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Abstract
In this work we investigate a new fast screening method for estimation of chosen hazard indices (HI) using correlated 
inputs dedicated for small 3.00 g samples using a novel μDOSE. The system detects α and β particles separately, along with 
220Rn/216Po, 219Rn/215Po, 212Bi/212Po and 214Bi/214Po decay pairs. Four separate decay pairs along with α and β particle count 
rates are used to quantify decay chains. The excess β count rates is used to quantify the 40K radioactivity. This provides 
radionuclide estimates that are correlated—and this correlation is taken into account in calculating hazard indices with 
their corresponding uncertainties. Calculated hazard indices are verified against state-of-the-art High Resolution Gamma 
Spectrometry (HRGS) equipped with a High Purity Germanium (HPGe) detector manufactured by Canberra. This research 
shows that results obtained with the μDOSE system correspond to the results obtained with HRGS and when the activity 
correlation is taken into account the HI uncertainties are similar in value for both methods.

Keywords Building materials · Natural radioactivity · Correlated uncertainties · α and β counting · Building materials 
hazard indices

Introduction

Building materials are derived from Earth’s resources, such 
as soil or rocks, and thus they contain naturally occurring 
radionuclides from the 238U and 232Th decay series, as well 
as 40K and, as a result, their use carries a risk of radiation 
exposure. This exposure can be external from direct gamma 
radiation exposure or internal from inhalation of radioac-
tive radon/thoron [1]. The latter can be especially harmful 
in an indoor environment and can contribute to develop-
ment of lung cancer, if there is no appropriate ventilation 
[2]. For this reason a number of regulations have been intro-
duced providing so-called hazard indices. For example, to 
ensure safety regarding the dose acquired exclusively from 
building materials, activity concentration index value of 1 
can be used as a conservative screening tool [3]. Similar 

mathematical formulation can be seen in other hazard indi-
ces, namely: radium equivalent activity, representative level 
index, absorbed and annual gamma dose rates, respectively, 
gamma effective indices, as well as external and internal 
radiation hazard indices.

The issue of building materials radioactivity is well doc-
umented in various works, as listed in Table 1. However, 
because the μDOSE system is a relatively new setup for 
estimating 40K as well as 238U, 235U and 232Th decay chain 
members activities [4], no research on hazard indices has 
been done so far. A 2022 study [5] on the accuracy of the 
μDOSE system shows good agreement with well-established 
methods of dosimetry, such as HRGS or thick source alpha 
counting. The study also mentions that the correlation of 
results provided by the μDOSE system improves precision 
of dose rate estimation; however, this correlation has not 
been investigated on its own and nor has its significance in 
comparison to the HRGS method.

The aim of this work is to test how uncertainties of hazard 
indices are influenced, if radionuclide estimates are corre-
lated. This is tested with two independent setups of HRGS 
and the μDOSE system that provide uncorrelated and cor-
related estimates respectively. In addition, advantages of 
reducing hazard indices uncertainties are investigated by 
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using correlated radionuclide estimates and drawbacks as 
errors are induced by disequilibrium in radioactive decay 
chains.

Experimental

Materials

All 7 samples that were investigated in this work are fre-
quently used building materials of known origin: clay 
bricks  (SiO2, feldspars), beach rock (sand and/or gravel, 
 CaCO3) and sand  (SiO2). Samples were dried in a drying 
chamber at an elevated temperature of 80 °C for several 
days. During drying sample masses were monitored to 
ensure water was removed. Every sample material was 
divided into two subsamples for μDOSE and HRGS meas-
urement. Detailed descriptions of sample preparation for 
these systems is provided below.

Subsamples and reference materials for μDOSE sys-
tem measurements were ground in a Fritsch Pulverisette 6 
planetary mill for 45 min at 200 rpm each to a fine powder, 
then 3.00 g of prepared material was placed onto 70 mm 
diameter sample discs and measured using the μDOSE 
system.

Subsamples and reference materials for HRGS meas-
urements were put and sealed in γBEAKERS [21, 22] (ca. 
100 g samples) and then stored for a period of about 30 days 
to obtain secular equilibrium to avoid bias that arises from 
222Rn emanation [23–27]. Subsamples were measured for 
24–48 h, times varying depending on the activities of each 
individual sample for obtaining optimal count rate statistics.

μDOSE system—α/β and delayed coincidence 
counting

For α/β particle measurements μDOSE system was used, 
described in detail in [4, 5]. It is designed for detect-
ing α-α (220Rn/216Po, 219Rn/215Po) and β-α (212Bi/212Po, 
214Bi/214Po) decay pairs and identifying the isotope pair 
the particles come from, based on the characteristic time 
intervals between the subsequent particle emissions. These 
pairs can later be used to determine 238U, 235U, 232Th and 
40K content. This is done with assumption of secular equi-
librium, where the activities of the decay pairs are equal to 
the activities of corresponding decay chains parent radio-
isotopes: 238U, 235U or 232Th. The remainder of the emitted 
β particles are assigned to 40K. The system was calibrated 
using IAEA-RGU-1, IAEA-RGTh-1 and IAEA-RGK-1 
[28] reference materials obtained from the International 
Atomic Energy Agency. In this work a system that was 
calibrated for 3.00 g was used.

