Skip to main content
Log in

Characterization and performance of co-axial HPGe detectors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

High purity germanium (HPGe) detectors are deployed globally for gamma-radiation spectroscopy due to their superior energy resolution. In this work, the essential characteristics of n and p-type HPGe detectors, such as energy resolution, efficiency, minimum detectable activity (MDA), and peak shape were studied for the purpose of characterization and performance optimization. The results are obtained for various source-detector configurations in a wide energy range of 40–1408 keV using gamma sources, such as 109Cd, 57Co, 137Cs, 54Mn, 65Zn, 60Co, and 152Eu. Scanning (distance, lateral, and radial) of the detectors was performed using different gamma sources to understand the orientation of the crystal with its active volume and counting efficiency and to characterize the geometry in detail. The ambient background around the n-type HPGe was reduced using Pb-shielding. As a result, an 85.85% suppression was observed in the mean integral window of 40–2700 keV. The characterization and performance tests of the detectors convincingly suggest that both the detectors can be deployed for environmental radioactivity explorations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Eberth J, Simpson J (2008) From Ge (Li) detectors to gamma-ray tracking arrays–50 years of gamma spectroscopy with germanium detectors. Prog Part Nucl Phys 60(2):283–337. https://doi.org/10.1016/j.ppnp.2007.09.001

    Article  CAS  Google Scholar 

  2. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley

    Google Scholar 

  3. Islam MN, Akhter H, Begum M, Mawla Y, Kamal M (2018) Study of a laboratory-based gamma spectrometry for food and environmental samples. Intern J Adv Eng, Manag Sci. 4(1):239956. https://doi.org/10.22161/ijaems.4.1.5

    Article  Google Scholar 

  4. Trang LTN, Chuong HD, Thanh TT (2021) Optimization of p-type HPGe detector model using Monte Carlo simulation. J Radioanal Nucl Chem 327(1):287–297. https://doi.org/10.1007/s10967-020-07473-2

    Article  CAS  Google Scholar 

  5. Vargas MJ, Timón AF, Díaz NC, Sánchez DP (2002) Influence of the geometrical characteristics of an HpGe detector on its efficiency. J Radioanal Nucl Chem 253(3):439–443. https://doi.org/10.1023/A:1020425704745

    Article  CAS  Google Scholar 

  6. Spieler H (2005) Semiconductor detector systems. Vol 12. Oxford university press

  7. Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods Phys Res, Sect A 587(2–3):304–314. https://doi.org/10.1016/j.nima.2008.01.062

    Article  CAS  Google Scholar 

  8. Zamzamian SM, Hosseini SA, Samadfam M (2017) Optimization of the marinelli beaker dimensions using genetic algorithm. J Environ Radioact 172:81–88. https://doi.org/10.1016/j.jenvrad.2017.03.020

    Article  CAS  PubMed  Google Scholar 

  9. Gilmore G (2008) Practical Gamma-ray Spectrometry, 2nd edition. Wiley, ISBN: 978–0–470–86196–7

  10. Done L, Ioan MR (2016) Minimum detectable activity in gamma spectrometry and its use in low level activity measurements. Appl Radiat Isot 114:28–32. https://doi.org/10.1016/j.apradiso.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  11. Mei-Woo Y (2014) Determination performance of gamma spectrometry co-axial HPGE detector in radiochemistry and environment group. Nuclear Malaysia 46(1):1–7

    Google Scholar 

  12. Usman A, Nor NM (2019) Test performance of gamma spectrometry co-axial high purity germanium detectors in universiti teknologi malaysia. IOSR J Appl Phys 11(6):58–66. https://doi.org/10.9790/4861-1106015866

    Article  Google Scholar 

  13. Dragounová L, Rulík P (2013) Low level activity determination by means of gamma spectrometry with respect to the natural background fluctuation. Appl Radiat Isot 81:123–127. https://doi.org/10.1016/j.apradiso.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  14. Yadav M, Prasad M, Joshi V, Gusain GS, Ramola RC (2016) A comparative study of radium content and radon exhalation rate from soil samples using active and passive techniques. Radiat Prot Dosimetry 171(2):254–256. https://doi.org/10.1093/rpd/ncw069

    Article  CAS  PubMed  Google Scholar 

  15. Mesrar H, Sadiki A, Faleh A, Quijano L, Gaspar L, Navas A (2017) Vertical and lateral distribution of fallout 137Cs and soil properties along representative toposequences of central Rif, Morocco. J Environ Radioact 169:27–39. https://doi.org/10.1016/j.jenvrad.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  16. Kandari T, Prasad M, Pant P, Semwal P, Bourai AA, Ramola RC (2018) Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the main boundary thrust region of Garhwal Himalaya. Acta Geophys 66:1243–1248. https://doi.org/10.1007/s11600-018-0158-6

