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Abstract
A novel 99mTc generator was proposed herein using nanoparticles consisting of natural Mo and an alumina column for 99mTc 
scintigraphy. 99mTc was obtained from 99Mo decay produced via the irradiation of nanoparticles consisting of natural Mo 
with bremsstrahlung γ-rays using a 30 MeV electron beam. The irradiated nanoparticles were placed in an alumina column, 
and the 99mTc daughter from 99Mo decay was separated by the removal of the ion-exchanged water or saline. This separation 
procedure was repeated at regular intervals for one week. The maximum separation yield of 99mTc was 14.4 ± 0.7%, which 
is sufficiently high to produce 99mTc suitable for medical use.

Keywords 99mTc generator · Mo nanoparticle · 100Mo(γ, n)99Mo reaction · 30 MeV electron beam · Bremsstrahlung γ -rays · 
99mTc chemical yield

Introduction

Tc-99 m is used in nuclear medicine to diagnose diseases of 
the bone, heart, lung, liver, and kidney. In particular, 99mTc-
methylene diphosphonic acid (MDP) [1] and 99mTc-hydroxy 
methylene phosphonic acid (HMDP) [2] are commonly 
used to detect bone disease with an annual use of about 
1.6 ×  108 MBq (Japan Isotope Society statistical data 2020) 
[3] every year in Japan. Moreover, 99mTc-human serum 
albumin (HAS)-diethylene triamine pentaacetic acid [4] 
and 99mTc-macro-aggregated human serum albumin (MAA) 
[5] are used to treat heart and lung diseases at consumption 
rates with an annual use of about 7.6 ×  107 MBq. In addition, 
4.4 ×  107 MBq is used for other purposes. Therefore, a total 
of 2.8 ×  108 MBq of 99mTc is used every year for nuclear 
medicine-based diagnoses. The global consumption of 99Mo 
in 2016 was estimated at approximately 1.7 ×  1010 MBq, half 
of which was consumed in the United States [6].

Currently, 99mTc is supplied by a highly compact genera-
tor with carrier-free 99Mo as the parent nuclide adsorbed 
onto an alumina column [7]. Mo-99 is produced in a nuclear 
reactor [8] and chemically separated from the fission prod-
ucts of uranium. However, supply shortages of 99Mo/99mTc 
are emerging as an increasingly common issue because of 
reactor malfunctions and international transportation acci-
dents and backlogs. Furthermore, it is likely that the perfor-
mance of nuclear reactors will deteriorate over time, result-
ing in additional supply shortages [9]. Many reports [10–12] 
have proposed the replacement of aging nuclear reactors for 
the production of 99Mo.

99Mo production through 98Mo(n, γ)99Mo [13], 100Mo (p, 
d)99Mo [14], and 100Mo (γ, n)99Mo reactions [15, 16] using 
an accelerator has been reported as an alternative to fission. 
In this work, we also utilized this photoactivation mecha-
nism. We confirmed that an electron LINAC as is typically 
used in nuclear medicine [17], can be used to produce 99Mo. 
However, it is not possible to use the current 99mTc generator 
to ensure adherence of Mo to the alumina column because a 
large amount of target Mo (stable isotope Mo) is contained 
in the mixture of 99Mo produced using the electron accelera-
tor. Therefore, the generation of 99Mo by photoactivation 
does not carrier-free 99Mo.

The small adsorption capacity of alumina can be a sig-
nificant concern, as the amount of absorbed Mo is typi-
cally in the range of 10 mg/g of alumina. For example, to 
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produce 30 GBq of 99Mo via photonuclear reaction with 
30 MeV photons and a 1 mA electron beam, 10 g of natural 
Mo should be irradiated for 10 h. Concerning the aforemen-
tioned rate, 1 kg of alumina would be needed for 10 g of 
the Mo target. Recent advances in the understanding of Mo 
adsorption to alumina are promising [18, 19], but the associ-
ated strategies have not been implemented thus far.

Equipment was developed to separate 99mTc via solvent 
extraction using methyl ethyl ketone [20]. This method uses 
natMoO3 as a target to separate 99mTc from 99Mo produced 
via 98Mo(n, γ)99Mo, 100Mo(p, d)99Mo, or 100Mo(γ, n)99Mo 
reactions using a two-tank separator. After 99mTc separation, 
it was reacted with MDP and applied to obtain a clear bone 
scintigram of a mouse [21].

Herein, we report a simple method for separating 99mTc 
from 99Mo/99mTc using Mo nanoparticles. The use of nan-
oparticles leads to the possibility of fixating the mother 
nuclide 99Mo mechanically instead of chemisorption, 
therefore circumventing the use of large amounts of alu-
mina. However, under this conditions the daughter 99mTc 
can only be eluted from a column when 99Mo nuclei are 
recoiled out of the nanoparticles. Russian researchers have 
calculated the rate at which 99Mo recoils in the 100Mo(γ, n) 
99Mo reaction using Mo nanoparticles that reach the parti-
cle surface has been calculated by Starovoitova et al. [22]. 
We conducted the first experiment to separate 99mTc from 
the recoiled 99Mo/99mTc using a method that is simpler than 
solvent extraction, which employs commercially available 
99Mo/99mTc generator systems. Herein, Mo nanoparticles 
with diameters of several tens of nanometers and an alumina 
column were used.