Background activity was obtained for a 3.00 g back-
ground plastic disc placed accordingly in the sample 
holder. The background measurement lasted ca. 48 h and 
was performed in the same laboratory conditions as were 
the samples.

High resolution gamma spectrometry

Gamma spectrometry was performed with a Canberra 
HPGe detector with FWHM of 1.8 keV and relative effi-
ciency 40% at 1332 keV. The HRGS system was calibrated 
with IAEA-RGU-1, IAEA-RGTh-1 and IAEA-RGK-1 [28] 
reference materials. Activities were calculated for selected 
energy lines: 295.2 keV, 351.9 keV (214Pb) and 609.3 keV 
(214Bi) for uranium series; 338.3 keV, 911.2 keV (228Ac) and 
583.2 keV (208Tl) for thorium series; and 1460.8 keV (40K) 
(data obtained from NuDat 3.0).

Background activity was obtained through a 167 h meas-
urement of an empty γBEAKER in an identical laboratory 
setting in which samples were measured.

Theoretical

Radiation hazard indices

To determine whether building materials meet set stand-
ards, are within established norms and are safe to use, a 
number of hazard indices were devised. In many cases 
hazard indices are estimated from 226Ra, 232Th and 40K 
concentrations and provide a simplified information for a 
given risk factor. Frequently used indices are calculated as 
a linear combination of 226Ra, 232Th and 40K radionuclides 
contents in the following way:

where HI is the hazard index, ARa, ATh and AK are 226Ra, 
232Th and 40K concentrations expressed in Bq·kg−1 respec-
tively, SRa, STh and SK are parameters for a given hazard 
index. List of hazard indices, SRa, STh, SK parameters and a 
brief summary is provided in Table 1.

Uncertainty propagation for uncorrelated 
and correlated inputs

For uncorrelated inputs given hazard index uncertainty 
(σTh) can be is calculated as:

(1)HI = SRaARa + SThATh + SKAK

(2)�
2

HI
= (SRa�Ra)

2
+ (STh�Th)

2
+ (SK�K)

2



4891Journal of Radioanalytical and Nuclear Chemistry (2023) 332:4889–4896 

1 3

where σRa, σTh and σK are uncertainties of 226Ra, 232Th and 
40K activities. Usually HRGS measurements are considered 
to be uncorrelated. However for correlated inputs hazard 
index uncertainty should be calculated using the formula 
that takes into account correlations:

where non-diagonal σ elements are covariances of elements 
given in subscripts. Depending on sign and value of non-
diagonal elements the final HI uncertainty will give different 
values. For uncorrelated inputs non diagonal σ are zeros and 
Eqs. 2 and 3 provide the same values.

(3)�
2
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=
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Th

S
K
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Results and discussion

Correlated 226Ra, 232Th and 40K estimates

The μDOSE system provides correlated 226Ra, 232Th and 
40K estimates. This arises because the system detects α 
particles that can be emitted from decay chains while 
β particles are emitted from decay chains and 40K. 
Four decay pairs 220Rn/216Po, 219Rn/215Po, 212Bi/212Po, 
214Bi/214Po detected by the μDOSE system, provide infor-
mation on relative 226Ra, 232Th and 40K content. Detailed 
calculation procedure is provided in [29]. Correlations 
of 226Ra, 232Th and 40K contents are visualised in Fig. 1 
where 100 k points were drawn with respect to correlations 
determined by α, β and four decay pairs counting statistics.

Table 1  Radiation hazard indices; names, parameters and descriptions of 7 hazard indices, along with references to other works where the indi-
ces were studied

Parameters are applicable for radionuclides concentrations expressed in Bq·kg−1

*Usually presented as: HR = DR·8 766·0.2·0.7·10−6

HI—Hazard index SRa STh SK Short description References

Radium equivalent activity (Raeq) 1 1.43 0.077 Radium equivalent activity Raeq helps 
determine the purpose a given build-
ing material can be used for, e.g. 
homes, industries, roads/bridges, foun-
dations of non-residential construc-
tions or whether it is not suitable for 
any type of construction use at all

[6–17]

Representative level index (RLI) 150−1 100−1 1500−1 Representative level index RLI allows 
for estimating gamma radiation levels 
associated with concentrations of 
specific nuclides

[7–10, 12, 16]

