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Abstract
This work focuses on investigating the feasibility of using a crosslinked amidoximated copolymeric hydrogel as a potential 
adsorbent to recover uranium and thorium ions from aqueous media. The hydrogel was synthesized via gamma-irradiation 
copolymerization and characterized through FTIR, TGA, and SEM. The medium acidity notably affected the adsorption 
capacity of both ions. The adsorption data was in line with the pseudo-1st-order equation and the Freundlich isothermal 
model. The thermodynamics analysis showed that the temperature rise promoted the adsorption capacity. The reusability 
studies highlighted the good performance of the hydrogel up to five regeneration rounds.
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Introduction

 The interest in uranium and thorium has expanded tremen-
dously, due to their technological importance and consider-
able benefits in a number of fields including nuclear power, 
medical, agricultural, industrial, and defense applications 
[1]. Uranium and thorium are naturally occurring radionu-
clides found mainly in rocks, sands, and aquatic environ-
ments [2]. Their recovery from mineral ores is achieved 
mainly via ion-exchange and solvent extraction; after various 
ore preconcentration and leaching processes [3]. In nature, 
thorium is found as a tetravalent cation, whereas uranium 
is found in both tetravalent and hexavalent states. In aque-
ous solutions, thorium is only stable at the tetravalent form 
[4], whereas hexavalent uranium is the more stable form. 
Uranium and thorium behavior, content, and speciation in 
the aqueous solutions are complicated and controlled by the 
pH [5].

The reserve of uranium and thorium is estimated to be 
around 7 and 10 million tons, respectively [6]. Due to the 
anticipated uranium and thorium shortage, their recovery 
from unconventional resources, such as natural waters, 
seawater, industrial wastewaters, and other waste sources, 

became a significant task for the sustainable development 
of nuclear energy [7]. Besides, the radioactive and toxic 
nature of these radionuclides made their removal and recov-
ery from the contaminated waters essential to minimize 
their discharge into the environment [8]. To date, numer-
ous techniques have been applied for uranium and thorium 
separation, recovery, and removal such as chemical pre-
cipitation, electrochemical treatment, flotation, adsorption, 
ion-exchange, biodegradation, chromatographic extraction, 
photocatalysis, solvent extraction, and membrane technolo-
gies [6, 9–15]. Recently, attention has been increased to the 
adsorption technique for economic and effective extraction 
of radionuclides from water media, due to its reliability, fea-
sibility, ease of handling, fast kinetics, and the adsorbent 
reusability [16, 17].

The adsorption technique retains the radionuclides via 
establishing adsorbate–adsorbent equilibrium through dif-
ferent mechanisms as ion exchange, chelation, complexa-
tion, and electrostatic interactions [18]. Many efforts are 
diverted to developing effective adsorbents with elevated 
adsorption capacity, selectivity, and irradiation stability [19]. 
Various organic, inorganic, or composite adsorbents have 
been developed for uranium and thorium recovery including 
synthetic polymers [20], silicon materials [21], carbon-based 
materials [22], clay minerals [23], resins [24], cellulose [25], 
metal-organic frameworks [26], and chitosan-based adsor-
bents [27].
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Over the recent decades, the functionalized chelating 
polymers have received significant interest in radioactive 
waste separation thanks to their advantages such as raised 
performance, cost-effectiveness, and simplicity of surface 
modification [28]. Particularly, amidoxime-functionalized 
polymers are excellent adsorbents for uranium and thorium 
capture from aquatic media owing to their high efficiency, 
elevated selectivity, and fast kinetics [29]. Amidoximes 
have outstanding functionality via the joint possession of 
acidic (–OH) and basic (–NH2) active sites which can effec-
tively bind uranium and thorium ions. Amidoxime-based 
adsorbents showed high-performance thanks to their superb 
chemical activity and excellent adsorption ability.

Efficient chelating polymers can be developed through 
the copolymerization of monomers having different func-
tional groups. The introduction of hydrophilic groups, e.g. 
carboxylic or sulfonic, was reported to enhance the adsorp-
tion capacity of the amidoximated adsorbents [30]. In this 
view, this work aims at exploring the adsorption behavior 
of the crosslinked amidoximated hydrogel towards uranium 
and thorium ions. The parameters that affect the adsorption 
process were investigated and optimized. The adsorption rate 
and capacity were analyzed through the application of linear 
forms of various kinetics and isotherms models.

