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Abstract
47Sc is a theranostic radionuclide under the spotlight of the scientific community thanks to its potential for SPECT imaging 
and therapeutic applications. This work presents the recent measurements of proton-induced nuclear reaction cross-sections 
aimed at 47Sc production using enriched 48Ti, 49Ti and 50Ti targets from 23 up to 70 MeV. Since the co-production of con-
taminant isotopes is a key issue, and 46Sc is the main one having a longer half-life than 47Sc, the 48/49/50Ti(p,x)47Sc and 46Sc 
cross sections are presented and compared with the scarce literature data and TALYS estimations.
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Introduction

The LARAMED (LAboratory of RAdionuclides for MEDi-
cine) program at the INFN-LNL is focused on the produc-
tion of emerging and conventional radionuclides exploiting 
the 70 MeV proton beam, having a tunable energy down to 
35 MeV [1–4]. Among the radionuclides of major interest 
there is 47Sc, thanks to its favourable physical and chemi-
cal characteristics, including the 159 keV γ-line suitable for 
SPECT imaging and the β− radiation for therapy (Table 1) 
that makes 47Sc an excellent candidate for theranostic radi-
opharmaceuticals [5–7]. The same 47Sc-labelled radiophar-
maceuticals can be also used with the positron-emitters 43Sc 
and 44Sc, for PET applications having identical biodistri-
bution, making 47/43,44Sc true theranostic pairs [8, 9]. The 

LARAMED team focused on the proton-induced produc-
tion of 47Sc within the INFN projects PASTA (Production 
with Accelerator of Sc-47 for Theranostic Applications, 
2017–2018) [10, 11] and REMIX (Research on Emerging 
Medical radIonuclides from the X-sections, 2021–2023) 
[12, 13], in addition to the technological project E_PLATE 
(Electrostatic Powders pLating for Accelerator TargEt, 
2018–2019) focused on the realization design and develop-
ment of suitable targets for nuclear cross section measure-
ments [14, 15]. Initially, the proton-induced reaction on natV 
targets have been studied [16, 17], then the cross sections on 
isotopically enriched 48Ti, 49Ti, and 50Ti targets have been 
measured, whose natural abundances are 73.72%, 5.41%, 
and 5.18% respectively [18]. This work presents our new 
data of the 48/49/50Ti(p,x)47Sc, 46cumSc excitation functions 
from 23 MeV up to 70 MeV, compared with the scarce liter-
ature data, as extracted from the EXFOR database [19, 20], 
and the TALYS results [21]. The production cross sections 
of the long-lived β− emitter 46Sc are also presented, since 
it may strongly affect the radionuclidic purity of the final 
product, having a longer half-life than 47Sc. The cumulative 
46cumSc cross section is due to the production of 46gSc and 
46mSc, that has a short half-life and decays 100% to 46gSc 
(Table 1).

The literature on proton-induced reactions with Ti-
enriched targets is scarce: considering 48Ti, only Gadioli 
et al. [22] and Levkovski [23] published data in 1981 and 
1991 respectively; for the 49Ti(p,x)47Sc cross section there 
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are no data, while the 49Ti(p,x)46Sc reaction was measured 
by Levkovski up to 23 MeV [23]; proton-induced reactions 
on enriched 50Ti targets have been studied by Gadioli et al. 
[22] in the energy range of 20–85 MeV, but also recently by 
Dellepiane et al. [24] up to 19 MeV. All these literature data 
used enriched  TiO2 samples, while in this work particular 
attention was given to target manufacturing and characteri-
zation. The enriched metallic 48/49/50Ti powder used in our 
experiments was deposited with the HIgh energy VIbrational 
Powder Plating (HIVIPP) technique on a substrate [14, 15], 
obtaining thin homogeneous deposit on an aluminum back-
ing. A complete characterization of the enriched targets was 
also performed at the AN2000 accelerator at INFN-LNL 
exploiting the Elastic BackScattering (EBS) method. The 
EBS technique allowed the measurement of the amount of 
48/49/50Ti deposited (µg/cm2) and its homogeneity, since at 
least three measurements were performed along the diameter 
of each sample. After the characterization, the targets were 
assembled in a stack that was irradiated at the ARRONAX 
facility for the nuclear cross section measurements [25].