Absorbed gamma dose (Dr in nGy·h−1) 0.92 1.1 0.08 Absorbed gamma dose rate DR is a 
value dependent on “average” room 
parameters (4 × 5 × 2.8 m) with wall 
and ceiling thickness at 20 cm and 
their density of 2 350 kg·m−3 (for 
concrete)

[8, 10, 12, 14, 17, 18]

Annual effective dose  rate* (HR in 
mSv·a−1)

1.13·10−3 1.13·10−3 9.82·10−5 Annual effective dose rate HR is a 
parameter dependent on the absorbed 
gamma dose rate multiplied by a 
conversion factor (0.7 Sv·Gy−1) and 
outdoor occupancy factor (0.2)

[8, 10, 12]

Activity concentration index 300−1 200−1 3000−1 Presented in the form proposed by the 
European Commission, the value of 
Iγ is an indicator if material in use 
exceeds the established safety levels 
that depend on the dose criterion and 
the type of use as well as the amount 
of material

[6, 8, 10, 12, 14–20]

External radiation hazard index 370−1 258−1 4810−1 Both internal (Hin) and external (Hex) 
radiation hazard index has a function 
similar to the activity concentration 
index, but they take into account the 
way radiation interacts with the human 
body (inhalation or external influence)

[7–10, 12, 13, 15, 16, 18]
Internal radiation hazard index 185−1 259−1 4810−1
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Fig. 1  Two 226Ra, 232Th and 40K compositions. Isolines are showing projected 2-D PDF contour-plots drawn from a multivariate normal distri-
bution for the μDOSE system for 1 h (a) and 10 h (b) measurements

Table 2  Numerical data of 226Ra, 232Th and 40K radionuclides contents from μDOSE and HRGS

μDOSE HRGS
Sample number

[
�Ra−226 �Th−232 �

K−40

]
 

terms in Bq·kg−1 each
⎡⎢⎢⎣

�
2

Ra−226
�
Ra−226, Th−232 �

Ra−226, K−40

�
Th−232, Ra−226 �

2

Th−232
�
Th−232, K−40

�
K−40, Ra−226 �

K−40, Th−232 �
2

K−40

⎤⎥⎥⎦ 
terms in  Bq2·kg−2 each

226Ra, 
Bq·kg−1

232Th, Bq·kg−1 40K, Bq·kg−1

1
[
29.83 18.56 639.35

] ⎡⎢⎢⎣

47.15 −38.82 35.77

−38.82 34.92 −38.56

35.77 −38.56 724.39

⎤⎥⎥⎦

25.21 ± 0.89 23.4 ± 1.7 446 ± 22

2
[
36.42 24.17 500.63

] ⎡⎢⎢⎣

55.81 −46.63 44.42

−46.63 41.69 −45.52

44.42 −45.52 601.58

⎤⎥⎥⎦

25.55 ± 0.89 28.8 ± 2.0 469.0 ± 22.7

3
[
33.20 31.11 772.12

] ⎡⎢⎢⎣

45.74 −37.99 35.73

−37.99 34.40 −38.42

35.73 −38.42 804.74

⎤⎥⎥⎦

28.4 ± 1.6 36.9 ± 2.8 513 ± 44

4
[
1.39 0.28 204.49

] ⎡⎢⎢⎣

0.59 −0.12 −0.85

−0.12 0.16 −0.31

−0.85 −0.31 194.19

⎤⎥⎥⎦

2.66 ± 0.17 3.00 ± 0.29 106.9 ± 8.4

5
[
0.0 4.77 179.01

] ⎡⎢⎢⎣

6.65 −4.75 2.90

−4.75 3.94 −4.11

2.90 −4.11 196.24

⎤⎥⎥⎦

3.64 ± 0.24 3.68 ± 0.35 80.0 ± 6.7

6
[
0.59 1.88 0.0

] ⎡⎢⎢⎣

0.83 −0.44 −0.20

−0.44 0.56 −1.10

−0.20 −1.10 160.78

⎤⎥⎥⎦

4.93 ± 0.26 4.06 ± 0.41 − 5.1 ± 2.3

7
[
33.80 28.06 567.43

] ⎡⎢⎢⎣

20.30 −19.73 24.85

−19.73 22.78 −33.20

24.85 −33.20 228.52

⎤⎥⎥⎦

27.90 ± 0.86 33.9 ± 2.1 525 ± 24
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Hazard indices and their uncertainties

Hazard indices and their uncertainties were estimated for 
the μDOSE system and HRGS using radionuclide content. 
Numerical values are provided in Table 2. In the case of 
the μDOSE system uncertainties are calculated using two 
approaches: first neglects correlations (Eq. 2) and the sec-
ond approach takes correlations into account (Eq. 3). This 
is illustrated on Figs. 2, 3, 4, 5, 6, 7 and 8 which provide 
comparison of hazard indices values and their uncertainties.