Experimental

Reagents and instruments

Analytical grade chemicals and deionized water were used in 
the experimental work. Acrylonitrile (AN) and arsenazo-III 
were obtained from Sigma-Aldrich (Germany). Hydroxy-
lamine hydrochloride and 2-acrylamido-2-methylpropane 
sulfonic acid (AMPS) were supplied by Merck (Germany). 
N,N′-Methylenebisacrylamide (MBA) was purchased from 
Thermo Fisher Scientific (USA). U(VI) and Th(IV) solutions 
were acquired via dissolving an accurately weighed amount 
of the corresponding nitrate form in deionized water.

The hydrogel chemical composition was identified by 
FTIR (Nicolet iS10 spectrophotometer, Thermo Scientific, 
Japan). The hydrogel surface features were analyzed through 
SEM (JEOL-6510 LA, Japan). The hydrogel thermal stabil-
ity was investigated via TGA (Shimadzu TGA-50, Japan) 
within the temperature range 25–650 °C at heating and nitro-
gen flow rates of 10 °C min− 1 and 20 mL min− 1, respectively. 
U(VI) and Th(IV) concentrations were measured by UV–Vis 
spectrophotometer (Thermo evolution 300, UK).

Preparation and amidoximation of the hydrogel

AN/AMPS crosslinked copolymeric hydrogel was pre-
pared by means of gamma irradiation-induced free radical 

copolymerization technique. The monomers having a 70/30 
feed composition (AN/AMPS) were dissolved in deionized 
water in the presence of 0.25 wt% of MBA and then purged 
with nitrogen for 10 min. At that point, the solution was 
subjected to γ-rays from 60Co source at a radiation dose of 
30 kGy. The irradiated copolymer was chopped into pieces, 
rinsed with methanol followed by deionized water, and then 
kept at 60 °C overnight.

The amidoximation reaction was carried out by adding 
methanolic hydroxylamine solution to the synthesized copol-
ymer (AN/AMPS) followed by heating at 70 °C for 3 h under 
constant stirring conditions. The amidoximated copolymer 
(AO/AMPS) was filtered, rinsed with deionized water, and 
dried overnight at 60 °C.

Adsorption experiments

The adsorption experiments were conducted using the 
single-component batch-wise technique. The adsorption 
process was accomplished via agitation of conical flasks, 
containing a constant amount of the hydrogel and aque-
ous solutions of each radionuclide, for a given time using a 
thermostatically controlled shaking bath. After filtration, the 
remaining quantity of each ion was evaluated spectrophoto-
metrically [31].

The relation between the hydrogel performance and the 
experimental variables, including solution pH (2 − 8), radio-
nuclide quantity (50 − 500 mg/l), contact time (0 − 220 min), 
and solution temperature (30 − 60 °C), was investigated.

The equilibrium adsorption capacity of the AO/AMPS 
copolymeric hydrogel (qe, mg g− 1) was calculated using the 
following expression [32]:

where Co and Ce (mg L− 1) are the initial and equilibrium 
concentrations of each radionuclide, V (L) is the solution 
volume, and W (g) is the hydrogel mass.

Adsorption experiments were conducted in triplicate and 
the average values were reported.

Results and discussion

Structural characteristics of AO/AMPS hydrogel

Figure 1a, b shows the FTIR spectra of the prepared hydro-
gel before and after the amidoximation process, respectively. 
For AN/AMPS copolymer (Fig. 1a), the band at 2928 cm−1 
represented the (CH2) vibration in the copolymer chains. 
The (C–H) stretching vibration was observed at 2850 cm−1 
[31]. The peak at 1729 cm−1 indicated the (C=O) stretching 

(1)qe =

(

Co − Ce

)

V

W
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vibration from AMPS secondary amide group [33]. The 
vibration bands of the sulfonyl group appeared at 1066 cm−1 
(S–O), 1360 cm−1 (S=O), and 1453 cm−1 (SO2), respec-
tively [31]. The sharp peak at 2243 cm−1 was assigned to 
the (C≡N) group, whereas the board peak at 3524 cm−1 was 
due to the (N–H) stretching [33]. The disappearance of the 
(C≡N) peak in the AO/AMPS spectrum (Fig. 1b) demon-
strated the successful conversion of the cyano group to an 
amidoxime group. The new amidoxime group characteristic 
peaks appeared at 1658 cm−1 (C=N stretching), 939 cm−1 
(N–O stretching), 1552 cm−1 (NH2– bending) vibrations. 
The 3441 cm−1 broadband was belonged to the stretching 
vibration of the (–OH) overlapped with the (–NH) in the 
amidoxime group [31]. 