Experimental

Thin deposits of enriched 48/49/50Ti metallic powder, whose 
isotopic composition is reported in Table 2, onto a natu-
ral high-purity Al foil (99%, 25 µm thick, Goodfellow, 
Cambridge Ltd., UK) were obtained by using the HIVIPP 
technique [14, 15]. Additional details on 48Ti target manu-
facturing and EBS characterization with the Van de Graaff 
AN2000 accelerator at the INFN-LNL can be found in Ref. 
[26]. The same steps have been applied for 49Ti and 50Ti 
targets, with the only exception of having cryomilled the 
metallic enriched powders prior to the HIVIPP deposition, 

as described in Ref [27]. Figure 1 shows typical 49Ti and 50Ti 
targets (left), a photograph of the same samples prepared 
for the EBS measurements (center), and an EBS spectrum 
analysis (right) carried out with the SimNRA 7.03 software 
[28]. In the plot the Ti content is reported in red, the Al 
backing in green and the trace amounts of contaminants, 
i.e., W, O, N, C and Fe, respectively with a light blue, pink, 
dark green, brown and yellow line. As described in Ref. 
[26], the precise amount of the deposited 48/49/50Ti powder in 
each sample was estimated by considering the Ti EBS simu-
lated spectrum made of two contributions: the high energy 
part (characterized by low measurement error) and the Ti 
spectrum region tailing into the lighter elements, to which a 
higher uncertainty must be attributed due to the errors of the 
stopping powers and of the non-Rutherford cross sections.

The enriched 48/49/50Ti targets were assembled into a 
stack of foils in order to obtain several nuclear cross sec-
tion values within a unique irradiation run. All the foils 
used in the stacks were high purity materials (≥ 99%, 
Goodfellow Cambridge Ltd., UK). Experiments were 
performed at the ARRONAX facility, using the low cur-
rent (typical intensity of ca. 100–120 nA) proton beam 
and the dedicated beam-line and target-holder [25, 29]. 
The enriched 48/49/50Ti targets were disposed in such a way 
that the Al substrates collected the recoil atoms produced 
in the deposited powder. A natNi monitor foil was placed 
close to each Ti sample, in order to carefully check the 
beam current through the stacked-target, exploiting the 
natNi(p,x)57Ni IAEA recommended reaction [30, 31]. Irra-
diations had a typical duration of 1–1.5 h and, soon after 
the End of Bombardment (EOB), targets were disassem-
bled and subjected to γ-ray spectrometry measurements. 
Since the enriched 48/49/50Ti powder was deposited on an 
Al substrate (Fig. 1) all the Ti samples were measured with 

Table 1  Nuclear data of 47Sc and 46Sc radionuclides, as extracted from the NuDat 3.0 database [18]; the uncertainty is reported in brackets

Half-life γ-ray energy (keV) γ-ray intensity (%) Mean β− energy (keV) Mean β− intensity (%)

47Sc 3.3492 d (6) 159.381 (15) 68.3 (4) 162.0 (21) 100.0 (8)
46Sc 83.79 d (4) 889.277 (3)

1120.545 (4)
99.9840 (10)
99.9870 (10)

111.8 (3) 100.0000 (10)

46mSc 18.75 s (4) 142.528 (8) 62.0

Table 2  Isotopic composition (in %) of the enriched metallic powders 48Ti (Trace Sciences International Inc., Delaware, USA), 49Ti and 50Ti 
(National Isotope Development Center, Oak Ridge National Laboratory, Oak Ridge, USA)