Data presented in Figs. 2, 3, 4, 5, 6, 7 and 8 shows that 
the uncorrelated uncertainties for μDOSE measurements 
are greater than the correlated uncertainties. This shows 
that by including the correlation between the activities of 
226Ra, 232Th and 40K in the estimation of hazard indices 

uncertainties, the provided results are more precise. This is 
due to the fact that several elements within the covariance 
matrices (Eq. 3) are negative which contributes to the lessen-
ing of the uncertainties. The correlated uncertainties from 
μDOSE measurements are also similar in value to the ones 
obtained from HRGS, thus proving that the measurement 
accuracy is maintained regardless of the chosen method.

Screening—measurement time, uncertainty 
and type II error

In some cases sample mass and sample throughput can 
be a limiting factor; therefore, an investigation on how 
uncertainty changes as a function of time was performed. 
The μDOSE system offers the possibility of measuring 
small samples and in this work the system was calibrated 

Fig. 2  Radium equivalent activity (Raeq) with uncertainties calculated 
for all samples

Fig. 3  Representative level index (RLI) with uncertainties calculated 
for all samples

Fig. 4  Absorbed gamma dose (DR) with uncertainties calculated for 
all samples

Fig. 5  Annual effective dose rate (HR) with uncertainties calculated 
for all samples
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for 3.00 g samples, whereas HRGS was calibrated for 
100 g. Figure 9 shows activity concentration index value 
and uncertainty as a function of measurement time for 
HRGS and μDOSE system. In both cases uncertainties 
encompass counting statistics, sample mass and reference 
materials uncertainties which are the main uncertainty con-
tributors for prolonged measurements. Despite large mass 
differences, μDOSE uncertainties that take into account 
correlations are comparable with HRGS (Fig. 9). For the 
first few hours of the measurement activity concentration 
index uncertainty is relatively large for μDOSE. After 10 h 
(Fig. 9) uncertainties from the μDOSE and HRGS systems 
are at the same level, which further proves that the μDOSE 
system is a reliable screening tool and can be an alterna-
tive to conventional HRGS. Nevertheless, algorithms that 

are used for measuring net peak area do not operate well 
on poorly defined baseline and therefore first peak quan-
tification, used for activity estimation, was available after 
46 min of measurements and required manually adjusting 
regions for peak detection.

In case of screening building materials for activity con-
centration index (Fig. 9) it can be observed that after ca. 1 h 
of measurement its value is well below recommended value 
1 [3]. For shorter measurements HRGS counting statistics 
(discussed in the paragraph above) and μDOSE counting sta-
tistics do not provide definitive material classification. This 
finding has substantial implications for future studies, espe-
cially when sample mass or measurement time is a limiting 
factor. What is more, understanding the differences between 

Fig. 6  Activity concentration index Iγ with uncertainties calculated 
for all samples

Fig. 7  External radiation hazard index (Hex) with uncertainties calcu-
lated for all samples

Fig. 8  Internal radiation hazard index (Hin) with uncertainties calcu-
lated for all samples

Fig. 9  Activity concentration index value uncertainty as a function 
of measurement time for HRGS (100 g samples) and μDOSE system 
(3.00 g samples)
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correlated and uncorrelated uncertainties allows researchers 
to take advantage of correlated ones.

While screening HI there are two classification errors: 
type I error “false positive” and type II error “false nega-
tive”. If HI value is above threshold, additional and pro-
longed measurement should be made to resolve this. In case 
of type II error, this can be difficult to detect and can have 
more significant consequences. For example, given HI can 
falsely be assumed to be within limits. This can happen 
because there are several factors, not related to counting sta-
tistics, that contribute to this. For example 238U decay chain 
can be in disequilibrium, [25, 30, 31] or sample chemical 
composition can be unknown. This can cause issues in both 
HRGS as well as in the μDOSE system and unfortunately 
those factors are not controlled routinely due to cost of addi-
tional measurements. Nevertheless, HI screening limits can 
be set to reduce the risk of type II errors at the expense of 
type I error.

The proposed methodology and obtained findings allow 
to bridge a gap in the existing literature, especially in the 
context of improving the throughput with measurement sys-
tems like μDOSE. The precision of conducted measurements 
ensures that safety thresholds are reliably met, reducing risks 
associated with type I and II errors.

Conclusions

In this study, values of selected hazard indices of building 
materials were compared using the μDOSE system for 3.00 g 
samples against the HRGS calibrated for 100 g samples. The 
primary objective was to understand the significance of the 
correlation of activities of 226Ra, 232Th, and 40K provided 
uniquely by the μDOSE system. The findings indicated that 
the uncertainties in hazard indices from both the HRGS and 
μDOSE systems, when correlations are considered, are com-
parable in value. Furthermore, accounting for these correla-
tions offers a substantial enhancement in the precision of 
results compared to when they are disregarded.
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