SEM was used to investigate the hydrogel microstruc-
ture morphology and give insights into the compatibility of 
the monomers. The AO/AMPS micrograph (Fig. 2) showed 
a uniform porous structure with numerous interconnected 
pores distributed on the hydrogel surface. The noticed 

capillary channels would allow the radionuclides and water 
molecules to enter into the hydrogel networks [34]. Addi-
tionally, the observed pores interconnection confirmed the 
crosslinked network structure and suggested the smooth flow 
of the radionuclides into the AO/AMPS hydrogel. 

TGA was performed to assess the thermal stability and 
degradation profile of the AO/AMPS copolymeric hydro-
gel (Fig. 3). The TGA plot showed an initial decomposition 
stage that took place at 50–200 °C with approximately 10% 
mass loss that represented the evaporation of the absorbed 
and bound water. The subsequent degradation stage occurred 
in the range of 200–300 °C with an additional 10% mass 
loss; was assigned to the decomposition of AMPS sulfonic 
acid groups and production of sulfur oxide gases (SO2 and 
SO3) [35]. The next degradation stage appeared in the range 
of 300–350 °C with 20% mass loss and indicated the amide 
group decomposition [36]. The final stage was observed in 
the range of 350–550 °C with 35% mass loss which was due 
to the thermal degradation of the backbone chain. 

pH−adsorption relationship

Figure 4 illustrates the variation of the adsorption capacity 
with the medium pH. The results indicated that the adsorp-
tion behavior was sensitive to the pH changes; as it was 
quantitative only within the pH range 3–5 for both radionu-
clides. Such behavior can be explained based on the hydrogel 
protonation–deprotonation process as well as the variation of 
the radionuclide species with the medium pH. The solution 
pH influenced the radionuclides hydrolysis and consequently 
the adsorption mechanism. At low pH values, the cationic 
UO2(II) and Th(IV) species predominated in the solution 
and competed with the excess protons for the hydrogel active 
sites that eventually suppressed the adsorption capacity [37, 
38]. Additionally, under high acidic conditions the sulfonic 
and oxime groups of AO/AMPS were protonated and conse-
quently couldn’t provide sufficient coordination sites for the 
radionuclides [39]. As the pH increased, the deprotonation 

Fig. 1   FTIR graph of (a) AN/AMPS and (b) AO/AMPS copolymeric 
hydrogel

Fig. 2   SEM image of AO/AMPS copolymeric hydrogel
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Fig. 3   TGA graph of AO/AMPS copolymeric hydrogel
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of the oxime and sulfonic groups favored the radionuclides 
adsorption as more active sites were exposed to uranium and 
thorium, thereby increasing the adsorption capacity [40]. At 
further pH increment (pH ˃  4), U(VI) and Th(IV) hydrolysis 
and precipitation phenomena adversely affected the adsorp-
tion process [40] and consequently the adsorbed amount of 
the radionuclides fell off. Hence, pH 4 was used for further 
adsorption studies. 

Time–adsorption relationship

The time required by the adsorbent to reach the adsorp-
tion equilibrium is of utmost importance when evaluating 
the adsorbent efficiency. The equilibrium time is depend-
ent on the adsorbent nature and the adsorption mechanism; 
and should be optimized to set the optimal settings when 
designing a full-scale batch adsorption process. For this 
purpose, the influence of the contact time on the adsorption 
behavior was examined at pH 4 for different time intervals. 
According to Fig. 5, the adsorbed amount of both radionu-
clides increased quickly with contact time at the first stage 
(40 min); and thereafter it proceeded at a slower rate till the 
equilibrium was reached in 120 min. 

In beginning, the observed fast increase of the radionu-
clide adsorbed quantity resulted from the enormous number 
of free binding sites on AO/AMPS copolymeric hydrogel, 
thus the radionuclides could migrate towards the bound-
ary layer of the hydrogel surface, begin to occupy the free 
adsorption sites, and finally populate the interior sites of the 
porous construction via pore diffusion [41]. By increasing 
the contact time, the hydrogel binding sites were gradually 
saturated causing a slower adsorption rate until the equilib-
rium was attained and no further significant increase in the 
adsorption capacity was noticed. Based on the adsorption 

results, 120 min was considered as the appropriate time for 
further experiments.

Initial concentration–adsorption relationship

The adsorbate initial concentration is one of the most signifi-
cant factors which can influence the adsorption behavior. In 
this regard, solutions with different concentrations of each 
individual radionuclide (50–500 mg L− 1) were equilibrated 
with AO/AMPS copolymeric hydrogel for 120 min at 25 °C 
and pH 4. Figure 6 shows the changing trend of the hydro-
gel adsorption capacity with the radionuclide concentration, 
which exhibited a gradual upward relationship until reaching 
a plateau. 