    Article  Google Scholar 

  17. Prasad M, Ranga V, Kumar GA, Ramola RC (2020) Radiological impact assessment of soil and groundwater of Himalayan regions in Uttarakhand, India. J Radioanal Nucl Chem 323:1269–1282. https://doi.org/10.1007/s10967-019-06827-9

    Article  CAS  Google Scholar 

  18. Kumar A, Singh P, Semwal P, Singh K, Prasad M, Ramola RC (2021) Study of primordial radionuclides and radon/thoron exhalation rates in Bageshwar region of Kumaun Himalaya, India. J Radioanal Nucl Chem 328:1361–1367. https://doi.org/10.1007/s10967-020-07582-y

    Article  CAS  Google Scholar 

  19. Joel ES, Maxwell O, Adewoyin OO, Olawole OC, Arijaje TE, Embong Z, Saeed MA (2019) Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications. Sci Rep 9(1):4219. https://doi.org/10.1038/s41598-019-40884-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. UNSCEAR (1982) United nations scientific committee on the effects of atomic radiation. Exposures resulting from nuclear explosions

    Google Scholar 

  21. Inoue K, Fukushi M, Van Le T, Tsuruoka H, Kasahara S, Nimelan V (2020) Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment. Sci Rep 10(1):12428. https://doi.org/10.1038/s41598-020-69003-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wallbrink PJ, Walling DE, He Q (2003) Radionuclide measurement using HPGe gamma spectrometry. In: handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. 67–96 Springer. https://doi.org/10.1007/0-306-48054-9_5

  23. Ramadhan RA, Abdullah KM (2018) Background reduction by Cu/Pb shielding and efficiency study of NaI (TI) detector. Nucl Eng Technol 50(3):462–469. https://doi.org/10.1016/j.net.2017.12.016

    Article  CAS  Google Scholar 

  24. Linux advanced multi parameter system. URL: https://www.tifr.res.in/~pell/lamps.html

  25. Thakur S, Devi S, Kaintura SS, Tiwari K, Singh PP (2023) Spectroscopic performance evaluation and modeling of a low background HPGe detector using GEANT4. Nucl Instrum Methods Phys Res, Sect A 1058:168826. https://doi.org/10.1016/j.nima.2023.168826

    Article  CAS  Google Scholar 

  26. Tsoulfanidis N, Landsberger S (2021) Measurement and detection of radiation. 5th edn. CRC press. https://doi.org/10.1201/9781003009849

  27. Keyser RM, Twomey TR (2013) Optimization of pulse processing parameters for HPGe gamma-ray spectroscopy systems used in extreme count rate conditions and wide count rate ranges. J Radioanal Nucl Chem 296(1):503–508. https://doi.org/10.1007/s10967-012-2113-3

    Article  CAS  Google Scholar 

  28. Fairstein E, Wagner S (1997) IEEE standard test procedures for germanium gamma-ray detectors. IEEE Std. https://doi.org/10.1109/IEEESTD.1997.82400

    Article  Google Scholar 

  29. Currie LA (1968) Limits for qualitative detection and quantitative determination. Appl radiochem Anal chem 40(3):586–593. https://doi.org/10.1021/ac60259a007

    Article  CAS  Google Scholar 

  30. Abbas MI (2006) HPGe detector absolute full-energy peak efficiency calibration including coincidence correction for circular disc sources. J Phys D Appl Phys 39(18):3952. https://doi.org/10.1088/0022-3727/39/18/005

    Article  CAS  Google Scholar 

  31. Demir D, Eroğlu M, Turşucu A (2013) Studying of characteristics of the HPGe detector for radioactivity measurements. J Instrum 8(10):P10027. https://doi.org/10.1088/1748-0221/8/10/P10027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the iHub–AWaDH, a Technology Innovation Hub (TIH) established by the Ministry of Science & Technology, Government of India, at the Indian Institute of Technology Ropar in the framework of the National Mission on Interdisciplinary Cyber-Physical Systems (NM—ICPS) for resources and support. One of the authors, SS Kaintura thanks the Ministry of Education (MoE), Government of India, for the doctoral fellowship at the Indian Institute of Technology Ropar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeet S. Kaintura.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaintura, S.S., Thakur, S., Devi, S. et al. Characterization and performance of co-axial HPGe detectors. J Radioanal Nucl Chem 333, 3123–3135 (2024). https://doi.org/10.1007/s10967-024-09376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09376-y

Keywords

Navigation