The bold numbers indicate the enrichment level of the Ti-isotope of interest

46 47 48 49 50

48Ti 0.17 ± 0.01 0.21 ± 0.01 99.32 ± 0.02 0.18 ± 0.01 0.12 ± 0.01
49Ti 0.2200 ± 0.00500 0.2200 ± 0.00500 2.7100 ± 0.01000 96.2500 ± 0.01000 0.6000 ± 0.00500
50Ti 1.6900 ± 0.05000 1.2900 ± 0.05000 12.5100 ± 0.20000 1.4100 ± 0.05000 83.1000 ± 0.20000
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the 48/49/50Ti deposit in the direction of the HPGe detector, 
in order to avoid the γ-ray attenuation due to the Al sup-
port. In order to follow the decay of the radionuclides of 
interest and to check for eventual γ-ray interferences, the 
γ-ray spectra of each Ti target were acquired repeatedly 
each day up to 5 days after the EOB (these acquisitions 
were typically 1.5–3 h long). To check the 46Sc activity 
without the background due to the co-produced shorter-
lived radionuclides, an additional measurement 60 days 
after the EOB was also carried out for each Ti target. In 
the data analysis the nuclear data extracted from the NuDat 
3.0 database (Table 1) were used, as well as the software 
jRadView developed at the INFN-LNL for nuclear physics 
experiments. The data analysis, including uncertainty cal-
culations, was carried out following the article by Otuka 
et al. [32]. Only the γ-line at 889 keV emitted by 46Sc was 
used, since the 1120 keV line had an interference with the 

background 214Bi emission from the natural 238U decay 
chain. The recoil effect for the monitor 57Ni activity was 
taken into account and it was about 1%. Results of the 
48/49/50Ti(p,x)47Sc, 46cumSc cross sections are given for a 
100% enriched target, as shown in Figs. 2, 3, 4. Consider-
ing the isotopic target composition presented in Table 2, 
the results of the excitation functions occurring on each 
enriched target presented hereafter are corrected for the 
amount of other 48/49/50Ti contribution, considering the 
literature data available from the EXFOR database [19]. 
In particular, results obtained using enriched 49Ti targets 
(Fig. 3) have been corrected for 2.71% of 48Ti, while the 
results obtained with the enriched 50Ti targets (Fig. 4) have 
been corrected for the 12.51% of 48Ti and 1.41 of 49Ti 
presence. Our new data are compared with the few experi-
mental values available and with the results obtained by 
the TALYS code run with the default parameters (version 
1.96 released in December 2021) [33].

Fig. 1  Enriched target manufacturing and characterization at the INFN-LNL. The blue dots in the center photo represent the positions where the 
EBS scans were performed to asses the thickness homogeneity along the diameter. (Color figure online)

Fig. 2  The 48Ti(p,2p)47Sc (left) and 48Ti(p,x)46cumSc (right) cross section
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Results and discussion

Figure 2 shows the 48Ti(p,2p)47Sc and 48Ti(p,x)46cumSc 
cross section, with the new data presented with red dots, 
the literature data with black triangle [22] and black 
star [23], the TALYS estimation with a dotted line. As 
explained in the EXFOR database, Levkovski values have 
to be corrected by a factor of 0.8 due to the monitor values 
used in 1991 [34] and, for this reason, the data presented 
in the plots have a star in the legend to indicate the applied 
rescaling factor. Regarding the 47Sc formation, TALYS 
results overestimate by a factor of about 2 the experi-
mental values, even if the trend of the nuclear reaction is 
properly described. Our new values for the 48Ti(p,2p)47Sc 
excitation function are in general agreement with the lit-
erature data; however, in the energy range 30–50 MeV the 
new values are 20% lower than the previous ones [26]. On 
the other hand, the experimental data presented in this 
work for 46cumSc production using 48Ti targets are in per-
fect agreement with the literature for the entire energy 
range, as shown in Fig. 2 (right). TALYS estimations seem 
to describe this nuclear reaction properly. Experimental 
results for the formation of 47Sc, 46cumSc, 44mSc, 44gSc, 

43Sc and 48V radionuclides using enriched 48Ti targets are 
presented in a dedicated work [35].