At low initial concentrations, AO/AMPS copolymeric 
hydrogel had a relatively high number of free adsorption 
sites; thus, the ratio of the radionuclide ions to the accessible 
active sites was low. By increasing the radionuclide concen-
tration, the active sites of AO/AMPS copolymer would be 
surrounded with more radionuclide ions leading to a stronger 
driving force that conquer the radionuclides mass-transfer 
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Fig. 4   pH−adsorption relationship for U(VI) and Th(IV) ions on AO/
AMPS copolymeric hydrogel
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limitations between the liquid and solid phases; and conse-
quently better adsorption capacity was noticed till the bind-
ing sites were saturated [42].

Kinetics investigations

To gain an insight into the adsorption rate, determine the 
potential control-rate steps, and reveal the adsorption mecha-
nism; the compatibility of the kinetics results to the pseudo-
1st-order and pseudo-2nd-order reactions was evaluated. The 
success of the model in predicting the adsorption kinetics 
was indicated by a relatively high value of the correlation 
coefficients (R2). The mathematical linear formulas of the 

studied kinetics models and the corresponding parameters 
for U(VI) and Th(IV) adsorption on AO/AMPS hydrogel 
were summarized in Table 1 and Fig. 7. The data showed 
that the pseudo-1st-order model had greater correlation 
coefficients for both radionuclides, which implies its better 
ability to describe the adsorption kinetics. Additionally, the 
values of qe calculated by the pseudo-1st-order model agreed 
well with the experimental values (30.94 and 26.95 mg g−1 
for U(VI) and Th(IV) ions, respectively). This observa-
tions suggested that the diffusion process was the rate-lim-
iting step in the radionuclides adsorption. 

Isotherms investigations

Adsorption isotherms analysis was performed to predict 
the AO/AMPS adsorption capacity, understand adsorbent-
adsorbate interaction mechanism, and get information on the 
active sites’ distribution on the surface of AO/AMPS hydro-
gel as well as the nature of coverage (monolayer or multi-
layer). The experimental results were fitted to Langmuir, 
Freundlich, and Temkin isotherms. Table 2 summarizes the 
isotherms linear equations, fitting parameters, and R2 values; 
whereas Fig. 8 shows the corresponding linear relationship. 
The experimental data was more adequately described by 
the Freundlich model compared with other models, as was 
indicated from the higher R2 values. This sugessted a het-
erogeneous adsorption surface due to the various functional 
groups on the AO/AMPS surface [43]. The calculated n val-
ues were higher than 1 for both radionuclides, pointing out 
a favorable adsorption process; while 1/n values were lower 
than 1, indicating a strong interaction between the radionu-
clides and AO/AMPS copolymeric hydrogel.  

For the Langmuir model, the  calculated maximum 
adsorption capacity qmax was 502.51 and 434.78 mg g− 1 for 
U(VI) and Th(IV), respectively. The dimensionless separa-
tion factor (RL) was utilized to describe the affinity of AO/
AMPS active sites towards U(VI) and Th(IV) ions. The cal-
culated RL values were falls between 0 and 1 (0.44–0.86 
and 0.64–0.94 for U(VI) and Th(IV), respectively), denot-
ing a highly favorable adsorption process [44]. The results 
clearly indicated the suitability of AO/AMPS copolymeric 
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2nd-order models for U(VI) and Th(IV) ions adsorption on AO/
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Table 1   Kinetic parameters for U(VI) and Th(IV) ions adsorption on AO/AMPS copolymeric hydrogel

Adsorption 
model name

Linear form Parameter description Value for U(VI) Value for Th(IV)

Pseudo-1st-
order

log
(

qe−qt
)

= logqe −
(

k
1

2.303

)

t qe (mg g− 1) is the equilibrium adsorption capacity 31.30 27.66

K1 ( min− 1) is the adsorption rate constant 0.031 0.032
R2 is the correlation coefficient 0.974 0.986

Pseudo-2nd-
order

t

qt
=

1

k
2
q2
e

+
1

qe
t qe (mg g−1) is the equilibrium adsorption capacity 75.75 67.11

K2 (g mg− 1 min− 1) is the adsorption rate constant 0.015 0.011
R2 is the correlation coefficient 0.903 0.909
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hydrogel for U(VI) and Th(IV) adsorptive recovery from 
water streams.