Experimental

The production of 99Mo via nat.Mo(γ, n) 99Mo reaction was 
conducted at the electron LINAC facility at the Institute for 
Integrated Radiation and Nuclear Science, Kyoto University. 
Mo nanoparticles used therein possessed a commercially 
available natural isotope composition and the size was deter-
mined by x-ray diffraction. Metal Mo (100 mg) and  MoO3 
with the particle sizes of 35–45 and 13–80 nm, respectively, 
were used as powders or suspended in water. The samples 
used in the following experiments are presented in Table 1. 
Each target was sealed in a quartz tube and irradiated with 
bremsstrahlung γ-rays emitted from a 2-mm-thick Pt bom-
barded with 100 μA and 30 MeV electrons. A total of 2 MBq 
of 99Mo was obtained from these irradiations. After irradia-
tion, the energy spectra of γ-rays from each target and the 
separated 99mTc solution were measured using a Ge detec-
tor. For the detector used for the gamma-ray measurement, 
energy calibration and detection efficiency were obtained in 

advance using standard sources. Furthermore, geometrical 
correction was performed by using Monte Carlo simulation.

As shown in Fig. 1, the irradiated Mo nanoparticles were 
added to a column filled with 1  cm3 of activated alumina 
in ion-exchanged water or saline. The generator vessel was 
made of polyethylene and the column filled with alumina 
had a diameter of 5 mm, a wall thickness of 1.5 mm and an 
overall height of 12 cm. For 99mTc separation, 2 mL of ion-
exchanged water or saline was passed through the column. 
As shown in Fig. 1, the separated 99mTc solution was col-
lected in a polyethylene tube and measured separately from 
the column with a Ge detector. The chemical separation and 
γ-ray measurement were repeated at regular intervals for 
one week, and the time dependence of radioactivity in the 

Table 1  Sample descriptions and experimental conditions

No Sample Particle size Irradiated condi-
tion

Separated 
condition

1a Mo metal 35–45 nm dry powder ion-exchanged 
water

1b Mo metal 35–45 nm suspended in 
saline

ion-exchanged 
water

2a MoO3 13–80 nm dry powder ion-exchanged 
water

2b MoO3 13–80 nm suspended in ion-
exchanged water

ion-exchanged 
water

2c MoO3 13–80 nm suspended in 
saline

saline

Fig. 1  Photograph of the novel 
99mTc generator with an alumina 
column. Gamma-irradiated Mo 
nanoparticles were set on top of 
the column. a Saline, b  MoO3 
nanoparticles, c Alumina, and 
d:Separated 99mTc solution
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column and the radioactivity-separated 99mTc solution were 
measured. In addition, the nanoparticles were imaged using 
an electron microscope to investigate their size and shape.

Results and discussion

Figure 2 shows the γ-ray spectra of  MoO3 after 3 h of 
irradiation and the effluent solution obtained by flowing 
ion-exchanged water through the  MoO3 nanoparticles in 
the aluminum column. A 140.5 keV peak originated from 
99mTc was observed. In addition, peaks were observed at 
181.1, 366.4, 739.5, and 777.9 keV corresponding to 99Mo; 
the peak at 235.7 keV was attributed to 95mNb; 568.8 keV, 
765.8 keV, 778.2 keV, 810.8 keV, and 1200.2 keV peaks 
from 96Nb. Figure 2b shows the γ-ray spectrum of the 99mTc 
solution separated from MoO3. Only the 140.5 keV peak 
from 99mTc was observed, indicating that all 99Mo, parent 
nuclei, and side reaction products of 95mNb and 96Nb were 
adsorbed onto the column. The percentage of radioisotopes 
remaining on the column was 99Mo > 99.5%, 95mNb > 97% 
and 96Nb > 98%, respectively.

Figure 3 shows the decay curve of the 181.1 keV γ-ray 
in the effluent solution. A solid line was obtained through 
the least square fitting of the observed data. A linear fit was 
obtained through least square fitting of the observed data 
on a logarithmic scale, yielding a calculated half-life was 
66.0 ± 0.6 h, being in good coincidence with the literature 
value 65.9 h. The radioactivity of 99mTc in the column before 
elution and in the eluate was determined at regular time 
intervals. Figure 4 shows the recovery rate of 99mTc from 
 MoO3 as a function of time. In Fig. 4, the horizontal axis 
represents the elapsed time from the end of bombardment. 
The recovery was calculated at the time the radioactivity of 

Fig. 2  Gamma-ray spectra of a 
 MoO3 nanoparticle powder irra-
diated by Bremsstrahlung rays 
and b 99mTc solution separated 
from  MoO3

