-Z sample displayed 
elevated R values (more than 94%) across the entire range of 
investigated pH values (0–8). Likewise, a parallel trend was 
observed in the AC-B sample, which akin to A-CF-Z, under-
went activation with a Zn-containing compound, resulting in 
closely matched SBET values. pH 2 was judiciously selected 
as the optimal pH for subsequent batch adsorption experi-
ments on the examined AC samples and is reinforced by the 
outcomes associated with the AC samples from the same 
series. With confidence, it can be stated that an initial pH 
of 2 for the solution guarantees the effective adsorption of 
pertechnetate across all investigated samples.

Contact time of the solid and liquid phase

The dependence of the adsorption percentage R on the mix-
ing time of the solid and liquid phases of the AC samples is 

Fig. 5   Difractogram of sample A-CF-Z

Table 3   Element identification of the AC samples with XRF method

Element A-CF-F A-CF-Z

Fe x x
Ca x x
Ar x x
Zn x x
Ni (construction) x x
Sr x x
Ag x x
W (construction) x x
Cl x
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presented in Fig. 11. The A-CF-F sample achieved adsorp-
tion equilibrium within 1 h front he initiation of phase 
mixing. Remarkably, the A-CF-Z sample achieved rapid 
adsorption equilibrium, accomplishing it withing 1 min of 
mixing commencement. In contrast, the AC-E sample with 
the smallest SBET value, attained equilibrium only after 1 h. 
Consequently, for subsequent batch adsorption experiments, 
a mixing time of 1 h for the solid and liquid phases was 
selected. This decision aligns with previous publications 
showcasing analogous research and is supported by the find-
ings of this study, as well as the preliminary experiments 
with longer contact time (2 h, 8 h and 24 h).

While certain samples demonstrated swift attainment of 
high R values in adsorption, others required a full hour to 
reach equilibrium. It can be confidently stated that all acti-
vated carbon samples will efficiently adsorb pertechnetate 
after 1 h, as evidenced by the elevated R values.

Adsorption isotherms

Figure 12 depicts the Langmuir and Freundlich adsorption 
isotherms for the examined AC samples, as compared in 
this article. The adsorption of perrhenate, used as a carrier 
for pertechnetate, exhibited a decrease as the initial con-
centration in the solution increased. The computed values 

of the adsorbed pertechnetate amount from the Langmuir and 
Freundlich isotherms closely align with the experimental data. 
Maximum adsorption capacities (qmax) were calculated for each 
of the activated samples and then compared to some other types 
of adsorbents, as well as other variations of activated carbons 
found in the literature (Table 4), with regard to pertechnetate/
perrhenate adsorption. When comparing the newly prepared 
activated carbon samples, the Zn-activated sample performed 
better, exhibiting the highest qmax value among all the samples 
(303,03 mg∙g−1). This result aligns with another Zn-activated 
sample (AC-B), which also showed high adsorption efficiency 
towards perrhenate.

(qmax = 243,90 mg∙g−1). The inactivated sample had 
the lowest maximum adsorption capacity. Therefore, it 
can be said that chemical activation of the AC-A sample 
through various chemical agents positively influenced the 
adsorption capacities. The Freundlich adsorption model 
is deemed more suitable for describing the adsorption of 
pertechnetate on activated carbon samples in this con-
text. This conclusion is drwan from higher values of the 
determination coefficient R2, as compared between the 
aforementioned adsorption models (Table 5). Moreover, 
the higher the value of the determination coefficient, the 
higher the reproducibility of the results. This suggests that 
the adsorption process is heterogenous, and the assumption 

Fig. 6   EDX spectrum of sample A-CF-F
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Fig. 7   EDX spectrum of savmple A-CF-Z

Fig. 8   Electronmicroscopic image of sample A-CF-F Fig. 9   Electronmicroscopic image of sample A-CF-Z
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of equal adsorptive sites with constant adsorption heat is 
not likely [58].

Conclusion

The specific surface area values of individual AC sam-
ples depend on the preparation process, raw material and 
activating agent. The SBET values decreased in the order: 

AC-G > A-CF-Z > AC-B > AC-F > AC-SC > AC-C > A-CF-
F > AC-A > AC-E. Vibration bands of investigated AC sam-
ples were not intense and their assignment was indicative. 
FTIR and XRD spectra showed similar functional groups. 
Samples A-CF-F and A-CF-Z contained elements Fe, Ca, 
Ar, Zn, Ni, Sr and Ag. XRF spectra identified Fe, Ca, Ar, 
Zn, Ni, Sr, Cl and Ag. SEM–EDX analysis indicated the 
presence of Fe and Zn elements on the samples, with uneven 
distribution of activation elements across the surface.

Fig. 10   Influence of initial pH on the adsorption of pertechnetate using AC samples (contact time: 2 h, without carrier, temperature: ambient 
conditions)
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The A-CF-F sample achieved high R values in the 
acidic pH range (0–4), while the unactivated AC sample 
(AC-A) had weaker adsorption in the slightly acidic to 
alkaline pH range. The A-CF-Z sample achieved high R 
values in the entire investigated range of pH values (0–8). 
pH 2 was chosen as the optimal pH for subsequent batch 
adsorption experiments. The adsorption percentage R of 

AC samples relies on the mixing time of solid and liquid 
phases, with the A-CF-F sample reaching adsorption equi-
librium within 1 h and the A-CF-Z sample achieving equi-
librium only after 1 h. Pertechnetate adsorption exhibited 
a derease with rising initial concentration of the analyte in 
the solution, with the Freundlich adsorption model proving 
more suitable for describing pertechnetate adsorption onto 

Fig. 11   Influence of contact time on the adsorption of pertechnetate using AC samples (initial pH: 2, without carrier, temperature: ambient con-
ditions)
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AC samples, showing better fit when comparing coefficient 
of determination R2. The maximum adsorption capacity 
calculated from the data was highest for sample A-CF-Z 
(303,03 mg∙g−1), followed by a decreasing order: A-CF-
F >​ AC-B ​> AC-SC​ > AC-​C > AC​-F > A​C-G > ​AC-E > ​
AC-​A. ​Con​sequentl​y, ​in ​the comparison of newly prep​
are​d s​amples activated​ wi​th ​Zn and Fe compouds, it was 
observed that the sample activated with Zn compounds 
exhibited greater efficiency for pertechnetate adsorption, 

which also correlates with the adsorption efficiency of the 
other zinc activated sample, AC-B.

Adsorbents based on activated carbon prepared by 
pyrolysis of fibrous cellulose effectively adsorb techne-
tium and, thanks to their simple preparation and economic 
availability, can be used as a suitable alternative to com-
mercially available adsorbents. Chemical activation con-
tributed to elevated specific surface area values and con-
sequently enhanced adsorption properties for technetium 

Fig. 12   Adsorption isotherms of AC samples
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in the anionic form.These materials could potentially 
undergo further modifications to selectively adsorb 
pertechnetate, or other important radionuclides present 
in the spent nuclear fuel, particularly within the barriers 
employed in the back-end of the nuclear fuel cycle.
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