Thermodynamics investigations

To foresee the temperature–adsorption relationship, the 
U(VI) and Th(IV) adsorption on AO/AMPS copolymeric 
hydrogel was studied under the temperature range 30–60 °C. 
The corresponding results revealed an enhancement of the 
adsorption ability with the temperature increase, indicating 
the endothermic nature of the adsorption reaction. This can 
be explained as that, at higher temperatures the intraparticle 
diffusion increased and more adsorption sites were available 
which boost up the adsorption phenomenon.

To fully understand the adsorption nature and predict the 
adsorption spontaneity, thermodynamics analysis was per-
formed and the correlating parameters were estimated based 
on the equations listed in Table 3 as well as the Van’t Hoff 
plot (Fig. 9).   Data given in Table 3 confirmed the endother-
mic nature of the adsorption reaction, as indicated from the 
positive value of the standard enthalpy (ΔH°). Moreover, the 
high enthalpy value (ΔH° ˃ 40 kJ mol− 1) indicated a chem-
isorption process. Results showed negative values for the 
standard free energy (∆G°) reflecting the adsorption spon-
taneity and feasibility. Lower ∆G° values were observed for 
higher temperatures, signifying better adsorption capacity at 
elevated temperatures. The positive charge of the standard 
entropy (∆S°) reflected the affinity of AO/AMPS hydrogel 
towards the tested radionuclides. Additionally, ∆S° values 
suggested a potential higher randomness at the hydrogel/
solution interface during U(VI) and Th(IV) adsorption [45].

Reusability of AO/AMPS copolymer

From the environmental, economic, and industrial view-
point; good regeneration and reusability are highly required 
for materials applied to pollutants removal. This is to lower 
the adsorption process cost and avoid the accumulation of 

Table 2   Isotherm parameters for U(VI) and Th(IV) ions adsorption on AO/AMPS copolymeric hydrogel

Adsorption model name Linear form Parameter description Value for U(VI) Value for Th(IV)

Langmuir isotherm model Ce

qe
=

Ce

qmax

+
1

qmaxKL

qmax (mg g− 1) is the maximal adsorption capacity 502.51 434.78
KL (L mg− 1) is Langmuir constant 0.004 0.003
R2 is the correlation coefficient 0.898 0.896

RL is the separation factor RL =
1

1+KLCo

0.033–0.255 0.086–0.431

Freundlich isotherm model  logqe = logkF +
1

n
logCe

KF (mg g− 1) is Freundlich constant 2.10 1.24

n (L g− 1) is the adsorption intensity 1.30 1.03
R2 is the correlation coefficient 0.993 0.991

Temkin isotherm model  qe = BlnAT + BlnCe bT (J mol− 1) is Temkin constant 50.94 50.15
AT (L g− 1) is the equilibrium binding constant 13.13 7.84
R2 is the correlation coefficient 0.942 0.938
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pollutant-loaded materials in the environment. Therefore, 
the desorption of loaded-AO/AMPS copolymeric hydro-
gel was investigated using HCl and NaOH solutions (1 mol 
L− 1). Figure 10a showed higher desorption percentages of 
both radionuclides in the acidic medium than in the basic 
medium. U(VI) ions were eluted close to 95% by HCl and 
90% by NaOH, while Th(IV) ions were eluted close to 94% 
by HCl and 89% by NaOH.

The regenerated copolymeric hydrogel was applied for five 
successive adsorption–desorption cycles. The results indicated Ta
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that the first round had the highest removal efficiency due to 
the intact pores and binding sites. Although the adsorption 
capacity gradually decreased after each successive round of 
reuse, the efficacy of the adsorption remained relatively high 
after the fifth round. This finding confirmed that AO/AMPS 
copolymeric hydrogel had good reusability and stability for 
U(VI) and Th(IV) recovery from the aquatic environments.

Conclusions

Amidoxime-based chelating copolymeric hydrogel has 
been synthesized, characterized, and successfully applied 
as an efficient candidate for U(VI) and Th(IV) adsorp-
tive recovery. The pH and kinetics studies designated pH 
4 and 120 min as the optimal values for maximum adsorp-
tion capacity. The amidoximated hydrogel revealed a higher 
adsorption capacity toward U(VI) (502.51 mg g− 1) than 
Th(IV) (434.78 mg g− 1). Thermodynamics results indicated 
the endothermic and spontaneous characteristics of U(VI) 
and Th(IV) adsorption on AO/AMPS hydrogel. Desorption 
of the radionuclides from the AO/AMPS hydrogel was real-
ized by using 1 mol L− 1HCl. The adsorbent showed remark-
able adsorption capacity, high regeneration capability, good 
stability, and fast equilibrium time indicating its potential 
practicability for large-scale treatment of uranium and tho-
rium contaminated water streams.
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