Fig. 3  Decay curve of the 181.1  keV photopeak. Solid line was 
derived from the least squares fit of the observed data. Error bars of 
the data are hidden inside square

Fig. 4  Recovery rate of 99mTc from the 99Mo/99mTc produced by the 
irradiated  MoO3 nanoparticle. Open and closed circles are  MoO3 nan-
oparticle suspended in ion-exchanged water and saline, respectively. 
Rectangle is  MoO3 nanoparticle powder
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99mTc in the column was measured. The yield was defined 
as the ratio of 99mTc activity in the separated solution to that 
retained in the column. Data are shown for irradiation with 
powder alone, nanoparticles suspended in ion-exchanged 
water, and nanoparticles suspended in physiological saline. 
99mTc yield was observed as a function of time for all sam-
ples. The recovery yields of 99mTc obtained in these experi-
ments are listed in Table 2. The yields for Mo metal were 
significantly lower than those for  MoO3, whereas those for 
 MoO3 irradiated in aqueous conditions were higher than 
those under dry conditions.

Even while maintaining a constant  MoO3 content, the 
separation yield of 99mTc for nanoparticles suspended in 
an aqueous solution was higher than that for the powdered 
form. This is because the individual particles diffused in the 
solvent and did not stick to each other during irradiation. 
However, if the particles were not first suspended in the sol-
vent, they grew larger owing to gamma ray irradiation, and 
very few 99Mo/99mTc reached particle surface.

Considering the recovery rates of 99mTc in Mo and  MO3 
nanoparticles, the yield of  MoO3 was approximately 20 
times higher than that of Mo metal, primarily owing the 
nanoparticle shape. Figure 5 shows electron micrographs 
of the Mo and  MoO3 nanoparticles. The Mo metal was 
spherical with a size of approximately 100 nm, while  MoO3 

was orthorhombic with a particle size of approximately 
10 μm. While the recoil rate from the small size of particles 
is expected to increase owing to the large specific surface 
area, the results revealed that  MoO3 with a large particle size 
exhibits a higher yield.

Dikiy et al. calculated the escape fraction of 99Mo pro-
duced via the 100Mo (γ, n) 99Mo reaction with photons pos-
sessing an end point energy of 30 MeV [23] and obtained 
values of 0.06 and 0.08 for 70 nm Mo and  MoO3, respec-
tively. The experimental results presented herein for 99mTc 
yield was 0.003 ± 0.001 for Mo, which is approximately 1/20 
of the simulation results reported by Dikiny et al. This indi-
cates that 99Mo recoiled from the inside of the nanoparticles 
to the surface. However, the probability of being trapped in 
the aqueous solution was low. For  MoO3, the ratio of 99Mo 
trapped as 99mTc was 0.05 ± 0.006, yielding a trap efficiency 
of 0.6, which is significantly greater than that of Mo metal. 
Based on these experimental results, it seems that 99mTc can 
be separated with a higher yield by using even smaller  MoO3 
nanoparticles and performing gamma-ray irradiation in a 
state in which the particles do not stick together.

The separation of 99mTc was repeated several times at 
intervals of approximately one day. The yield increased for 
the  MoO3 nanoparticles as a function of time, and the maxi-
mum separation yield of 99mTc was 14.4 ± 0.7% (Fig. 4). 

Table 2  Recovery yields of 
99mTc

No Sample Irradiated condition Separated condition Min. yield (%) Max. yield (%)

1a Mo metal dry powder ion-exchanged water 0.08 ± 0.01 0.29 ± 0.28
1b Mo metal suspended in saline ion-exchanged water 0.05 ± 0.03 0.94 ± 0.21
2a MoO3 dry powder ion-exchanged water 0.81 ± 0.03 3.2 ± 0.1
2b MoO3 suspended in ion-

exchanged water
ion-exchanged water 2.4 ± 0.1 14.4 ± 0.7

2c MoO3 suspended in saline saline 4.8 ± 0.1 13.0 ± 0.7

Fig. 5  Electron microscopy image of the prepared nanoparticles. (left) Mo nanoparticles with a particle size of 10 ~ 250 nm and (right)  MoO3 
nanoparticles with a size of 2–10 μm



21Journal of Radioanalytical and Nuclear Chemistry (2024) 333:17–22 

1 3

This indicated that the Mo nanoparticles acted as a 99mTc 
generator.

Conclusion

A novel 99mTc generator employing Mo nanoparticles and 
an alumina column was proposed. 99Mo was produced via a 
photonuclear reaction using naturally composed Mo metal 
and  MoO3 nanoparticles as targets. The irradiated nanopar-
ticles were poured into an alumina column, and 99mTc was 
separated at regular intervals using ion-exchanged water and 
saline. The nanoparticles suspended in the ion-exchanged 
water provided a higher 99mTc yield compared with the pow-
dered nanoparticles. However, no difference in the 99mTc 
yield was observed between ion-exchanged water and saline. 
The maximum separation 99mTc yield was 14.4 ± 0.7%.
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