Figure 3 shows the first measurement of the 49Ti(p,x)47Sc 
cross section (left) and the 49Ti(p,x)46cumSc excitation func-
tion, with the TALYS estimation reported as a dotted line. 
The trend of the 49Ti(p,x)47Sc nucler reaction is properly 
described by TALYS code, however an overestimation by 
a factor of about 2 can be noted in the entire energy range. 
In case of the 49Ti(p,x)46cumSc, the right plot of Fig. 3 also 
reports the values obtained by Levkovski up to 23 MeV [23]; 
the TALYS results are in good agreement with both sets of 
experimental values, even if the low energy (p,α) peak seems 
to be underestimated by a factor of about 2.

Figure  4 shows the 50Ti(p,x)47Sc (left) and the 
50Ti(p,x)46cumSc (right) cross sections, together with the lit-
erature data and the TALYS estimations. The first part of 
the (p,α) peak in the production of 47Sc is well described by 
the measurement of Dellepiane et al. up to 19 MeV [24]; for 
E < 30 MeV the values obtained by Gadioli et al. seem to be 
shifted towards higher energy values. In general, our new 
data seem to be in a good agreement with the previous ones; 
only the high energy values at about 65 MeV and 70 MeV 
are lower than the literature ones. TALYS properly describes 
the general trend of the 50Ti(p,x)47Sc nuclear reaction, even 

Fig. 3  The 49Ti(p,x)47Sc (left) and 49Ti(p,x)46cumSc (right) cross section

Fig. 4  The 50Ti(p,x)47Sc (left) and 50Ti(p,x)46cumSc (right) cross section
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if also in this case the (p,α) peak seems to be underesti-
mated by a factor of about 2; an energy shift can be noted 
for E > 40 MeV. Our new values of the 50Ti(p,x)46cumSc cross 
section seem to be in good agreement with the previous one 
by Gadioli et al. for the entire energy range investigated 
(right plot). Also in this case, TALYS estimations properly 
describe the trend of the reaction, even if the low energy 
region seems to be underestimated (E < 40 MeV) while the 
high energy region seems to be overestimated (E > 60 MeV).

As discussed in Ref [26], enriched 48Ti targets provide 
higher 47Sc production yield with a lower radionuclidic 
purity (RNP) when compared with natV targets [10, 11, 
17]. Considering only the co-produced 46Sc, the cross sec-
tion data presented in this work may suggest that a suitable 
energy range for 47Sc production may be below 40 MeV 
when using 49Ti targets, while enriched 50Ti targets may be 
interesting up to 20 MeV, exploiting typical medical cyclo-
tron with maximum proton beam energy of 19 MeV [24]. 
However, the impact on the dose increase due to the presence 
of Sc-isotopes has to be calculated for each radiopharmaceu-
tical considering all the co-produced contaminants [17]. For 
this reason, further work within the REMIX collaboration is 
ongoing to report all the 48/49/50Ti(p,x)xxSc cross sections, in 
order to find out the best nuclear reaction and energy range 
to produce 47Sc with suitable RNP for medical applications.

Conclusions

This work presents new experimental values of the 
48/49/50Ti(p,x)47Sc, 46cumSc cross sections, carried out by the 
LARAMED team at the INFN-LNL. Particular attention was 
given to isotopically enriched Ti target manufacturing and 
characterization, as well as to γ-ray spectrometry measure-
ments and data analysis. Within the REMIX project fur-
ther studies are ongoing to calculate the 48/49/50Ti(p,x)xxSc 
cross sections and to compare the experimental results 
with TALYS estimations, also thanks to the collaboration 
with experts in nuclear modelling. Dosimetric calculations 
of the dose increase on specific radiopharmaceuticals due 
to the presence of 47Sc-contaminants (such as 43Sc, 44Sc, 
44mSc, 46Sc and 48Sc) are in progress, considering various 
47Sc production scenarios. This effort is focused on finding 
out the best proton-induced reaction and optimal irradiation 
conditions (i.e., energy range and irradiation time) for 47Sc 
production.
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